首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel fibrinolytic enzyme from Fusarium sp. CPCC 480097, named Fu-P, was purified to electrophoretic homogeneity using ammonium sulfate precipitation and ion exchange and gel filtration chromatography. Fu-P, a single protein had a molecular weight of 28 kDa, which was determined by SDS-PAGE and gel filtration chromatography. The isoelectric point of Fu-P determined by isoelectric focusing electrophoresis (IEF) was 8.1, and the optimum temperature and pH value were 45°C and 8.5, respectively. Fu-P cleaved the α-chain of fibrin (ogen) with high efficiency, and the β-chain and γ-γ (γ-)-chain with lower efficiency. Fu-P activity was inhibited by EDTA and PMSF, and the enzyme exhibited a high specificity for the chymotrypsin substrate S-2586. Fu-P was therefore identified as a chymotrypsin-like serine metalloprotease. The first 15 amino acids of the N-terminal sequence of Fu-P were Q-A-S–S-G-T-P-A-T-I-R-V-L-V–V and showed no homology with that of other known fibrinolytic enzymes. This protease may have potential applications in thrombolytic therapy and in thrombosis prevention.  相似文献   

2.
A fibrinolytic enzyme (SFE1) from Streptomyces sp. XZNUM 00004 was purified to electrophoretic homogeneity with the methods including ammonium sulfate precipitation, polyacrylamide gel, DEAE-Sepharose Fast Flow anion exchange and gel-filtration chromatography. The molecular weight of SFE1 was estimated to be 20 kDa by SDS-PAGE, fibrin zymography, and gel filtration chromatography. The isoelectric point was 4.9. K (m) and V (max) values were 0.96 mg/ml and 181.8 unit/ml, respectively. It was very stable at pH 5.0-8.0 and below 65 °C. The optimum pH for enzyme activity was 7.8. The optimum temperature was 35 °C. The fibrinolytic activity of SFE1 was enhanced by Na(+), K(+), Mn(2+), Mg(2+), Zn(2+) and Co(2+). Conversely, Cu(2+) showed strong inhibition. Furthermore, the fibrinolytic activity was strongly inhibited by PMSF, and partly inhibited by EDTA and EGTA. SFE1 rapidly hydrolyzed the Aα-chain of fibrinogen, followed by the Bβ-chain and finally the γ-chain. The first 15 amino acids of the N-terminal sequence were APITLSQGHVDVVDI. Additionally, SFE1 directly digested fibrin and not by plasminogen activators in vitro. SFE1 can be further developed as a potential candidate for thrombolytic therapy.  相似文献   

3.
A serine protease with preference for fibrin protein was purified and characterized from Bacillus amyloliquefaciens MCC2606, isolated from dosa batter. The protease was purified using ammonium sulfate precipitation, ion-exchange, and gel filtration chromatography. The degradation activity of the protease toward the fibrin was significantly higher compared with other protein substrates in the study. The molecular weight of the CFR15-protease was estimated to be 32?kDa based on SDS-PAGE. The purified enzyme exhibited both fibrinolytic and fibrinogenolytic activity. The optimum pH and temperature for the activity of the enzyme was found to be 10.5 and 45°C. A significant inhibition was seen with the protease inhibitors phenyl methyl sulphonyl fluoride and ethylene diamine tetra acetic acid and the activity of the enzyme was enhanced in presence of Mn2+. There was an observed increase in vitro activated partial thromboplastin time and prothrombin time of both time and dose dependent study. Among the four chains of fibrin, the β-chain of fibrin appears to be the primary component and site susceptible for CFR15-protease in early action as indicated by MS/MS analysis of initial degradation products. These results indicated that the CFR15-protease have the potential to be an effective fibrinolytic agent.  相似文献   

