首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Allee effects in biological invasions   总被引:8,自引:0,他引:8  
Understanding the dynamics of small populations is obviously important for declining or rare species but is also particularly important for invading species. The Allee effect, where fitness is reduced when conspecific density is low, can dramatically affect the dynamics of biological invasions. Here, we summarize the literature of Allee effects in biological invasions, revealing an extensive theory of the consequences of the Allee effect in invading species and some empirical support for the theory. Allee effects cause longer lag times, slower spread and decreased establishment likelihood of invasive species. Expected spatial ranges, distributions and patterns of species may be altered when an Allee effect is present. We examine how the theory can and has been used to detect Allee effects in invasive species and we discuss how the presence of an Allee effect and its successful or unsuccessful detection may affect management of invasives. The Allee effect has been shown to change optimal control decisions, costs of control and the estimation of the risk posed by potentially invasive species. Numerous ways in which the Allee effect can influence the efficacy of biological control are discussed.  相似文献   

2.
生物入侵对鸟类的生态影响   总被引:1,自引:0,他引:1  
生物入侵是全球生物多样性面临的最主要威胁之一, 入侵种在改变入侵地环境的同时也使当地的生物受到极大影响。鸟类在生态系统中处于较高的营养级, 生态系统中任何一个环节的变化都可能对鸟类造成一定的影响。本文回顾了哺乳动物、鸟类、无脊椎动物和植物等不同生物类群的入侵对本地鸟类生态影响方面的研究进展。外来生物对鸟类的影响主要表现在以下几方面: (1)外来哺乳动物对成鸟、幼鸟或鸟卵的捕食作用; (2)外来鸟类与本地鸟类竞争栖息地和食物资源, 与当地的近缘种杂交而造成基因流失; (3)外来无脊椎动物改变本地鸟类的栖息环境和食物状况, 甚至直接捕食本地鸟类; (4)外来植物入侵改变入侵地的植物群落组成和结构, 造成本地鸟类的栖息地丧失或破碎化, 并通过改变入侵地生态系统的食物链结构而对高营养级的鸟类产生影响。最后, 作者还提出了该领域有待解决的问题和今后可能的研究方向。  相似文献   

3.
Boom‐bust dynamics – the rise of a population to outbreak levels, followed by a dramatic decline – have been associated with biological invasions and offered as a reason not to manage troublesome invaders. However, boom‐bust dynamics rarely have been critically defined, analyzed, or interpreted. Here, we define boom‐bust dynamics and provide specific suggestions for improving the application of the boom‐bust concept. Boom‐bust dynamics can arise from many causes, some closely associated with invasions, but others occurring across a wide range of ecological settings, especially when environmental conditions are changing rapidly. As a result, it is difficult to infer cause or predict future trajectories merely by observing the dynamic. We use tests with simulated data to show that a common metric for detecting and describing boom‐bust dynamics, decline from an observed peak to a subsequent trough, tends to severely overestimate the frequency and severity of busts, and should be used cautiously if at all. We review and test other metrics that are better suited to describe boom‐bust dynamics. Understanding the frequency and importance of boom‐bust dynamics requires empirical studies of large, representative, long‐term data sets that use clear definitions of boom‐bust, appropriate analytical methods, and careful interpretations.  相似文献   

4.
The movement of humans and goods has facilitated the arrival of non‐native insects, some of which successfully establish and cause negative consequences to the composition, services, and functioning of ecosystems. The gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), is currently invading North American forests at variable rates, spreading by local and long‐distance movement in a process known as stratified dispersal. Newly arriving colonizers often occur considerably ahead of the population front, and a key question is the degree to which they successfully establish. Prior research has highlighted mate‐finding failures in sparse populations as a cause of an Allee effect (positive density dependence). We explored this mechanism by measuring the relationship between female mating success and background male moth densities along the gypsy moth western front in Northern Wisconsin (USA) over 2 years. The mating results were then compared with analogous previous studies in southern Wisconsin, and the southern front in West Virginia and Virginia (USA). Mate‐finding failures in low‐density populations were consistently observed to be density‐dependent across all years and locations. Mate‐finding failures in low‐density populations have important ramifications to invasive species management, particularly in predicting species invasiveness, preventing successful establishment by small founder populations, and concentrating eradication efforts where they are most likely to succeed.  相似文献   

