首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The success of structural genomics and proteomics initiatives is dependent on the availability of target genes in vectors suitable for protein production. Here, we compare two high-throughput methods for producing expression vectors from plasmid-derived cDNA fragments. Expression vectors were constructed for compatibility with the Gateway recombination cloning system and the Flexi Vector restriction-based cloning system. Cloning protocols for each system were conducted in parallel for 96 different target genes from PCR through the production of sequence-verified expression clones. The short nucleotide sequences required to prepare the target open reading frames for Flexi Vector cloning allowed a single-step PCR protocol, resulting in fewer mutations relative to the Gateway protocol. Furthermore, through initial cloning of the target open reading frames directly into an expression vector, the Flexi Vector system gave time and cost savings compared to the protocol required for the Gateway system. Within the Flexi Vector system, genes were transferred between four different expression vectors. The efficiency of gene transfer between Flexi Vectors depended on including a region of sequence identity adjacent to one of the restriction sites. With the proper construction in the flanking sequence of the vector, gene transfer efficiencies of 95-98% were demonstrated.  相似文献   

2.
3.
S D Gupta  H C Wu    P D Rick 《Journal of bacteriology》1997,179(16):4977-4984
Three distinct clones from a Salmonella typhimurium genomic library were identified which suppressed the copper-sensitive (Cu(s)) phenotype of cutF mutants of Escherichia coli. One of these clones, pCUTFS2, also increased the copper tolerance of cutA, -C, and -E mutants, as well as that of a lipoprotein diacylglyceryl transferase (lgt) mutant of E. coli. Characterization of pCUTFS2 revealed that the genes responsible for suppression of copper sensitivity (scs) reside on a 4.36-kb DNA fragment located near 25.4 min on the S. typhimurium genome. Sequence analysis of this fragment revealed four open reading frames (ORF120, ORF627, ORF207, and ORF168) that were organized into two operons. One operon consisted of a single gene, scsA (ORF120), whereas the other operon contained the genes scsB (ORF627), scsC (ORF207), and scsD (ORF168). Comparison of the deduced amino acid sequences of the predicted gene products showed that ScsB, ScsC, and ScsD have significant homology to thiol-disulfide interchange proteins (CutA2, DipZ, CycZ, and DsbD) from E. coli and Haemophilus influenzae, to an outer membrane protein (Com1) from Coxiella burnetii, and to thioredoxin and thioredoxin-like proteins, respectively. The two operons were subcloned on compatible plasmids, and complementation analyses indicated that all four proteins are required for the increased copper tolerance of E. coli mutants. In addition, the scs locus also restored lipoprotein modification in lgt mutants of E. coli. Sequence analyses of the S. typhimurium scs genes and adjacent DNAs revealed that the scs locus is flanked by genes with high homology to the cbpA (predicted curved DNA-binding protein) and agp (acid glucose phosphatase) genes of E. coli located at 22.90 min (1,062.07 kb) and 22.95 min (1,064.8 kb) of the E. coli chromosome, respectively. However, examination of the E. coli chromosome revealed that these genes are absent at this locus and no evidence has thus been obtained for the occurrence of the scs locus elsewhere on the genome.  相似文献   

4.
Comprehensive open reading frame (ORF) clone collections, ORFeomes, are key components of functional genomics projects. When recombinational cloning systems are used to capture ORFs in master clones, these DNA sequences can be easily transferred into a variety of expression plasmids, each designed for a specific assay. Depending on downstream applications, an ORF is cloned either with or without a stop codon at its original position, referred to as closed or open configuration, respectively. The former is preferred when the encoded protein is produced in its native form or with an amino-terminal tag; the latter is obligatory when the protein is produced as a fusion with a carboxyl-terminal tag. We developed a streamlined protocol for high-throughput, simultaneous cloning of both open and closed ORF entry clones with the Gateway recombinational cloning system. The protocol is straightforward to set up in large-scale ORF cloning projects, and is cost-effective, because the initial ORF amplification and the cloning in a pDONR vector are performed only once to obtain the two ORF configurations. We illustrated its implementation for the isolation and validation of 346 Arabidopsis ORF entry clones.  相似文献   

