首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The RNA helicase Upf1 is a multifaceted eukaryotic enzyme involved in DNA replication, telomere metabolism and several mRNA degradation pathways. Upf1 plays a central role in nonsense-mediated mRNA decay (NMD), a surveillance process in which it links premature translation termination to mRNA degradation with its conserved partners Upf2 and Upf3. In human, both the ATP-dependent RNA helicase activity and the phosphorylation of Upf1 are essential for NMD. Upf1 activation occurs when Upf2 binds its N-terminal domain, switching the enzyme to the active form. Here, we uncovered that the C-terminal domain of Upf1, conserved in higher eukaryotes and containing several essential phosphorylation sites, also inhibits the flanking helicase domain. With different biochemical approaches we show that this domain, named SQ, directly interacts with the helicase domain to impede ATP hydrolysis and RNA unwinding. The phosphorylation sites in the distal half of the SQ domain are not directly involved in this inhibition. Therefore, in the absence of multiple binding partners, Upf1 is securely maintained in an inactive state by two intramolecular inhibition mechanisms. This study underlines the tight and intricate regulation pathways required to activate multifunctional RNA helicases like Upf1.  相似文献   

2.
RNA helicases are involved in almost every aspect of RNA metabolism, yet very little is known about the regulation of this class of enzymes. In Saccharomyces cerevisiae, the stability and translational fidelity of nonsense-containing mRNAs are controlled by the group I RNA helicase Upf1 and the proteins it interacts with, Upf2 and Upf3. Combining the yeast two-hybrid system with genetic analysis, we show here that the cysteine- and histidine-rich (CH) domain and the RNA helicase domain of yeast Upf1 can engage in two new types of molecular interactions: an intramolecular interaction between these two domains and self-association of each of these domains. Multiple observations indicate that these molecular interactions are crucial for Upf1 regulation. First, coexpression of the CH domain and the RNA helicase domain in trans can reconstitute Upf1 function in both promoting nonsense-mediated mRNA decay (NMD) and preventing nonsense suppression. Second, mutations that disrupt Upf1 intramolecular interaction cause loss of Upf1 function. These mutations weaken Upf2 interaction and, surprisingly, promote Upf1 self-association. Third, the genetic defects resulting from deficiency in Upf1 intramolecular interaction or RNA binding are suppressed by expression of Upf2. Collectively, these data reveal a set of sequential molecular interactions and their roles in regulating Upf1 function during activation of NMD and suggest that cis intramolecular interaction and trans self-association may be general mechanisms for regulation of RNA helicase functions.  相似文献   

3.
Nonsense-mediated mRNA decay (NMD) is an mRNA surveillance pathway that recognizes and degrades aberrant mRNAs containing premature stop codons. A critical protein in NMD is Upf1p, which belongs to the helicase super family 1 (SF1), and is thought to utilize the energy of ATP hydrolysis to promote transitions in the structure of RNA or RNA-protein complexes. The crystal structure of the catalytic core of human Upf1p determined in three states (phosphate-, AMPPNP- and ADP-bound forms) reveals an overall structure containing two RecA-like domains with two additional domains protruding from the N-terminal RecA-like domain. Structural comparison combined with mutational analysis identifies a likely single-stranded RNA (ssRNA)-binding channel, and a cycle of conformational change coupled to ATP binding and hydrolysis. These conformational changes alter the likely ssRNA-binding channel in a manner that can explain how ATP binding destabilizes ssRNA binding to Upf1p.  相似文献   

4.
mRNA degradation is an important control point in the regulation of gene expression and has been linked to the process of translation. One clear example of this linkage is the nonsense-mediated mRNA decay pathway, in which nonsense mutations in a gene can reduce the abundance of the mRNA transcribed from that gene. For the yeast Saccharomyces cerevisiae, the Upf1 protein (Upf1p), which contains a cysteine- and histidine-rich region and nucleoside triphosphate hydrolysis and helicase motifs, was shown to be a trans-acting factor in this decay pathway. Biochemical analysis of the wild-type Upf1p demonstrates that it has RNA-dependent ATPase, RNA helicase, and RNA binding activities. A UPF1 gene disruption results in stabilization of nonsense-containing mRNAs, leading to the production of enough functional product to overcome an auxotrophy resulting from a nonsense mutation. A genetic and biochemical study of the UPF1 gene was undertaken in order to understand the mechanism of Upf1p function in the nonsense-mediated mRNA decay pathway. Our analysis suggests that Upf1p is a multifunctional protein with separable activities that can affect mRNA turnover and nonsense suppression. Mutations in the conserved helicase motifs of Upf1p that inactivate its mRNA decay function while not allowing suppression of leu2-2 and tyr7-1 nonsense alleles have been identified. In particular, one mutation located in the ATP binding and hydrolysis motif of Upf1p that changed the aspartic and glutamic acid residues to alanine residues (DE572AA) lacked ATPase and helicase activities, and the mutant formed a Upf1p:RNA complex in the absence of ATP; surprisingly, however, the Upf1p:RNA complex dissociated as a consequence of ATP binding. This result suggests that ATP binding, independent of its hydrolysis, can modulate Upf1p:RNA complex formation for this mutant protein. The role of the RNA binding activity of Upf1p in modulating nonsense suppression is discussed.  相似文献   

