首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human platelet alpha 2-adrenergic receptors have been purified approximately 80,000-fold to apparent homogeneity by a five-step chromatographic procedure. The overall yield starting from the membranes is approximately 2%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of radioiodinated protein from purified receptor preparations shows a single major band of Mr 64,000. The specific binding activity of the alpha 2-adrenergic receptor after four chromatographic steps is 14.5 nmol/mg protein. This value is consistent with the expected theoretical specific activity (15.6 nmol/mg) for a protein with a molecular mass of 64,000 daltons if it is assumed that there is one ligand-binding site/receptor molecule. The purified protein can be covalently labeled with the alkylating alpha-adrenergic ligand, [3H]phenoxybenzamine. This labeling is specific, and it shows that the Mr 64,000 protein contains the ligand binding site of the alpha 2-adrenergic receptor. In addition, the competitive binding of ligands to the purified receptor protein shows the proper alpha 2-adrenergic specificity. The alpha 2-adrenergic receptor contains an essential sulfhydryl residue. Thus, exposure of the purified receptor to the sulfhydryl-specific reagent, phenylmercuric chloride, resulted in an 80% loss of binding activity. This loss of binding activity was prevented when exposure to phenylmercuric chloride was done in the presence of alpha 2-adrenergic ligands, and it was reversed by subsequent exposure to dithiothreitol. Partial proteolysis of purified alpha 2-adrenergic receptors was obtained with Staphylococcus aureus V-8 protease, alpha-chymotrypsin, and papain. In a comparison with purified beta 2-adrenergic receptors, no common partial proteolytic products were found.  相似文献   

2.
The alpha 2-adrenergic receptor was purified from rat adrenocortical carcinoma 494 by an affinity chromatographic step using a novel para-aminoclonidine-sepharose resin followed by a gel-permeation high performance liquid chromatographic step. The iodinated receptor protein was homogeneous as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and by high performance liquid chromatography. Both SDS-PAGE and high performance liquid chromatographic studies revealed that Mr of the protein was 64,000, suggesting the monomeric nature of the receptor protein. The purified protein showed the typical binding characteristics of alpha 2-adrenergic receptor.  相似文献   

3.
Clonidine, a potent and highly selective alpha 2-adrenergic agonist of the central nervous system, was modified. Insertion of the strong alkylating isothiocyanate group (NCS) group, at its aromatic residue, makes clonidine a potential affinity label of the alpha 2-adrenergic receptors. In displacement of [3H]clonidine and p-[3H]aminoclonidine from rat brain membrane preparations, clonidine-NCS demonstrates high affinity for the alpha 2-adrenergic receptors (Kd = 50 mM). The covalent labelling of the central alpha 2-receptors requires higher concentrations of the irreversible ligand (1-70 microM), thus indicating possible non-productive interactions at the environment of the receptor site. Only partial protection of the receptors is observed with a reversible alpha 2-agonist. The new clonidine analog appears to be a general ligand for the alpha 2-adrenergic receptors and might serve as a potential affinity probe for these receptors.  相似文献   

4.
Purification of the muscarinic acetylcholine receptor from porcine brain   总被引:6,自引:0,他引:6  
The muscarinic acetylcholine receptor of porcine cerebrum has been purified to apparent homogeneity by affinity chromatography, with conjugated 3-(2'-aminobenzhydryloxy)tropane (ABT) as described previously (Haga, K., and Haga, T. (1983) J. Biol. Chem. 258, 13575-13579). In a single step purification using 900 ml of digitonin/cholate-solubilized preparations and 300 ml of the ABT-agarose gel, we obtained, in a yield of 10-15%, more than 250 pmol of muscarinic receptors which bind [3H]N-methylscopolamine with a specific activity of 1,000-5,000 pmol/mg of protein (1,000-5,000-fold purification). The muscarinic receptors eluted from the ABT-agarose gel with 0.1 mM atropine were adsorbed to hydroxylapatite and then recovered as a concentrated solution. Muscarinic receptors were further purified by rechromatography with the same gel or by gel permeation high pressure liquid chromatography. The amino acid composition of the purified receptor was determined, and the specific activity of the purified preparation was estimated to be 13,100 pmol/mg of protein on the basis of amino acid composition. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified receptors with or without radioiodination revealed a single, major band with an apparent Mr of 70,000 either by silver staining or radioautogram. The major band corresponded to the band which specifically bound [3H]propylbenzylcholine mustard (irreversible muscarinic ligand). The purified receptor showed essentially the same specificity for muscarinic ligands as unpurified receptors.  相似文献   