5.
Parasites and pathogens have recently received considerable attention for their ability to affect biological invasions, however, researchers have largely overlooked the distinct role of viruses afforded by their unique ability to rapidly mutate and adapt to new hosts. With high mutation and genomic substitution rates, RNA and single‐stranded DNA (ssDNA) viruses may be important constituents of invaded ecosystems, and could potentially behave quite differently from other pathogens. We review evidence suggesting that rapidly evolving viruses impact invasion dynamics in three key ways: (1) Rapidly evolving viruses may prevent exotic species from establishing self‐sustaining populations. (2) Viruses can cause population collapses of exotic species in the introduced range. (3) Viruses can alter the consequences of biological invasions by causing population collapses and extinctions of native species. The ubiquity and frequent host shifting of viruses make their ability to influence invasion events likely. Eludicating the viral ecology of biological invasions will lead to an improved understanding of the causes and consequences of invasions, particularly as regards establishment success and changes to community structure that cannot be explained by direct interspecific interactions among native and exotic species.  相似文献   

6.
Allee effects can play a critical role in slowing or preventing the establishment of low density founder populations of non-indigenous species. Similarly, the spread of established invaders into new habitats can be influenced by the degree to which small founder populations ahead of the invasion front are suppressed through Allee effects. We develop an approach to use empirical data on the gypsy moth, a non-indigenous invader in North America, to quantify the Allee threshold across geographical regions, and we report that the strength of the Allee effect is subject to spatial and temporal variability. Moreover, we present what is to our knowledge the first empirical evidence that geographical regions with higher Allee thresholds are associated with slower speeds of invasion.  相似文献   

7.
8.
The workshop on the Evolutionary Perspective of Biological Invasions in Terrestrial Ecosystems was held in Halle, Germany from 30 September to 3 October 2002.  相似文献   

9.
Aim We use data from 13 mountain regions and surrounding lowland areas to identify (1) the origins, traits and cultural uses of alien plant species that establish in mountains, (2) the alien species that are most likely to be a threat and (3) how managers might use this information to prevent further invasions. Location Australia, Canada, Chile, India, New Zealand, South Africa, Spain, Switzerland, USA. Methods Lists of alien species were compiled for mountains and their surrounding or nearby lowlands. Principal co‐ordinates analysis was performed on a matrix of similarities created using presence/absence data for alien species. The significance of differences between means for (1) similarity metrics of lowland and mountain groups and (2) species traits of lowland and mountain alien floras was determined using t‐tests. In seven of the 13 mountain regions, lists of alien species undergoing management were compiled. The significance of differences between proportions of traits for species requiring and not requiring management input was determined with chi‐square tests. Results We found that the proximal lowland alien flora is the main determinant of a mountain region’s alien species composition. The highest similarities between mountain floras were in the Americas/Pacific Region. The majority of alien species commonly found in mountains have agricultural origins and are of little concern to land managers. Woody species and those used for ornamental purposes will often pose the greatest threat. Main conclusions Given the documented potential threat of alien species invading mountains, we advise natural resource managers to take preventive measures against the risk of alien plant invasion in mountains. A strategy for prevention should extend to the surrounding lowland areas and in particular regulate the introduction of species that are already of management concern in other mountains as well as climatically pre‐adapted alien mountain plants. These may well become more problematic than the majority of alien plants currently in mountains.  相似文献   

10.
Manipulating plant order of arrival, a process that creates priority effects, may be an unexplored powerful tool to hinder the establishment of invasive non‐native plants in sites under restoration. Knowledge and experimental studies on priority effects in the neotropics are scarce. Here, we propose a research agenda that investigates whether manipulating plant order of arrival can create priority effects in the neotropics, and if this strategy can be used to avoid the spread of undesired species in restoration projects. We also describe our view on expanding existing knowledge on priority effects to the neotropics and identifying key questions for future research.  相似文献   