5.
The nonsense-mediated mRNA decay pathway decreases the abundance of mRNAs that contain premature termination codons and prevents suppression of nonsense alleles. The UPF1 gene in the yeast Saccharomyces cerevisiae was shown to be a trans-acting factor in this decay pathway. The Upf1p demonstrates RNA-dependent ATPase, RNA helicase, and RNA binding activities. The results presented here investigate the binding affinity of the Upf1p for ATP and the consequences of ATP binding on its affinity for RNA. The results demonstrate that the Upf1p binds ATP in the absence of RNA. Consistent with this result, the TR800AA mutant form of the Upf1p still bound ATP, although it does not bind RNA. ATP binding also modulates the affinity of Upf1p for RNA. The RNA binding activity of the DE572AA mutant form of the Upf1p, which lacks ATPase activity, still bound ATP as efficiently as the wild-type Upf1p and destabilized the Upf1p-RNA complex. Similarly, ATPgammaS, a nonhydrolyzable analogue of ATP, interacted with Upf1p and promoted disassociation of the Upf1p-RNA complex. The conserved lysine residue (K436) in the helicase motif Ia in the Upf1p was shown to be critical for ATP binding. Taken together, these findings formally prove that ATP can bind Upf1p in the absence of RNA and that this interaction has consequences on the formation of the Upf1p-RNA complex. Further, the results support the genetic evidence indicating that ATP binding is important for the Upf1p to increase the translation termination efficiency at a nonsense codon. Based on these findings, a model describing how the Upf1p functions in modulating translation and turnover and the potential insights into the mechanism of the Upf1p helicase will be discussed.  相似文献   

6.
Three Upf proteins are essential to the nonsense-mediated mRNA decay (NMD) pathway. Although these proteins assemble on polysomes for recognition of aberrant mRNAs containing premature termination codons, the significance of this assembly remains to be elucidated. The Cys- and His-rich repeated N terminus (CH domain) of Upf1 has been implicated in its binding to Upf2. Here, we show that CH domain also plays a RING-related role for Upf1 to exhibit E3 ubiquitin ligase activity in yeast. Despite the sequence divergence from typical E3-RING fingers, the CH domain of yeast Upf1 specifically and directly interacted with the yeast E2 Ubc3. Interestingly, Upf1 served as a substrate for the in vitro self-ubiquitination, and the modification required its association with Upf3 rather than Upf2. Substitution of the coordinated Cys and His residues in the CH domain impaired not only self-ubiquitination of Upf1 but also rapid decay of aberrant mRNAs. These results suggest that Upf1 may serve as an E3 ubiquitin ligase upon its association with Upf3 and play an important role in signaling to the NMD pathway.  相似文献   

7.
8.
The central nonsense-mediated mRNA decay (NMD) regulator, Upf1, selectively targets nonsense-containing mRNAs for rapid degradation. In yeast, Upf1 preferentially associates with mRNAs that are NMD substrates, but the mechanism of its selective retention on these mRNAs has yet to be elucidated. Previously, we demonstrated that Upf1 associates with 40S ribosomal subunits. Here, we define more precisely the nature of this association using conventional and affinity-based purification of ribosomal subunits, and a two-hybrid screen to identify Upf1-interacting ribosomal proteins. Upf1 coimmunoprecipitates specifically with epitope-tagged 40S ribosomal subunits, and Upf1 association with high-salt washed or puromycin-released 40S subunits was found to occur without simultaneous eRF1, eRF3, Upf2, or Upf3 association. Two-hybrid analyses and in vitro binding assays identified a specific interaction between Upf1 and Rps26. Using mutations in domains of UPF1 known to be crucial for its function, we found that Upf1:40S association is modulated by ATP, and Upf1:Rps26 interaction is dependent on the N-terminal Upf1 CH domain. The specific association of Upf1 with the 40S subunit is consistent with the notion that this RNA helicase not only triggers rapid decay of nonsense-containing mRNAs, but may also have an important role in dissociation of the premature termination complex.  相似文献   