5.
A vector system is presented that allows generation of E. coli co-expression clones by a standardized, robust cloning procedure. The number of co-expressed proteins is not limited. Five ‘pQLink’ vectors for expression of His-tag and GST-tag fusion proteins as well as untagged proteins and for cloning by restriction enzymes or Gateway cloning were generated. The vectors allow proteins to be expressed individually; to achieve co-expression, two pQLink plasmids are combined by ligation-independent cloning. pQLink co-expression plasmids can accept an unrestricted number of genes. As an example, the co-expression of a heterotetrameric human transport protein particle (TRAPP) complex from a single plasmid, its isolation and analysis of its stoichiometry are shown. pQLink clones can be used directly for pull-down experiments if the proteins are expressed with different tags. We demonstrate pull-down experiments of human valosin-containing protein (VCP) with fragments of the autocrine motility factor receptor (AMFR). The cloning method avoids PCR or gel isolation of restriction fragments, and a single resistance marker and origin of replication are used, allowing over-expression of rare tRNAs from a second plasmid. It is expected that applications are not restricted to bacteria, but could include co-expression in other hosts such as Bacluovirus/insect cells.  相似文献   

6.
To efficiently elucidate the biological roles of phosphatidylserine (PS), we developed open-reading-frame (ORF) phage display to identify PS-binding proteins. The procedure of phage panning was optimized with a phage clone expressing MFG-E8, a well-known PS-binding protein. Three rounds of phage panning with ORF phage display cDNA library resulted in ∼300-fold enrichment in PS-binding activity. A total of 17 PS-binding phage clones were identified. Unlike phage display with conventional cDNA libraries, all 17 PS-binding clones were ORFs encoding 13 real proteins. Sequence analysis revealed that all identified PS-specific phage clones had dimeric basic amino acid residues. GST fusion proteins were expressed for 3 PS-binding proteins and verified for their binding activity to PS liposomes, but not phosphatidylcholine liposomes. These results elucidated previously unknown PS-binding proteins and demonstrated that ORF phage display is a versatile technology capable of efficiently identifying binding proteins for non-protein molecules like PS.  相似文献   

7.
8.
Phage display with antibody libraries has been widely used with versatile applications. However, phage display with cDNA libraries is rare and inefficient. Because of uncontrollable reading frames and stop codons in cDNA repertoires, high percentage of phage clones identified from conventional cDNA libraries are non-open reading frames (non-ORFs) encoding unnatural short peptides with minimal implications in protein networks. Consequently, phage display has not been used as a technology of functional proteomics to elucidate protein–protein interactions like yeast two-hybrid system and mass spectrometry-based technologies. Several strategies, including C-terminal display and ORF cDNA libraries, have been explored to circumvent the technical problem. The accumulative endeavors eventually led to the efficient elucidation of a large number of tubby- and phosphatidylserine-binding proteins in recent studies by ORF phage display with minimal reading frame issue. ORF phage display inherits all the versatile applications of antibody phage display, but enables efficient identification of real endogenous proteins with efficiency, sensitivity, and accuracy comparable to other technologies of functional proteomics. Its ELISA-like procedure can be conveniently adapted by individual laboratories or fully automated for high-throughput screening. Thus, ORF phage display is an efficient, sensitive, versatile, and convenient technology of functional proteomics for elucidation of global and pathway-specific protein–protein interactions, disease mechanisms, or therapeutic targets.  相似文献   

