首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The respiratory metabolism in larvae of the Antarctic fly, Belgica antarctica Jacobs (Diptera: Chironomidae) was investigated at Palmer Station, Anvers Island (64°46′S, 64°03′W). Oxygen consumption was linearly related to temperature from 0 to 20°C, respectively, 49 and 338 nl/mg live wt/hr. Maintenance at 0 and 10°C for 8 days had no differential effect on the metabolic rate, suggesting that larvae lack the ability for compensatory acclimation. A comparison of standard metabolism for polar and temperate chironomids revealed no elevation of metabolic rate in polar forms. However, polar species exhibited lower activation energies than temperate forms indicating that the respiratory metabolism of polar chironomids is relatively temperature independent.  相似文献   

2.

1. 1.|Changes in tissue metabolite concentrations and enzyme activities in the pedipalpal (PM) and heart (HM) muscles of the tropical scorpion Heterometrus fulvipes show that the metabolism in PM and HM is fundamentally reorganized following low (18°C) and high (38°C) temperature acclimation.

2. 2.|Changes in metabolite concentrations show that metabolite biosynthesis showed increases after cold acclimation but decreases after warm acclimation.

3. 3.|Similarly, changes in enzyme activities show a preponderance of glycolysis and HMP shunt activity after cold acclimation, while after warm acclimation glycogenolysis, oxidative metabolism and gluconeogenesis predominated.

4. 4.|Higher metabolite concentrations and enzyme activities both before and after thermal acclimation in HM reflect its greater compensatory abilities.

Author Keywords: Scorpion; Heterometrus fulvipes; compensation; metabolic rate; thermal acclimation  相似文献   


3.
鲜雪梅  曹振东  付世建 《生态学报》2013,33(8):2444-2451
为了考查鱼类皮肤呼吸代谢的温度反应特征,在不同驯化温度(10、20、30℃)及双向急性变温(10→20℃、20→30℃、10→30℃;20→10 ℃、30→20℃、30→10℃)条件下采用自行设计的皮肤呼吸代谢装置测定麻醉后南方鲇(Silurus meridionalis)幼鱼的皮肤耗氧率(MO2skin)及鳃部耗氧率(MO2gill),并计算整体耗氧率(MO2total).研究显示:南方鲇幼鱼的MO2skin占MO2total 的16.4%-19.0%,随着驯化温度的升高,MO2skin上升的幅度显著低于MO2total(P<0.05),MO2skin占MO2total的比例则呈下降趋势;急性升(降)温组的MO2skin与升(降)温前驯化温度组相比显著升高(降低)(P<0.05),却与相应温度驯化组的MO2skin无显著性差异(P>0.05);急性变温组MO2skin的Q10值与驯化温度组的差异不显著(P>0.05),却显著低于MO2total的Q10值(P<0.05).通过相关资料比较发现,南方鲇幼鱼MO2skin占MO2total的比例处于中上水平.研究表明,在驯化温度和急性变温条件下,实验鱼的MO2total分别存在代谢补偿反应和急性胁迫反应;MO2skin与MO2total的温度反应不同,它既不是一个完全的化学反应过程,也不是生物反应过程,而更倾向于是一个物理的扩散过程.  相似文献   

4.
A mechanistic understanding of the response of metabolic rate to temperature is essential for understanding thermal ecology and metabolic adaptation. Although the Arrhenius equation has been used to describe the effects of temperature on reaction rates and metabolic traits, it does not adequately describe two aspects of the thermal performance curve (TPC) for metabolic rate—that metabolic rate is a unimodal function of temperature often with maximal values in the biologically relevant temperature range and that activation energies are temperature dependent. We show that the temperature dependence of metabolic rate in ectotherms is well described by an enzyme‐assisted Arrhenius (EAAR) model that accounts for the temperature‐dependent contribution of enzymes to decreasing the activation energy required for reactions to occur. The model is mechanistically derived using the thermodynamic rules that govern protein stability. We contrast our model with other unimodal functions that also can be used to describe the temperature dependence of metabolic rate to show how the EAAR model provides an important advance over previous work. We fit the EAAR model to metabolic rate data for a variety of taxa to demonstrate the model's utility in describing metabolic rate TPCs while revealing significant differences in thermodynamic properties across species and acclimation temperatures. Our model advances our ability to understand the metabolic and ecological consequences of increases in the mean and variance of temperature associated with global climate change. In addition, the model suggests avenues by which organisms can acclimate and adapt to changing thermal environments. Furthermore, the parameters in the EAAR model generate links between organismal level performance and underlying molecular processes that can be tested for in future work.  相似文献   