4.
In this study we purified and characterized a fibrinolytic protease from the mycelia of Perenniporia fraxinea. The apparent molecular mass of the purified enzyme was estimated to be 42 kDa by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), fibrin zymography and size exclusion using fast protein liquid chromatography (FPLC). The first 20 amino acid residues of the N-terminal sequence were ASYRVLPITKELLPPEFFVA, which shows a high degree of similarity with a fungalysin metallopeptidase from Coprinopsis cinerea. The optimal reaction pH value and temperature were pH 6.0 and 35–40 °C, respectively. Results for the fibrinolysis pattern showed that the protease rapidly hydrolyzed the fibrin α-chain followed by the β-chain. The γ–γ chains were also hydrolyzed, but more slowly. The purified protease effectively hydrolyzed fibrinogen, preferentially digesting the Aα-chains of fibrinogen, followed by Bβ- and γ-chains. We found that protease activity was inhibited by Cu2+, Fe3+, and Zn2+, but enhanced by the additions of Mn2+, Mg2+ and Ca2+ metal ions. Furthermore, the protease activity was inhibited by EDTA, and it was found to exhibit a higher specificity for the chromogenic substrate S-2586 for chymotrypsin, indicating that the enzyme is a chymotrypsin-like metalloprotease. The mycelia of P. fraxinea may thus represent a source of new therapeutic agents to treat thrombosis.  相似文献   

5.
Intravascular thrombosis is a major cardiovascular complication responsible for high mortality worldwide. Existing thrombolytic agents are expensive and have various side effects. As a consequence, researchers continue to search for better thrombolytic agents. Fibrinolytic proteases especially those of microbial origin are considered as potential therapeutic candidates for thrombosis. The current study reports fibrinolytic protease from a bacterial isolate Stenotrophomonas sp. KG-16-3, as it exhibits high fibrinolytic activity on fibrin agarose plate. Studies on fibrinolytic protease from Stenotrophomonas sp. are lacking. So, a detailed study was conducted for the production and purification of fibrinolytic protease. Optimizing process parameters using the Design of Experiments method enhanced the yield by 1.5-fold. The fibrinolytic enzyme was purified by ammonium sulfate precipitation, ion-exchange and gel-filtration chromatography resulting in 7.1-fold purification and 16.7% yield with specific activity of 383.8?U/mg. The purified enzyme exhibited higher fibrinolytic activity than plasmin and had a molecular weight of 39?kDa. Optimal activity of the enzyme was observed at 50?°C and pH 10. The enzyme exhibited stability up to 60?°C, over pH 7–10 and in the presence of different metal ions and solvents. The activity of the enzyme was significantly reduced in the presence of phenylmethyl sulfonyl fluoride, iodoacetic acid and 1,10-phenanthroline, suggesting that the enzyme belonged to the serine–cysteine metalloprotease category. The present study is the first ever report on the Design of Experiments based optimization of fermentation conditions for the production of fibrinolytic protease from Stenotrophomonas sp.  相似文献   

6.
A novel fibrinolytic enzyme subtilisin FS33 was purified from Bacillus subtilis DC33, isolated from a traditional flavour-rich food in China. The purified subtilisin FS33 was a single chain protein with a molecular mass of 30 kDa measured by SDS-PAGE. After activated SDS-PAGE, the enzyme band exhibited strong fibrinolytic activity on the fibrin plate. Subtilisin FS33 was temperature-stable below 60°C over the pH range 5–12, with a maximum activity at pH 8.0, but the activity completely disappeared after 10 min above 65°C. The NH2-terminal amino acid sequence of the enzyme was different from that of other known fibrinolytic enzymes, such as NK, CK, SMCE, KA38, subtilisin E, subtilisin DFE and Katsuwokinase. The amidolytic activities of subtilisin FS33 were inhibited completely by phenylmethanesulfonyl fluoride (PMSF) and soybean trypsin inhibitor (SBTI). EDTA did not affect the enzyme activity, and none of the ions tested activated the activity. Therefore, the enzyme was thought to be a subtilisin-like serine protease. The enzyme degraded the Bβ-chains of fibrin(ogen) very rapidly and then degraded the Aα-chain and at least five fragments from fibrin(ogen) were obtained after hydrolysis. Subtilisin FS33 was also able to cleave blood clots in the absence of endogenous fibrinolytic factors.  相似文献   