9.
Upf1 is a highly conserved RNA helicase essential for nonsense-mediated mRNA decay (NMD), an mRNA quality-control mechanism that degrades aberrant mRNAs harboring premature termination codons (PTCs). For the activation of NMD, UPF1 interacts first with a translation-terminating ribosome and then with a downstream exon-junction complex (EJC), which is deposited at exon-exon junctions during splicing. Although the helicase activity of Upf1 is indispensable for NMD, its roles and substrates have yet to be fully elucidated. Here we show that stable RNA secondary structures between a PTC and a downstream exon-exon junction increase the levels of potential NMD substrates. We also demonstrate that a stable secondary structure within the 3'-untranslated region (UTR) induces the binding of Upf1 to mRNA in a translation-dependent manner and that the Upf1-related molecules are accumulated at the 5'-side of such a structure. Furthermore, we present evidence that the helicase activity of Upf1 is used to bridge the spatial gap between a translation-termination codon and a downstream exon-exon junction for the activation of NMD. Based on these findings, we propose a model that the Upf1-related molecular motor scans the 3'-UTR in the 5'-to-3' direction for the mRNA-binding factors including EJCs to ensure mRNA integrity.  相似文献   

10.
To understand the relationship between translation and mRNA decay, we have been studying how premature translation termination accelerates the degradation of mRNAs. In the yeast Saccharomyces cerevisiae, the Upf1 protein (Upf1p), which contains a cysteine- and histidine-rich region and nucleoside triphosphate hydrolysis and helicase motifs, was shown to be a trans-acting factor in this decay pathway. A UPF1 gene disruption results in the stabilization of nonsense-containing mRNAs and leads to a nonsense suppression phenotype. Biochemical analysis of the wild-type Upf1p demonstrated that it has RNA-dependent ATPase, RNA helicase, and RNA binding activities. In the work described in the accompanying paper (Y. Weng, K. Czaplinski, and S. W. Peltz, Mol. Cell. Biol. 16:5477-5490, 1996) mutations in the helicase region of Upf1p that inactivated its mRNA decay function but prevented suppression of leu2-2 and tyr7-1 nonsense alleles are identified. On the basis of these results, we suggested that Upf1p is a multifunctional protein involved in modulating mRNA decay and translation termination at nonsense codons. If this is true, we predict that UPF1 mutations with the converse phenotype should be identified. In this report, we describe the identification and biochemical characterization of mutations in the amino-terminal cysteine- and histidine-rich region of Upf1p that have normal nonsense-mediated mRNA decay activities but are able to suppress leu2-2 and tyr7-1 nonsense alleles. Biochemical characterization of these mutant proteins demonstrated that they have altered RNA binding properties. Furthermore, using the two-hybrid system, we characterized the Upf1p-Upf2p interactions and demonstrated that Upf2p interacts with Upf3p. Mutations in the cysteine- and histidine-rich region of Upf1p abolish Upf1p-Upf2p interaction. On the basis of these results, the role of the Upf complex in nonsense-mediated mRNA decay and nonsense suppression is discussed.  相似文献   

11.
mRNA degradation is an important control point in the regulation of gene expression and has been shown to be linked to the process of translation. One clear example of this linkage is the observation that nonsense mutations in a gene can accelerate the decay of the corresponding mRNA. In the yeast Saccharomyces cerevisiae, the product of the UPF1 gene, harboring zinc finger, NTP hydrolysis, and helicase motifs, was shown to be a trans-acting factor in this decay pathway. A UPF1 gene disruption results in stabilization of nonsense-containing mRNAs and leads to a nonsense suppression phenotype. As a first step toward understanding the molecular and biochemical mechanism of nonsense-mediated mRNA decay, we have purified Upf1p from a yeast extract and characterized its nucleic acid-dependent NTPase activity, helicase activity, and nucleic acid binding properties. The results presented in this paper demonstrate that Upf1p contains both RNA- and DNA-dependent ATPase activities and RNA and DNA helicase activities. In the absence of ATP, Upf1p binds to single-stranded RNA or DNA, whereas hydrolysis of ATP facilitates its release from single-stranded nucleic acid. Based on these results, the role of Upf1p's biochemical activities in mRNA decay and translation are discussed.  相似文献   

12.
13.
Eukaryotic mRNAs containing premature termination codons are subjected to accelerated turnover, known as nonsense-mediated decay (NMD). Recognition of translation termination events as premature requires a surveillance complex, which includes the RNA helicase Upf1p. In Saccharomyces cerevisiae, NMD provokes rapid decapping followed by 5'-->3' exonucleolytic decay. Here we report an alternative, decapping-independent NMD pathway involving deadenylation and subsequent 3'-->5' exonucleolytic decay. Accelerated turnover via this pathway required Upf1p and was blocked by the translation inhibitor cycloheximide. Degradation of the deadenylated mRNA required the Rrp4p and Ski7p components of the cytoplasmic exosome complex, as well as the putative RNA helicase Ski2p. We conclude that recognition of NMD substrates by the Upf surveillance complex can target mRNAs to rapid deadenylation and exosome-mediated degradation.  相似文献   