9.
Diagnostic potential of PhotoSELEX-evolved ssDNA aptamers   总被引:6,自引:0,他引:6  
High sensitivity and specificity of two modified ssDNA aptamers capable of photocross-linking recombinant human basic fibroblast growth factor (bFGF((155))) were demonstrated. The aptamers were identified through a novel, covalent, in vitro selection methodology called photochemical systematic evolution of ligands by exponential enrichment (PhotoSELEX). The aptamers exhibited high sensitivity for bFGF((155)) comparable with commercially available ELISA monoclonal antibodies with an absolute sensitivity of at least 0.058 ppt bFGF((155)) under prevailing test conditions. The aptamers exquisitely distinguished bFGF((155)) from consanguine proteins, vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF). A commercially viable diagnostic system incorporating PhotoSELEX-evolved aptamers capable of simultaneous quantification of a large number of analyte molecules is also described. Such a system benefits from covalent bonding of aptamer to target protein allowing vigorous washing with denaturants to improve signal to noise.  相似文献   

10.
The potential application of lipoxygenase as a versatile biocatalyst in enzyme technology is limited by its poor stability. Two types of soybean lipoxygenases, lipoxygenase-1 and -2 (LOX-1 and LOX-2) were purified by a two step anion exchange chromatography. Four different commercially available supports: CNBr Sepharose 4B, Fractogel((R)) EMD Azlactone, Fractogel((R)) EMD Epoxy, and Eupergit((R)) C were tested for immobilization and stabilization of the purified isoenzymes. Both isoenzymes gave good yields in enzyme activity and good stability after immobilization on CNBr Sepharose 4B and Fractogel((R)) EMD Azlactone. Rapid decay in activity associated with change in the ionization state of Fe, as shown by EPR measurements was observed within the first 5 days after immobilization on epoxy activated supports (Eupergit((R)) C and Fractogel((R)) EMD Epoxy) in high ionic strength buffers. Stabilization of the biocatalyst on these supports was achieved by careful adjustment of the immobilization conditions. When immobilized in phosphate buffer of pH 7.5 and low ionic strength (0.05 M), the half-life time of the immobilized enzyme increased 20 fold. The dependence of the stability of LOX immobilized on epoxy activated supports on the coupling conditions was attributed to a modulation of the ligand environment of the iron in the active site and consequently its reactivity.  相似文献   

11.
12.
The hsd locus (host specificity of DNA) was identified in the Neisseria gonorrhoeae genome. The DNA fragment encoding this locus produced an active restriction and modification (R/M) system when cloned into Escherichia coli. This R/M system was designated NgoAV. The cloned genomic fragment (7800 bp) has the potential to encode seven open reading frames (ORFs). Several of these ORFs had significant homology with other proteins found in the databases: ORF1, the hsdM, a methylase subunit (HsdM); ORF2, a homologue of dinD; ORF3, a homologue of hsdS; ORF4, a homologue of hsdS; and ORF5, an endonuclease subunit hsdR. The endonuclease and methylase subunits possessed strongest protein sequence homology to the EcoR124II R/M system, indicating that NgoAV belongs to the type IC R/M family. Deletion analysis showed that only ORF3 imparted the sequence specificity of the RM.NgoAV system, which recognizes an interrupted palindrome sequence (GCAN(8-)TGC). The genetic structure of ORF3 (208 amino acids) is almost identical to the structure of the 5' truncated hsdS genes of EcoDXXI or EcoR124II R/M systems obtained by in vitro manipulation. Genomic sequence analysis allowed us to identify hsd loci with a very high homology to RM.NgoAV in two strains of Neisseria meningitidis. However, significant differences in the organization and structure of the hsdS genes in both these systems suggests that, if functional, they would possess recognition sites that differ from the gonococcus and from themselves.  相似文献   

13.
Rickettsia prowazekii, the causative agent of epidemic typhus, is an obligate intracellular bacterium that grows directly within the cytoplasm of its host cell, unbounded by a vacuolar membrane. The obligate intracytoplasmic nature of rickettsial growth places severe restrictions on the genetic analysis of this distinctive human pathogen. In order to expand the repertoire of genetic tools available for the study of this pathogen, we have employed the versatile mariner-based, Himar1 transposon system to generate insertional mutants of R. prowazekii. A transposon containing the R. prowazekii arr-2 rifampin resistance gene and a gene coding for a green fluorescent protein (GFP(UV)) was constructed and placed on a plasmid expressing the Himar1 transposase. Electroporation of this plasmid into R. prowazekii resulted in numerous transpositions into the rickettsial genome. Transposon insertion sites were identified by rescue cloning, followed by DNA sequencing. Random transpositions integrating at TA sites in both gene coding and intergenic regions were identified. Individual rickettsial clones were isolated by the limiting-dilution technique. Using both fixed and live-cell techniques, R. prowazekii transformants expressing GFP(UV) were easily visible by fluorescence microscopy. Thus, a mariner-based system provides an additional mechanism for generating rickettsial mutants that can be screened using GFP(UV) fluorescence.  相似文献   