7.
Choi D  Cha WS  Park N  Kim HW  Lee JH  Park JS  Park SS 《Bioresource technology》2011,102(3):3279-3285
A fibrinolytic enzyme has been purified from the fruiting bodies of Korean Cordyceps militaris. The molecular mass of the enzyme was estimated to be 34 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), fibrin-zymography, and gel filtration chromatography. The 15 amino acid residues of the N-terminal sequence of the enzyme were APVEQCDAPVGLARL, which is dissimilar to those of fibrinolytic enzymes from other mushrooms. Optimal pH and temperature values of the enzyme were 7.0 and 40°C, respectively. The enzyme activity was completely inhibited by phenylmethylsulfonyl fluoride (PMSF), TPCK, 1,10-phenanthroline, Cu(2+), and Ba(2+). It was also significantly inhibited by aprotinin, EDTA, and EGTA. The enzyme showed a higher specificity for a synthetic substrate, N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide, exhibiting that it is a chymotrypsin-like serine metalloprotease. The enzyme preferentially hydrolyzed the fibrinogen Aα-, followed by the Bβ-chains and the γ-chain. The α, β, and γ-γ chains of fibrin were also degraded by the enzyme.  相似文献   

8.
An enzyme from Aspergillus oryzae KSK-3, isolated from commercial rice-koji for miso brewing, showed fibrinolytic activity in liquefied rice culture and was analyzed. A culture filtrate of A. oryzae KSK-3 was concentrated by ultrafiltration and subsequently purified to electrophoretic homogeneity by ammonium sulfate precipitation, ion-exchange chromatography, and gel filtration. The molecular weight of the purified enzyme was estimated to be approximately 30 kDa by SDS-PAGE and high-performance liquid chromatography–size exclusion chromatography. Its maximum fibrinolytic activity was observed at pH 6 and 50°C. The purified protease was stable between pH 4 and 9, at temperatures of up to 50°C. The activity of the enzyme was highest with S-2238 and was considerably inhibited by phenylmethylsufonyl fluoride and pefabloc SC. These results indicate that the enzyme is a serine protease. Moreover, the enzyme is edible and exhibited very high productivity (2,960 U urokinase per milliliter of culture broth). Taken together, the findings of this study indicate that the A. oryzae KSK-3 enzyme may be used as a natural agent for oral fibrinolytic therapy and nutraceutical applications.  相似文献   

9.
In this study we purified a fibrinolytic enzyme from the culture supernatant of Flammulina velutipes mycelia by ion exchange and gel filtration chromatographies, it was designated as F. velutipes protease (FVP-I). This purification protocol resulted in 18.52-fold purification of the enzyme at a final yield of 0.69%. The molecular mass of the purified enzyme was estimated to be 37 kDa by SDS–PAGE, fibrin-zymography and size exclusion by FPLC. This protease effectively hydrolyzed fibrin, preferentially digesting α-chain over β-and γ–γ chain. Optimal protease activity was found to occur at a pH of 6.0 and a temperature of 20 to 30 °C. The protease activity was inhibited by Cu2+, Fe2+ and Fe3+ ions, but was found to be enhanced by Mn2+ and Mg2+ ions. Furthermore, FVP-I activity was potently inhibited by EDTA and EGTA, and it was found to exhibit a higher specificity for chromogenic substrate S-2586 for chymotrypsin, indicating that the enzyme is a chymotrypsin-like metalloprotease. The first 20 amino acid residues of the N-terminal sequence of FVP-I were LTYRVIPITKQAVTEGTELL. They had a high degree of homology with hypothetical protein CC1G_11771, GeneBank Accession no. EAU86463.  相似文献   