5.
6.
Final temperature preferendum of white shrimp adults were determined with acute and gravitation methods. The final preferendum was similar, independent of method (26.2–25.6 °C). A direct relationship was determined between the critical thermal maxima values and the acclimation temperatures (P<0.05). The end point of Critical Thermal Maxima (CTMax) for adults was defined as the loss of righting response (LRR). The acclimation response ratio (ARR) for adults of white shrimp had an interval of 0.36–0.76, values that agreed with others obtained for crustaceans from tropical and subtropical climates. The oxygen consumption rates increased significantly (P<0.05) from 39.6 up to 90.0 mg O2 kg−1 h−1 wet weight (w.w.) as the acclimation temperature increased from 20 to 32 °C. The range of temperature coefficient (Q10) of the white shrimp between 23 and 26 °C was the lower 1.60. The results obtained in this work are discussed in relation to the species importance in the reproductive scope and maintenance of breeders.  相似文献   

7.
Based on short-term experiments, many plant growth models – including those used in global change research – assume that an increase in temperature stimulates plant respiration (R) more than photosynthesis (P), leading to an increase in the R/P ratio. Longer-term experiments, however, have demonstrated that R/P is relatively insensitive to growth temperature. We show that both types of temperature response may be reconciled within a simple substrate-based model of plant acclimation to temperature, in which respiration is effectively limited by the supply of carbohydrates fixed through photosynthesis. The short-term, positive temperature response of R/P reflects the transient dynamics of the nonstructural carbohydrate and protein pools; the insensitivity of R/P to temperature on longer time-scales reflects the steady-state behaviour of these pools. Thus the substrate approach may provide a basis for predicting plant respiration responses to temperature that is more robust than the current modelling paradigm based on the extrapolation of results from short-term experiments. The present model predicts that the acclimated R/P depends mainly on the internal allocation of carbohydrates to protein synthesis, a better understanding of which is therefore required to underpin the wider use of a constant R/P as an alternative modelling paradigm in global change research.  相似文献   

8.
The standard oxygen consumption rate and the activities of muscle citrate synthase, creatine phosphokinase and lactate dehydrogenase in the tropical fish Oreochromis niloticus acclimated to either 20.5 ± 0.3° C or 26.5 ± 0 ± 5 ± C for at least 3 months were investigated. The standard oxygen consumption rate of individual fish from the two acclimation temperatures was determined at 20, 25 and 30 ± C. At all experimental temperatures, the standard oxygen consumption rate of fish acclimated to 20.5 ± 0.3° C was significantly higher than that of fish kept at 26.5 ± 0.5 ± C. In both groups smaller individuals had a higher oxygen consumption rate than large ones.
Analyses of the activity levels of citrate synthase (CS), creatine phosphokinase (CPK) and lactate dehydrogenase (LDH) in both red and white muscles isolated from fish kept under the two temperature regimes were performed at 26 ± C. The activity of CS in both red and white muscles isolated from the 20.5 ± 0.3° C acclimated fish was significantly higher than that of muscles isolated from the 26.5 ± 0.5 ± C acclimation group. Similarly, the CPK activity in white muscles isolated from fish acclimated to 20.5 ± 0.3 ± C was higher than that of muscles obtained from the 26.5 ± 0.5 ± C acclimation group. However, the CPK activity in red muscles isolated from the two fish groups was not significantly different. The opposite results were obtained for LDH activity. For example, the LDH activity of white muscles isolated from fish acclimated to 26.5 ± 0.5 ± C was significantly higher than that of the same muscles but from the 20.5 ± 0.3 ± C acclimated fish. No differences were observed in the LDH activity of red muscles isolated from the two fish groups.  相似文献   