5.
6.
The neurotensin receptor was purified from newborn mouse brain by affinity chromatography. Active neurotensin binding sites were solubilized from brain homogenates using the nondenaturing detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS) in the presence of cholesteryl hemisuccinate. Chromatography of the soluble extract on SP-Sephadex C-25 and hydroxylapatite eliminated 50% of proteins without loss of neurotensin binding activity. This prepurified material was loaded into an affinity column prepared by coupling neurotensin (2-13) to glutaraldehyde-activated Ultrogel AcA22. Nonspecifically adsorbed proteins were eliminated by extensive washing, and the receptor was eluted with a buffer containing 1 M NaCl, 0.1% CHAPS, and 0.02% cholesteryl hemisuccinate. After desalting, the purified receptor bound 125I-labeled neurotensin with a dissociation constant of 0.26 nM and retained its specificity towards a series of neurotensin analogues. The desalted NaCl eluate appeared on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a major band of molecular weight 100,000 which was identified as the receptor by affinity labeling with 125I-labeled neurotensin in the presence of disuccinimidyl suberate. The purity of the mouse brain receptor eluted from the affinity column was estimated to be 78%. Electroelution of the 100-kDa protein band gave an homogenous preparation of receptor. Very similar results were obtained with CHAPS-solubilized neurotensin receptors from rat and rabbit brain.  相似文献   

7.
8.
Vasoactive intestinal peptide (VIP) receptors were solubilized from porcine liver membrane using the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid. The solubilized VIP receptor has been purified approximately 50,000-fold to apparent homogeneity by a one-step affinity chromatography using a newly designed VIP-polyacrylamide resin. The purified receptor bound 125I-VIP with a Kd of 22.3 +/- 0.7 nM and retained its peptide specificity toward VIP-related peptides. The specific activity of the purified receptor (16,400 pmol/mg of protein) was very close to the theoretical value (18,900 pmol/mg of protein) calculated assuming one binding site/protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of purified receptor revealed a single band with an Mr of 53,000 after either silver staining or radioiodination. Affinity labeling of the purified receptor with 125I-VIP using dithiobis(succinimidyl propionate) gave a single radioactive band, the labeling of which was completely inhibited by an excess of unlabeled VIP. In conclusion, an Mr 53,000 protein containing the VIP-binding site was purified to homogeneity by a one-step affinity chromatography using immobilized VIP.  相似文献   

9.
A vasopressin receptor was purified, using a novel affinity column, from rat liver plasma membranes treated with guanosine 5'-(3-O-thio)triphosphate and solubilized with 0.8% cholate. Incubation of the membranes with the GTP analogue resulted in a dissociation of the receptor-guanine nucleotide regulatory protein complex. This manipulation, although resulting in a low-affinity state of the receptor, facilitated purification. The solubilized receptor was assayed using a new reconstitution procedure in which the soluble extracts were inserted into lipid vesicles composed of phosphatidylcholine and phosphatidylinositol. The receptor was purified by sequential chromatography on Q-Sepharose and hydroxyapatite. The use of a novel affinity column, a V1-vasopressin antagonist-agarose, resulted in a near-homogeneous preparation of a protein which exhibited an Mr = 58,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Autoradiography of purified receptor, as well as crude membrane preparations cross-linked to [125I]arginine vasopressin, also revealed a protein band with an approximate Mr = 58,000. These findings indicate that V1-antagonist affinity chromatography should be useful for purifying adequate amounts of the receptor for studies of structure and function.  相似文献   

10.
11.
A new eukaryotic initiation factor 2 kinase has been purified for the first time from calf brain cytosol. The purification of a nonabundant novel protein kinase activity, designated as PKI, that phosphorylates the alpha subunit of eukaryotic initiation factor 2 is described. The protein kinase activity was assayed using purified initiation factor 2 as a substrate and was purified by ammonium sulphate precipitation, conventional chromatography in heparin-Sepharose and phosphocellulose and by high performance size exclusion and anion exchange chromatographies. The protein kinase activity elutes in the region of 140,000 in the size exclusion chromatography and is associated with two different polypeptides a and b, with relative molecular masses of 38,000 and 20,000 and an approximate ratio of 2.5-3.0:1. The protein kinase does not phosphorylate casein or histones and it is independent of cyclic nucleotides. It can be classified as a serine kinase since the phosphorylation of the alpha subunit of eIF-2 is produced in serine residues. Under these conditions none of the kinase subunits are phosphorylated.  相似文献   

12.
alpha 1-Adrenergic receptors from a cultured smooth muscle cell line (DDT1 MF-2) have been solubilized with digitonin and purified to apparent homogeneity by sequential chromatography on a biospecific affinity support (Sepharose-A55453 (4-amino-6,7-dimethoxy-2-[4-[5-(4-amino-3-phenyl) pentanoyl]-1-piperazinyl]-quinazoline), an alpha 1 receptor-selective antagonist), a wheat germ agglutinin-agarose gel, and a high performance steric exclusion liquid chromatography column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of iodinated purified receptor preparations reveals a peptide with an apparent Mr = 80,000 that co-migrates with the peptide labeled by the specific alpha 1-adrenergic receptor photoaffinity probe 4-amino-6,7-dimethoxy-2-[4-[5-(4-azido-3-[125I]iodophenyl)pentanoyl] -1-piperazinyl] quinazoline. The specific activity (approximately 13,600 pmol of ligand binding/mg of protein) of purified receptor preparations is consistent with that expected for a pure peptide of Mr = 80,000 containing a single ligand binding site. Overall yields approximate 14% of initial crude particulate binding. The purified receptor preparations bind agonist and antagonist ligands with appropriate alpha 1-adrenergic specificity, stereoselectivity, and affinity. Peptide maps of the pure alpha 1-adrenergic receptor and the pure human platelet alpha 2-adrenergic receptor (Regan, J.W., Nakata, H., DeMarinis, R.M., Caron, M.G., and Lefkowitz, R.J. (1986) J. Biol. Chem. 261, 3894-3900) using several different proteases suggest that these two receptors show little if any structural homology.  相似文献   