10.
链霉菌C-3662产生的纤溶活性蛋白酶的纯化与理化性质   总被引:10,自引:0,他引:10  
 从链霉菌 C- 3662发酵上清液中 ,通过硫酸铵沉淀 ,CM- Sepharose Fast Flow和 Phenyl-Sepharose Fast Flow等层析色谱 ,分离纯化得到了具有纤溶活性的蛋白酶 CGW- 3,反向 HPLC鉴定纯度为 90 % ;每立升发酵上清液可得到 8mg纯品 ,活性回收率 46% ,CGW- 3为一单肽链蛋白 ,分子量 2 2 72 1 ,对丝氨酸蛋白酶抑制剂 PMSF敏感 ,对 EDTA不敏感 ;其 N端 1 5个氨基酸的顺序为 VVGGTRAAQGEFPFM,与微生物来源的胰蛋白酶类丝氨酸蛋白酶有较高的同源性 . CGW- 3的等电点 p I9.0 ,纤溶活性的最适 p H为 7.5~ 8.0 ,对温度比较敏感 .CGW- 3不仅具有直接降解纤维蛋白作用 ,而且能够激活纤溶酶原  相似文献   

11.
A fibrinolytic enzyme was isolated from a marine green alga, Codium divaricatum, and designated C. divaricatum protease (CDP). This protease effectively hydrolyzed fibrinogen A alpha chain, while it had very low hydrolyzing efficiency for B beta and gamma chains. This property was similar to that of alpha-fibrinogenase isolated from snake venom. Protease activity peaked at pH 9, and was completely inhibited by diisopropyl fluorophosphate (DFP) and phenylmethylsulfonyl fluoride (PMSF), identifying it as a serine protease. Its molecular form was single polypeptide structure and molecular weight was estimated as 31,000 by SDS-PAGE. Fibrinogen clotting enzyme was also identified in a fraction by ion-exchange chromatography. Analysis of clots formed by the enzyme and by thrombin by SDS-PAGE showed that the fibrinogen clotting enzyme would act like thrombin and have high substrate specificity.  相似文献   

12.
In this study we purified a fibrinolytic enzyme from Cordyceps militaris using a combination of ion-exchange chromatography on a DEAE Sephadex A-50 column, gel filtration chromatography on a Sephadex G-75 column, and FPLC on a HiLoad 16/60 Superdex 75 column. This purification protocol resulted in a 191.8-fold purification of the enzyme and a final yield of 12.9 %. The molecular mass of the purified enzyme was estimated to be 52 kDa by SDS-PAGE, fibrin-zymography, and gel filtration chromatography. The first 19 amino acid residues of the N-terminal sequence were ALTTQSNV THGLATISLRQ, which is similar to the subtilisin-like serine protease PR1J from Metarhizium anisopliae var. anisopliase. This enzyme is a neutral protease with an optimal reaction pH and temperature of 7.4 and 37 degrees , respectively. Results for the fibrinolysis pattern showed that the enzyme rapidly hydrolyzed the fibrin alpha-chain followed by the gamma-gamma chains. It also hydrolyzed the beta-chain, but more slowly. The Aalpha, Bbeta, and gamma chains of fibrinogen were also cleaved very rapidly. We found that enzyme activity was inhibited by Cu2+ and Co2+, but enhanced by the additions of Ca2+ and Mg2+ ions. Furthermore, fibrinolytic enzyme activity was potently inhibited by PMSF and APMSF. This enzyme exhibited a high specificity for the chymotrypsin substrate S-2586 indicating it 's a chymotrypsin-like serine protease. The data we present suggest that the fibrinolytic enzyme derived from the edible and medicinal mushroom Cordyceps militaris has fibrin binding activity, which allows for the local activation of the fibrin degradation pathway.  相似文献   

13.
A fibrinolytic enzyme was purified from the cultured mycelia of Armillaria mellea by ion-exchange chromatography followed by gel filtration, and was designated A. mellea metalloprotease (AMMP). The purification protocol resulted in a 627-fold purification of the enzyme, with a final yield of 6.05%. The apparent molecular mass of the purified enzyme was estimated to be 21kDa by SDS-PAGE, fibrin-zymography and gel filtration chromatography, which revealed a monomeric form of the enzyme. The optimal reaction pH value and temperature were, pH 6.0, and 33 degrees C, respectively. This protease effectively hydrolyzed fibrinogen, preferentially digesting the Aalpha-chain over the Bbeta- and r-chains. Enzyme activity was inhibited by Cu(2+) and Co(2+), but enhanced by the addition of Ca(2+) and Mg(2+) ions. Furthermore, AMMP activity was potently inhibited by EDTA, and was found to exhibit a higher specificity for the substrate S-2586 for chymotrypsin, indicating that the enzyme is a chymotrypsin-like metalloprotease. The first 24 amino acid residues of the N-terminal sequence were MFSLSSRFFLYTLCL SAVAVSAAP, which is extremely similar to the 24 amino acid residues of the N-terminal sequence of the fruiting body of A. mellea. These data suggest that the fibrinolytic enzyme AMMP, obtained from the A. mellea exhibits a profound fibrinolytic activity. The mycelia of A. mellea may thus represent a potential source of new therapeutic agents to treat thrombosis.  相似文献   