14.
15.
16.
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that detects and degrades mRNAs containing premature termination codons (PTCs). SMG-1-mediated Upf1 phosphorylation takes place in the decay inducing complex (DECID), which contains a ribosome, release factors, Upf1, SMG-1, an exon junction complex (EJC) and a PTC-mRNA. However, the significance and the consequence of Upf1 phosphorylation remain to be clarified. Here, we demonstrate that SMG-6 binds to a newly identified phosphorylation site in Upf1 at N-terminal threonine 28, whereas the SMG-5:SMG-7 complex binds to phosphorylated serine 1096 of Upf1. In addition, the binding of the SMG-5:SMG-7 complex to Upf1 resulted in the dissociation of the ribosome and release factors from the DECID complex. Importantly, the simultaneous binding of both the SMG-5:SMG-7 complex and SMG-6 to phospho-Upf1 are required for both NMD and Upf1 dissociation from mRNA. Thus, the SMG-1-mediated phosphorylation of Upf1 creates a binding platforms for the SMG-5:SMG-7 complex and for SMG-6, and triggers sequential remodeling of the mRNA surveillance complex for NMD induction and recycling of the ribosome, release factors and NMD factors.  相似文献   

17.
In yeast the UPF1, UPF2 and UPF3 genes encode three interacting factors involved in translation termination and nonsense-mediated mRNA decay (NMD). UPF1 plays a central role in both processes. In addition, UPF1 was originally isolated as a multicopy suppressor of mitochondrial splicing deficiency, and its deletion leads to an impairment in respiratory growth. Here, we provide evidence that inactivation of UPF2 or UPF3, like that of UPF1, leads to an impairment in respiratory competence, suggesting that their products, Upf1p, Upf2p and Upf3p, are equivalently involved in mitochondrial biogenesis. In addition, however, we show that only Upf1p acts as a multicopy suppressor of mitochondrial splicing deficiency, and its activity does not require either Upf2p or Upf3p. Mutations in the conserved cysteine- and histidine-rich regions and ATPase and helicase motifs of Upf1p separate the ability of Upf1p to complement the respiratory impairment of a Deltaupf1 strain from its ability to act as a multicopy suppressor of mitochondrial splicing deficiency, indicating that distinct pathways express these phenotypes. In addition, we show that, when overexpressed, Upf1p is not detected within mitochondria, suggesting that its role as multicopy suppressor of mitochondrial splicing deficiency is indirect. Furthermore, we provide evidence that cells overexpressing certain upf1 alleles accumulate a phosphorylated isoform of Upf1p. Altogether, these results indicate that overexpression of Upf1p compensates for mitochondrial splicing deficiency independently of its role in mRNA surveillance, which relies on Upf1p-Upf2p-Upf3p functional interplay.  相似文献   

18.
19.
In mammalian cells, nonsense-mediated messenger RNA decay (NMD) targets newly synthesized nonsense-containing mRNA bound by the cap-binding-protein heterodimer CBP80-CBP20 and at least one exon-junction complex (EJC). An EJC includes the NMD factors Upf3 or Upf3X and Upf2, and Upf2 recruits Upf1. Once this pioneer translation initiation complex is remodeled so that CBP80-CBP20 is replaced by eukaryotic initiation factor 4E, the mRNA is no longer detectably targeted for NMD. Here, we provide evidence that CBP80 augments the efficiency of NMD but not of Staufen1 (Stau1)-mediated mRNA decay (SMD). SMD depends on the recruitment of Upf1 by the RNA-binding protein Stau1 but does not depend on the other Upf proteins. We find that CBP80 interacts with Upf1 and promotes the interaction of Upf1 with Upf2 but not with Stau1.  相似文献   

20.
Mutations in immunoglobulin µ-binding protein 2 (Ighmbp2) cause distal spinal muscular atrophy type 1 (DSMA1), an autosomal recessive disease that is clinically characterized by distal limb weakness and respiratory distress. However, despite extensive studies, the mechanism of disease-causing mutations remains elusive. Here we report the crystal structures of the Ighmbp2 helicase core with and without bound RNA. The structures show that the overall fold of Ighmbp2 is very similar to that of Upf1, a key helicase involved in nonsense-mediated mRNA decay. Similar to Upf1, domains 1B and 1C of Ighmbp2 undergo large conformational changes in response to RNA binding, rotating 30° and 10°, respectively. The RNA binding and ATPase activities of Ighmbp2 are further enhanced by the R3H domain, located just downstream of the helicase core. Mapping of the pathogenic mutations of DSMA1 onto the helicase core structure provides a molecular basis for understanding the disease-causing consequences of Ighmbp2 mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号