11.
The dynamics of interacting ecological populations results from the interplay between various deterministic and stochastic factors and this is particularly the case for the phenomenon of biological invasion. Whereas the spread of invasive species via propagation of a population front was shown to appear as a result of deterministic processes, the spread via formation, interaction and movement of separate patches has been recently attributed to the influence of environmental stochasticity. An appropriate understanding of the comparative importance of deterministic and stochastic mechanisms is still lacking, however. In this paper, we show that the patchy invasion appears to be possible also in a fully deterministic predator–prey model as a result of the Allee effect.  相似文献   

12.
Risk analyses are predictive systems designed to detect the risk of invasion by non‐native species. Although eucalypts are often considered moderately invasive given the extent of cultivation on a global scale, some species are widely recognized as invasive for transforming and impacting natural areas in several countries. These problems may be due to propagule pressure derived from human interest in forest production and aesthetic values. Risk analyses were carried out for 16 eucalypt species cultivated in Brazil using a protocol adapted from an Australian model to Brazilian conditions. The species were: Corymbia citriodora, Corymbia maculata, Corymbia torelliana, Eucalyptus benthamii, Eucalyptus brassiana, Eucalyptus camaldulensis, Eucalyptus cloeziana, Eucalyptus dunnii, Eucalyptus globulus, Eucalyptus grandis, Eucalyptus pellita, Eucalyptus robusta, Eucalyptus saligna, Eucalyptus tereticornis, Eucalyptus urophylla and Eucalyptus viminalis. Results indicate high risk for seven species, moderate risk for eight species and low risk for one species. The only low risk species is E. dunnii, while the highest risk scores refer to C. torelliana, E. tereticornis and E. grandis. These results are consistent with the history of invasion of the species around the world and should be considered for plantations especially when investment capacity to prevent and permanently control spread is low or not associated with forest certification standards. Risk analysis is a valid tool for discriminating between species and making decisions on species to be introduced or cultivated. The results of this study show that there are many species that can be cultivated without incurring biological invasions.  相似文献   

13.
Despite the amplified threats of extinction facing small founder populations, successful colonization sometimes occurs, bringing devastating ecological and economic consequences. One explanation may be rapid evolution, which can increase mean fitness in populations declining towards extinction, permitting persistence and subsequent expansion. Such evolutionary rescue may be particularly important, given Allee effects. When a population is introduced at low density, individuals often experience a reduction in one or more components of fitness due to novel selection pressures that arise from diminished intraspecific interactions and positive density dependence (i.e. component Allee effects). A population can avoid extinction if it can adapt and recover on its own (i.e. evolutionary rescue), or if additional immigration sustains the population (i.e. demographic rescue) or boosts its genetic variation that facilitates adaptation (i.e. genetic rescue). These various forms of rescue have often been invoked as possible mechanisms for specific invasions, but their relative importance to invasion is not generally understood. Within a spatially explicit modelling framework, we consider the relative impact of each type of rescue on the probability of successful colonization, when there is evolution of a multi-locus quantitative trait that influences the strength of component Allee effects. We demonstrate that when Allee effects are important, the effect of demographic rescue via recurrent immigration overall provides the greatest opportunity for success. While highlighting the role of evolution in the invasion process, we underscore the importance of the ecological context influencing the persistence of small founder populations.  相似文献   