14.
15.
BioCloneDB     
BioCloneDB is a user-friendly database with a web interface to assist molecular genetics laboratories in managing a local repository of sequence information linked to DNA clones. This tool is designed to assist in high-throughput sequence and gene expression projects, providing a link between both types of information. The unique feature of the application is the automation of batch sequence annotation following BLAST((R)) searches, which is supported by easy-to-use web interfaces. Furthermore, any set of sequences can be annotated against any sequence database. This replaces the need to perform and analyse individual web BLAST((R)) searches or the need to learn how to produce batch searches and perform analysis in a UNIX((R)) operating system. BioCloneDB is open-source software that can be installed on Linux or UNIX((R)) operating systems. To test the application, we used 1400 expressed sequence tags obtained from the filamentous fungus Neurospora crassa. The results were analysed and compared with published results and they show a significant change due to the accumulation of the data in the nr database (ftp://ftp.ncbi.nih.gov/blast/db/). AVAILABILITY: BioCloneDB is available for academic use along with documentation, screenshots, database scheme and readme files at http://bioclonedb.agri.huji.ac.il/ CONTACT: Oded Yarden (Oded.Yarden@huji.ac.il).  相似文献   

16.
P Nahreini  S H Larsen  A Srivastava 《Gene》1992,119(2):265-272
In current systems for molecular cloning of eukaryotic genes, bacterial cells are routinely utilized as intermediate hosts. We investigated the possibility of using a viral system for cloning DNA fragments independent of bacterial cell usage. In this report, we provide an alternative approach for molecular cloning of DNA fragments in eukaryotic cells by utilizing the inverted terminal repeats (ITRs) of the genome of a nonpathogenic human parvovirus, the adeno-associated virus 2 (AAV). We constructed a series of chimeric linear duplex DNA molecules, ranging in length from 1.8 to 7.2 kb, containing the cruciform structures of AAV-ITRs at both ends. These 'no-end' (NE) DNA structures, when transfected into adenovirus-infected human cells in the presence of AAV replication proteins (Rep), underwent DNA replication. Furthermore, in the presence of AAV capsid proteins (Cap), all replicated DNA molecules of less than 5.0 kb were packaged into mature, biologically active AAV progeny virions. When a chimeric NE DNA (NE-neo) containing a gene (neo) encoding resistance to neomycin was transfected into human cells, neoR clones could be readily isolated in the presence of G418 (Geneticin). Southern-blot analysis of genomic DNA of several independently isolated neoR clones suggested stable integration of the NE-neo DNA into the host chromosomal DNA. AAV-ITRs, therefore, offer an alternative system for molecular cloning, as well as packaging of DNA fragments in mammalian cells independent of bacterial cell usage.  相似文献   

17.
Genomic sequencing has enabled the prediction of thousands of genes, most of which either cannot be assigned a function or can be only broadly categorized on the basis of sequence alone. High-throughput strategies for elucidating protein function are of high priority, and numerous approaches are being developed. Many of these approaches require the cloning of open reading frames (ORFs) into expression vectors that enable the encoded proteins to be tested for biological and biochemical activities. Typically, more than one type of vector must be employed, as different experiments require different conditions of protein production. Here we show that it is possible to simultaneously transfer a single ORF from a source vector to four target vectors using a commercially available in vitro recombination system. To test the approach, we constructed new vectors for expression of fusion proteins in yeast, including vectors for the LexA two-hybrid system. We show that individual ORFs can be efficiently transferred to four different vectors in a single in vitro reaction. The resulting expression plasmids can be separated using prototrophic markers specific to each vector. Using this system to produce multiple expression constructs simultaneously could greatly facilitate high-throughput subcloning and proteomic studies.  相似文献   