14.
采用bacitracin-Sepharose 4B亲和层析的方法得到凝胶电泳均一的来自极端嗜盐古生菌(Natrinema sp.)R6-5的胞外嗜盐蛋白酶。经SDS-PAGE分析该酶亚基分子量为62kDa。PMSF对它的活性完全抑制,表明它是一种丝氨酸蛋白酶,该酶反应的最适NaCl浓度为3mol/L,最适温度为45℃,最适pH值为8.0。在高盐条件下能维持高活性并十分稳定,具有重要的潜在应用价值。  相似文献   

15.
A fibrinolytic metalloprotease with in vitro fibrinolytic effects was purified from the edible mushroom Pleurotus ferulae using several chromatography steps including anion and ion exchange, gel filtration, and fast protein liquid chromatography columns. The molecular mass of the enzyme was estimated to be 20.0?kDa, as determined using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fibrin zymography. The protease was active at 50°C, and pH 4.0, 5.0, and 8.0. The fibrinolytic activity of the enzyme was inhibited by ethyleneglycol-bis-(2-aminoethyl)-N,N,N′,N′ tetraacetic acid and strongly inhibited by two metal ions, Cu and Mg. In vitro assays evaluating fibrinolytic activity on a fibrin plate, fibrin turbidity, and thrombolytic activity on fibrin clots using human fibrinogen and human thrombin revealed that the enzyme could hydrolyze fibrin polymers directly and inhibit the formation of fibrin clots. In activated partial thromboplastin time (APTT) and prothrombin time assays, the enzyme strongly prolonged the APTT, which detects an activity of intrinsic and common pathways. The enzyme showed strong in vivo protective effect against mortality/paralysis from epinephrine plus collagen-induced acute thromboembolism in in vivo model. Our findings suggest that the enzyme may have a potential for treatment and prevention of thrombosis-relative diseases.  相似文献   

16.
A protease, which we designate Eumiliin, was isolated from the latex of Euphorbia milii var. hislopii by a combination of ion-exchange chromatographic steps using DEAE-Sephacel and gel-filtration with Sephadex G-75. Eumiliin is a monomeric protein with an apparent molecular mass of 30 kDa by SDS-PAGE under reducing conditions and gave one main peak at 29,814 KDa in MALDI-TOF/TOF mass spectrometry. Eumiliin has caseinolytic and fibrinogenolytic activities, but no hemorrhagic or defibrinating activities. The enzyme readily hydrolyzes the Aα-chain of fibrinogen and, more slowly, the Bβ-chain. Its fibrinogenolytic activity is inhibited by β-mercaptoethanol and leupeptin. In contrast, EDTA and benzamidine did not affect the activity of Eumiliin. The caseinolytic activity of Eumiliin had a pH optimum of 8.0 and was stable in solution at up to 40 °C; activity was completely lost at ?80 °C. Intraplantar injection of Eumiliin (1-25 μg/paw) caused a dose- and time-dependent hyperalgesia, which peaked 1-5 h after enzyme injection. Intraplantar injection of Eumiliin (1-25 μg/paw) also caused an oedematogenic response that was maximal after 1 h. Morphological analyses indicated that Eumiliin induced an intense myonecrosis, with visible leukocyte infiltrate and damaged muscle cells 24 h after injection.  相似文献   