9.
Two intertidal snails, Littorina saxatilis (Olivi, 1972) (upper eulittoral fringe/maritime zone) and Littorina obtusata (Linnaeus, 1758) (lower eulittoral) were collected from a boulder shore on Nobska Point, Cape Cod, Massachusetts, in July and acclimated for 15–20 days at 4 ° or 21 °C. Oxygen consumption rate (Vo2) was determined for 11–15 subsamples of individuals at 4 °, 11 ° and 21 °C with silver/platinum oxygen electrodes. Multiple factor analysis of variance (MFANOVA) of lo10 transformed values of whole animal Vo2 with log10 dry tissue weight (DTW) as a covariant revealed that increased test temperature induced a significant increase in Vo2 in both species (P<0.00001). In contrast, MFANOVA revealed that temperature acclimation did not affect Vo2 in either L. saxatilis (P= 0.35) or L. obtusata (P= 0.095). Thus, neither species displayed a capacity for the typical metabolic temperature compensation marked by an increase in Vo2 at any one test temperature in individuals acclimated to a lower temperature that is characteristic of most ectothermic animals. Lack of capacity for metabolic temperature acclimation has also been reported in other littorinid snail species, and may be characteristic of the group as a whole. Lack of capacity for respiratory temperature acclimation in these two species and other littorinids may reflect the extensive semi-diurnal temperature variation that they are exposed to in their eulittoral and eulittoral fringe/maritime zone habitats. In these habitats, any metabolic benefits derived from longer-term temperature compensation of metabolic rates are negated by extreme daily temperature fluctuations. Instead, littorinid species appear to have evolved mechanisms for immediate metabolic regulation which, in L. saxatilis and L. obtusata and other littorinids, appear to centre on a unique ability for near instantaneous suppression of metabolic rate and entrance into short-term metabolic diapause at temperatures above 20–35 °C, making typical seasonal respiratory compensation mechanisms characteristic of most ectotherms of little adaptive value to littorinid species.  相似文献   

10.
11.
The present study investigated the metabolic response of young ocean pout Zoarces americanus to temperature acclimation (3 v. 11° C), and to acute changes in water temperature from 3 to 17° C. The Q 10 value for standard metabolic rate between acclimation temperatures was 5·3, warm-acclimated fish displayed higher rates of oxygen uptake at all temperatures during the acute thermal challenge, and changes in whole-body citrate synthase activity were qualitatively similar to those seen for metabolism. These results indicate that, in contrast to temperate species, young ocean pout from Newfoundland do not show thermal compensation in response to long-term temperature changes.  相似文献   

12.
Basal metabolic rate (BMR) is thought to be a major hub in the network of physiological mechanisms connecting life history traits. Evaporative water loss (EWL) is a physiological indicator that is widely used to measure water relations in inter- or intraspecific studies of birds in different environments. In this study, we examined the physiological responses of summer-acclimatized Hwamei Garrulax canorus to temperature by measuring their body temperature (Tb), metabolic rate (MR) and EWL at ambient temperatures (Ta) between 5 and 40 °C. Overall, we found that mean body temperature was 42.4 °C and average minimum thermal conductance (C) was 0.15 ml O2 g−1 h−1 °C−1 measured between 5 and 20 °C. The thermal neutral zone (TNZ) was 31.8–35.3 °C and BMR was 181.83 ml O2 h−1. Below the lower critical temperature, MR increased linearly with decreasing Ta according to the relationship: MR (ml O2 h−1)=266.59–2.66 Ta. At Tas above the upper critical temperature, MR increased with Ta according to the relationship: MR (ml O2 h−1)=−271.26+12.85 Ta. EWL increased with Ta according to the relationship: EWL (mg H2O h−1)=−19.16+12.64 Ta and exceeded metabolic water production at Ta>14.0 °C. The high Tb and thermal conductance, low BMR, narrow TNZ, and high evaporative water production/metabolic water production (EWP/MWP) ratio in the Hwamei are consistent with the idea that this species is adapted to warm, mesic climates, where metabolic thermogenesis and water conservation are not strong selective pressures.  相似文献   

13.
Abstract Saxifraga cernua, a perennial herb distributed throughout the arctic and subarctic regions, shows high levels of dark respiration. The amount of respiration exhibited by leaves and whole plants at any temperature is influenced by the pretreatment temperature. Plants grown at 10°C typically show higher dark respiration rates than plants grown at 20°C. The levels of alternative-pathway respiration (or cyanide-insensitive respiration) in leaves of S. cernua grown at high and low temperatures were assessed by treating leaf discs with 0.25 mol m?3 salicylhydroxamic acid during measurements of oxygen consumption. Alternative pathway respiration accounted for up to 75% of the total respiration. Tissues from 20°C-grown plants yielded a Q10 of 3.37 for normal respiration, and of 0.97 for alternative-pathway respiration. Tissues from 10°C-grown plants yielded a Q10 of 2.55 for normal respiration, and of 0.79 for alternative-pathway respiration. The alternative pathway does not appear to be as temperature sensitive as the normal cytochrome pathway. A simple energy model was used to predict the temperature gain expected from these high rates of alternative-pathway respiration. The model shows that less than 0.02°C can be gained by leaves experiencing these high respiration rates.  相似文献   

14.
The respiration of diapausing Pieris pupae has been measured at different temperatures between 5 and 35°C in animals maintained at 20°C, either 14 or 74 days after larvo-pupal ecdysis or at 5°C for 30 or 60 days.