14.
15.
16.
17.
The Allee effect is one of the population consequences of sexual reproduction that has received increased attention in recent years. Due to its impact on small population dynamics, it is commonly accepted that Allee effects should render populations more extinction prone. In particular, monogamous species are considered more susceptible to the Allee effect and hence, more extinction prone, than polygamous species. Although this hypothesis has received theoretical support, there is little empirical evidence. In this study, we investigate (1) how variation in tertiary sex ratio affects the presence and intensity of the Allee effect induced by mating system, as well as (2) how this effect contributes to extinction risk. In contrast with previous predictions, we show that all mating systems are likely to experience a strong Allee effect when the operational sex ratio (OSR) is balanced. This strong Allee effect does not imply being exceptionally extinction prone because it is associated with an OSR that result in a relatively small extinction risk. As a consequence, the impact of Allee effects on overall extinction risk is buffered. Moreover, the OSR of natural populations appears to be often male biased, thus making it unlikely that they will suffer from an Allee effect induced by mating system.  相似文献   

18.
Eight questions about invasions and ecosystem functioning   总被引:1,自引:0,他引:1  
I pose eight questions central to understanding how biological invasions affect ecosystems, assess progress towards answering those questions and suggest ways in which progress might be made. The questions concern the frequency with which invasions affect ecosystems; the circumstances under which ecosystem change is most likely; the functions that are most often affected by invaders; the relationships between changes to ecosystems, communities, and populations; the long-term responses of ecosystems to invasions; interactions between biological invasions and other anthropogenic activities and the difficulty of managing undesirable impacts of non-native species. Some questions have been answered satisfactorily, others require more data and thought, and others might benefit from being reformulated or abandoned. Actions that might speed progress include careful development of trait-based approaches; strategic collection and publication of new data, including more frequent publication of negative results; replacement of expert opinion with hard data where needed; careful consideration of whether questions really need to be answered, especially in cases where answers are being provided for managers and policy-makers; explicit attention to and testing of the domains of theories; integrating invasions better into an ecosystem context; and remembering that our predictive ability is limited and will remain so for the foreseeable future.  相似文献   

19.
1. Mid‐ocean exchange and saltwater flushing were implemented as management practices to reduce the likelihood of new biological invasions in the Laurentian Great Lakes associated with ships’ ballast water and sediments. Despite this, there has been no formal assessment of the efficacy of these procedures. Here, we conduct a comparative analysis of community composition of dormant taxa transported by ballast sediment before and after regulations came into effect in 2006. 2. Ballast sediment samples were collected from 17 ships during the post‐regulation interval of 2007 and 2008. Invertebrate eggs were counted, hatched and species identified in the laboratory. Results were compared to similar samples collected from 39 ships between 2000 and 2002, prior to implementation of saltwater flushing regulations. 3. The estimated amount of residual ballast sediment transported by vessels was significantly lower during the post‐regulation period, ranging from <1 to 45 tonnes per ship, with an average of 5 tonnes. Mean density and number of dormant viable eggs per ship declined 91 and 81%, respectively. 4. Community composition also changed through time, with Rotifera accounting for 78% of taxa transported prior to regulation, whereas Cladocera and Copepoda each accounted for 38% of abundance post‐regulation. Although the number of non‐indigenous species (NIS) declined 73% per ship after 2006, the reduction was not statistically significant; however, the number of freshwater NIS – which pose the greatest risk of invasion for the Great Lakes – was significantly lowered. 5. Our comparative analysis suggests that ballast management regulations enacted in 2006 markedly reduced the probability of introduction of NIS via dormant eggs carried in ballast sediments.  相似文献   

20.
To understand the interplay between environmental stochasticity and Allee effects, we analyse persistence, asymptotic extinction, and conditional persistence for stochastic difference equations. Our analysis reveals that persistence requires that the geometric mean of fitness at low densities is greater than one. When this geometric mean is less than one, asymptotic extinction occurs with high probability for low initial population densities. Additionally, if the population only experiences positive density-dependent feedbacks, conditional persistence occurs provided the geometric mean of fitness at high population densities is greater than one. However, if the population experiences both positive and negative density-dependent feedbacks, conditional persistence only occurs if environmental fluctuations are sufficiently small. We illustrate counter-intuitively that environmental fluctuations can increase the probability of persistence when populations are initially at low densities, and can cause asymptotic extinction of populations experiencing intermediate predation rates despite conditional persistence occurring at higher predation rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号