17.
A novel salt-tolerant protease produced by Aspergillus sp. FC-10 was purified to homogeneity through anion-exchange chromatography, preparative isoelectric-focusing electrophoresis, and gel filtration chromatography, with an overall recovery of 12.7%. This protease demonstrated an optimum pH range of 7.0-9.0 for activity, with a stable pH range of 5.0-9.0. The optimum process temperature at pH 7.0 was 65 degrees C. The enzyme has a molecular mass of 28 kDa and was deduced as a monomer with an isoelectric point of 3.75. Enzyme activity was strongly inhibited by 5 mM of HgCl(2) and FeCl(3), and significantly inhibited by 5 mM of CuSO(4), FeSO(4), and MnCl(2). The activity of this purified protease was inhibited by Na(2).EDTA; however, leupeptin, pepstatin A, PMSF, and E-64 did not affect the activity. Based on the N-terminal amino acid sequence and amino acid composition, this purified protease should be classified as a member of the deuterolysin family.  相似文献   

18.
Fibrinolytic and antithrombotic protease from Spirodela polyrhiza   总被引:1,自引:0,他引:1  
A fibrinolytic protease was purified from a Chinese herb (Spirodela polyrhiza). The protease has a molecular mass of 145 kDa and 70 kDa in gel filtration and SDS-polyacrlamide gel electrophoresis (PAGE), respectively, implying it is a dimer. Its optimum pH was 4.5-5.0. The enzyme was stable below 42 degrees C and after lyophilization. The enzyme activity was inhibited significantly by leupeptin and aprotinin. The protease hydrolyzed not only fibrin but also fibrinogen, cleaving Aalpha and Bbeta without affecting the gamma chain of fibrinogen. It preferentially cleaved the peptide bond of Arg or Lys of synthetic substrates (P1 position). The enzyme had an anticoagulating activity measured with activated partial thromboplastin time (APTT), thrombin time (TT), and prothrombin time (PT) tests. It delayed APTT, TT, and PT two times at the concentration of 36, 39, and 128 nM, respectively and this was drastically reduced after heat treatment.  相似文献   

19.
A novel anticoagulant protein from Scapharca broughtonii   总被引:1,自引:0,他引:1  
An anticoagulant protein was purified from the edible portion of a blood ark shell, Scapharca broughtonii, by ammonium sulfate precipitation and column chromatography on DEAE-Sephadex A-50, Sephadex G- 75, DEAE-Sephacel, and Biogel P-100. In vitro assays with human plasma, the anticoagulant from S. broughtonii, prolonged the activated partial thromboplastin time (APTT) and inhibited the factor IX in the intrinsic pathway of the blood coagulation cascade. But, the fibrin plate assay did not show that the anticoagulant is a fibrinolytic protease. The molecular mass of the purified S. broughtonii anticoagulant was measured to be about 26.0 kDa by gel filtration on a Sephadex G-75 column and SDSPAGE under denaturing conditions. The optimum activity in the APTT assay was exhibited at pH 7.0-7.5 and 40-45 degrees C in the presence of Ca(2+).  相似文献   

20.
During purification process development of a recombinant therapeutic protein, an endoproteolytic activity endogenous to the Chinese hamster ovary (CHO) cells and leading to degradation at particular hydrophobic amino acid residues (e.g., Phe and Trp) was observed when processing at acidic pH. The presence of residual levels of protease activity in purified protein batches affected the inherent activity of the product when stored as a solution. To develop a robust purification strategy to minimize this undesirable impact, identification and characterization of this protease was essential to ultimately ensure that a solution formulation was stable for many years. A protease was isolated from CHO cell‐free medium (CFM) using a combination of immobilized pepstatin‐A agarose chromatography and size exclusion chromatography (SEC). The isolated protease has significant proteolytic activity at pH ~ 3 to neutral pH and was identified as cathepsin D by mass spectrometry. Analytical SEC, chip‐based capillary gel electrophoresis, imaged capillary isoelectric focusing (cIEF), and circular dichroism (CD) spectropolarimetry analyses were performed for additional characterization of the protease. The identification and characterization of this protease enabled the development of a robust purification process by implementation of a controlled temperature inactivation unit operation (heat inactivation) that enabled essentially complete inactivation of the protease, resulting in the production of a stable drug product that had not been possible using column chromatography alone. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:120–129, 2018  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号