The sudden transfer of animals from 5 to 15, 20, 25, 30, 35°C or from 20 to 30, 35°C results in a respiratory overshoot whose characteristics (duration, height, extra-respiration) depend on experimental conditions.

After a certain period of acclimation, overshoots are eliminated. The respiratory rate except for animals maintained during 74 days at 20°C can then be represented as an exponential function of temperature.

The Q10 values change according to the treatment given to pupae.

The respiratory rate of male pupae is higher than that of female ones.

The following points are discussed:

1. 1.|The meaning of overshoots is analysed according to economy and metabolic homeostasis, showing the existence of acclimation.

2. 2.|Exponential curves which are not relevant to non-diapausing pupae or to the diapausing ones taken at larvo-pupal molting are characteristic of steady metabolism. These curves can be interpreted as the result of the temperature effect on a master respiratory reaction which would then be rate limiting.

3. 3.|Wintering leads to gradual and slow adaptation to cold temperatures which brings both a respiratory increase, a decrease of the Q10 and of the activation energy of the master reaction.

Author Keywords: Diapause metabolism; compensation; Pieris; lepidoptera; respiration; temperature effect; acclimation; overshoot effect  相似文献   


15.
Underyearling Lake Inari Arctic charr Salvelinus alpinus were acclimated to 11·0) C for 3 weeks, and then one group was maintained at 11·0) C and others were exposed to 14·4) Cconst, 17·7) Cconst or a diel fluctuating temperature of 14·3° C ± 1° C (14·3° Cfluc). Routine rates of oxygen consumption and ammonia excretion were measured over 10 days before the temperature change and over 31 days following the change. Measurements were made on fish that were feeding and growing. The temperature increase produced an immediate increase in oxygen consumption. There was then a decline over the next few days, suggesting that thermal acclimation was rapid. For groups exposed to constant temperature there was an increase in oxygen consumption ( M accl, mg kg−1 h−1) with increasing temperature ( T ), the relationship being approximated by an exponential model: M accl= 46·53e0·086 T . At 14·3° Cfluc oxygen consumption declined during the 3–4 days following the temperature shift, but remained higher than at 14·4° Cconst. This indicates that small temperature fluctuations have some additional influences that increase metabolic rate. Ammonia excretion rates showed diel variations. Excretion was lower at 11° Cconst than at other temperatures, and increases in temperature had a significant effect on ammonia excretion rate. Fluctuating (14·3° Cfluc) temperature did not influence ammonia excretion relative to constant temperature (14·4° Cconst).  相似文献   

16.
Short- and long-term effects of elevated CO2 concentration and temperature on whole plant respiratory relationships are examined for wheat grown at four constant temperatures and at two CO2 concentrations. Whole plant CO2 exchange was measured on a 24 h basis and measurement conditions varied both to observe short-term effects and to determine the growth respiration coefficient (rg), dry weight maintenance coefficient (rm), basal (i.e. dark acclimated) respiration coefficient (rg), and 24 h respiration:photosynthesis ratio (R:P). There was no response of rg to short-term variation in CO2 concentration. For plants with adequate N supply, rg was unaffected by the growth-CO2 despite a 10% reduction in the plant's N concentration (%N). However, rm was decreased 13%, and rb was decreased 20% by growth in elevated CO2 concentration relative to ambient. Nevertheless, R:P was not affected by growth in elevated CO2. Whole plant respiration responded to short-term variation of ± 5 °C around the growth temperature with low sensitivity (Q10= 1.8 at 15 °C, 1.3 at 30 °C). The shape of the response of whole plant respiration to growth temperature was different from that of the short term response, being a slanted S-shape declining between 25 and 30 °C. While rm, increased, rg decreased when growth temperature increased between 15 and 20 °C. Above 20 °C rm became temperature insensitive while rg increased with growth temperature. Despite these complex component responses, R:P increased only from 0.40 to 0.43 between 15° and 30 °C growth temperatures. Giving the plants a step increase in temperature caused a transient increase in R:P which recovered to the pre-transient value in 3 days. It is concluded that use of a constant R:P with respect to average temperature and CO2 concentration may be a more simple and accurate way to model the responses of wheat crop respiration to ‘climate change’ than the more complex and mechanistically dubious functional analysis into growth and maintenance components.  相似文献   