18.
Direct cloning by covalent attachment of probe DNA to target DNA.   总被引:2,自引:0,他引:2       下载免费PDF全文
A novel cloning procedure which makes use of covalent attachment of probe DNA to specific target DNA is reported. We show that specific gene fragments found in complex genomes such as the human genome can be cloned directly from a pool of genomic DNA with very high efficiency. This direct cloning method totally eliminates certain steps in current cloning procedures such as construction of DNA libraries and colony (plaque) hybridization. The resulting process has made cloning methods simpler and more time efficient, while achieving high cloning efficiency due to the stable nature of the probe-target DNA complex through covalent bonding. Most importantly, since clones are directly obtained from a pool of genomic DNA, the isolated clones are considered to be faithful copies of the original genes. This has apparently solved the problem of isolating clones with misincorporated bases or chimeric DNA, both of which are often encountered in cloning processes using PCR or other methods involving in vitro DNA synthesis.  相似文献   

19.
The assembly of herpesvirus capsids is a complex process involving interactions of multiple proteins in the cytoplasm and in the nucleus. Based on comparative genome analyses, varicella-zoster virus (VZV) open reading frame 23 (ORF23) encodes a conserved capsid protein, referred to as VP26 (UL35) in other alphaherpesviruses. Mutagenesis using a VZV bacterial artificial chromosome system showed that ORF23 was dispensable for replication in vitro. However, the absence of ORF23 disrupted capsid assembly in a melanoma cell line. Expression of ORF23 as a red fluorescent protein (RFP) fusion protein appeared to have a dominant negative effect on replication that was rescued by ORF23 expression from a nonnative site in the VZV genome. In contrast to its VP26 homolog, ORF23 has an intrinsic nuclear localization capacity that was mapped to an SRSRVV motif at residues 229 to 234 in the extreme C terminus of ORF23. In addition, coexpression with ORF23 resulted in nuclear import of the major capsid protein, ORF40. VZV ORF33.5 also translocated ORF40, which may provide a redundant mechanism in vitro but appears insufficient to overcome the dominant negative effect of the monomeric RFP-ORF23 (mRFP23) fusion protein. ORF23 was required for VZV infection of human skin xenografts, indicating that ORF33.5 does not compensate for lack of ORF23 in vivo. These observations suggest a model of VZV capsid assembly in which nuclear transport of the major capsid protein and associated proteins requires ORF23 during VZV replication in the human host. If so, ORF23 expression could be a target for a novel antiviral drug against VZV.  相似文献   

20.
The rDNA locus of insects and other arthropods contains non-LTR retrotransposons (retroposons) that are specifically inserted into 28S rRNA genes. The most frequent retroposons are R1 and R2, but the mechanism of insertion and the functions of these mobile elements have not been studied in detail. A clone containing a full-length R1 retroposon copy was islated from the cosmid library of Blattella germanica genes and sequenced. The amino acid sequences encoded by ORF1 of the R1 retroposon were subjected to bioinformatic analysis. It was found that ORF1 of this mobile element encodes a protein (ORF1p) belonging to the superfamily of zinc finger (CCHC) retroviral nucleocapsid proteins and contains two conserved RRM domains (RNA-recognizing motifs) identified on the basis of analysis of the secondary structure of this protein. The discovery of RRM domains in ORF1p of R1 retroposons can contribute to the understanding of the mechanisms of their retrotransposition. We revealed a coiled-coil motif in the N-terminal region of R1 ORF1p, which is similar to the coiled-coil domain involved in homo- or heteromultimerization of proteins and in protein-protein interactions. The domain organization of homologous Gag-like proteins of retroposons in some insects and fungi was found to be similar to the structure established by us for R1 ORF1p of B. germanica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号