17.
Forest litter is a large reservoir of organic compounds that adds CO2 to the atmospheric carbon pool when it decomposes. Predicting CO2 efflux from litter decomposition is difficult because litter can undergo significant diurnal and day-to-day shifts in temperature. Moreover, the relationship between temperature and respiration may change if the decomposer microorganisms acclimate to short-term temperature changes. Therefore, we studied the relationship between temperature and respiration by litter decomposer microorganisms in a Pinus resinosa (Ait.) system and tested the hypothesis that their respiration acclimates to temperature. We found only limited evidence for acclimation following 6 °C shifts for 7 days. This suggests that increase in respiratory CO2 loss associated with increased temperature would not be greatly ameliorated by physiological acclimation for periods of up to a week.  相似文献   

18.
Climate change leads to increasing temperature and more extreme hot and drought events. Ecosystem capability to cope with climate warming depends on vegetation's adjusting pace with temperature change. How environmental stresses impair such a vegetation pace has not been carefully investigated. Here we show that dryness substantially dampens vegetation pace in warm regions to adjust the optimal temperature of gross primary production (GPP) ( T opt GPP ) in response to change in temperature over space and time. T opt GPP spatially converges to an increase of 1.01°C (95% CI: 0.97, 1.05) per 1°C increase in the yearly maximum temperature (Tmax) across humid or cold sites worldwide (37oS–79oN) but only 0.59°C (95% CI: 0.46, 0.74) per 1°C increase in Tmax across dry and warm sites. T opt GPP temporally changes by 0.81°C (95% CI: 0.75, 0.87) per 1°C interannual variation in Tmax at humid or cold sites and 0.42°C (95% CI: 0.17, 0.66) at dry and warm sites. Regardless of the water limitation, the maximum GPP (GPPmax) similarly increases by 0.23 g C m−2 day−1 per 1°C increase in T opt GPP in either humid or dry areas. Our results indicate that the future climate warming likely stimulates vegetation productivity more substantially in humid than water-limited regions.  相似文献   

19.
用泽陆蛙(Fejervarya limnocharis)蝌蚪和饰纹姬蛙(Microhyla ornata)蝌蚪做研究模型,检测热驯化(20 、25 和30 C)对选择体温(Tsel)、低温耐受性(CTMin)和高温耐受性(CTMax)的影响。结果显示,两种蝌蚪的Tsel既不受驯化温度的影响,也不存在种间差异;泽陆蛙蝌蚪的CTMin显著小于饰纹姬蛙蝌蚪,而CTMax和VTR则显著大于饰纹姬蛙蝌蚪;CTMin和CTMax随驯化温度的升高而升高,VTR则随驯化温度的升高而减小。研究结果表明,热驯化显著影响两种蝌蚪的CTMin、CTMax和VTR,而对两种蝌蚪的体温调定点无显著影响;这些热生物学特征对两种蝌蚪有效适应环境温度变化、利用资源、减少种间竞争具有重要的生态学意义。  相似文献   

20.

1. 1. The effects of sudden changes by increasing or decreasing the measurement temperature on the oxygen consumption of the brains of Bufo arenarum and Leptodactylus ocellatus were determined.

2. 2. The experiments were carried at in vitro at temperatures which range from 4 to 37°C. The brain was oxygenated and stabilized for 20 min at each of the temperatures to which it was subjected before oxygen consumption measurements were made.

3. 3. A theoretical curve representing the variation of oxygen consumption with temperature was calculated according to the following exponential relationship; for Leptodactylus ocellatus y = 0.408 × 1.07x and for Bufo arenarum y = 0.389 × 1.065x.

4. 4. These results were compared with the brain oxygen consumption of animals acclimated to different temperatures, whose oxygen consumption was measured at a fixed temperature. Only Leptodactylus ocellatus had a significantly lower oxygen consumption in a high range of temperatures, indicating thermal compensation, probably to save metabolic reserves.

5. 5. No deterioration of the brain tissue was observed, as several passages from high to low temperatures in the range of 20°–30°C, showed a reversible oxygen consumption in acclimated and non-acclimated Bufo arenarum and Leptodactylus ocellatus.

Author Keywords: Anuran brain; brain metabolism; oxygen consumption; acclimation  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号