13.
Desensitization of the beta-adrenergic receptor, a receptor which is coupled to the stimulation of adenylate cyclase, may be regulated via phosphorylation by a unique protein kinase. This recently discovered enzyme, known as the beta-adrenergic receptor kinase, only phosphorylates the agonist-occupied form of the beta-adrenergic receptor. To assess whether receptors coupled to the inhibition of adenylate cyclase might also be substrates, we examined the effects of beta-adrenergic receptor kinase on the partially purified human platelet alpha 2-adrenergic receptor. Phosphorylation of the reconstituted alpha 2-adrenergic receptor was dependent on agonist occupancy and was completely blocked by coincubation with alpha 2-antagonists. The time course of phosphorylation of the alpha 2-adrenergic receptor was virtually identical to that observed with the beta-adrenergic receptor with maximum stoichiometries of 7-8 mol of phosphate/mol of receptor in each case. In contrast, the alpha 1-adrenergic receptor, which is coupled to stimulation of phosphatidylinositol hydrolysis, is not a substrate for the beta-adrenergic receptor kinase. These results suggest that receptors coupled to either stimulation or inhibition of adenylate cyclase may be regulated by an agonist-dependent phosphorylation mediated by the beta-adrenergic receptor kinase.  相似文献   

14.
alpha 2-Adrenergic receptors recognize a number of molecules with diverse chemical structures, including the yohimban diastereoisomers yohimbine and rauwolscine, catecholamines, guanidinium analogs, and imidazolines, such as clonidine. The affinity of the receptor protein for some of these ligands can vary by 10-100-fold among various tissues and species, suggesting a heterogeneous class of binding sites. Certain cellular effects elicited by the compounds possessing an imidazoline or guanidinium moiety may actually be mediated by a membrane receptor distinct from the alpha 2-adrenergic receptor. To determine whether this imidazoline/guanidinium receptive site (IGRS) and the alpha 2-adrenergic receptor represent distinct proteins, we solubilized and partially characterized the two binding sites in rabbit kidney. This tissue expresses both alpha 2-adrenergic receptors and high affinity imidazoline/guanidinium binding sites, the latter which are rauwolscine-insensitive but can be identified with the benzodioxan [3H]idazoxan. The IGRS and alpha 2-adrenergic receptor in rabbit kidney exhibit distinct ligand recognition properties, which are maintained after solubilization and partial purification. In addition, the two receptors can be physically separated by heparin-agarose or lectin affinity chromatography indicating that the two binding sites are distinct entities. [3H]Idazoxan binding is trypsin-sensitive, indicating that the IGRS is a protein rather than a lipid component of the plasma membrane. [3H]Idazoxan binding is not inhibited by endogenous agonists for known neurotransmitter receptors. However, the IGRS does recognize clonidine-displacing substance, a small non-catechol compound isolated from calf brain, suggesting the existence of a previously uncharacterized hormonal/neurotransmitter receptor system.  相似文献   

15.
16.
Purification of the human placental alpha 2-macroglobulin receptor   总被引:7,自引:0,他引:7  
The alpha 2-macroglobulin receptor was solubilized from human placental membranes, purified and characterized. Affinity cross-linking of labelled ligand to intact membranes showed a receptor size compatible with 400-500 kDa. The membranes were solubilized in 3-[(3-cholamidopropyl)dimethylammonio]propane sulfonate (CHAPS) and affinity chromatography was performed using Sepharose-immobilized alpha 2-macroglobulin-methylamine with elution in buffer containing 2 mM EDTA, pH 6.0. SDS-PAGE of the resulting receptor preparation showed a predominant approx. 440 kDa band (reducing conditions) and some minor accompanying proteins of 70-90 kDa and 40 kDa. The yield was 400-800 micrograms receptor preparation per placenta. The receptor preparation immobilized on nitrocellulose bound the alpha 2-macroglobulin-trypsin complex with a dissociation constant of about 400 pM. 125I-iodinated receptor preparation bound almost quantitatively to Sepharose-immobilized alpha 2-macroglobulin-methylamine in the presence of CHAPS alone, and bound 70-80% in the presence of 0.2% SDS. The labelled proteins were separated in the presence of 0.2% SDS by gel filtration or SDS-PAGE (unboiled samples). The 440 kDa protein accounted for the major part of the binding, although some approx. 80 kDa proteins, perhaps proteolytic degradation products, also showed binding activity.  相似文献   

17.
QSAR models represent the relationship of biological activity with either physicochemical parameters or structural indices. QSAR study was performed on some arylpiperazines as 5-HT(1A)/alpha(1)-adrenergic receptor antagonists using E-state indices to identify the pharmacophoric requirements. It was found that some of the atoms played important roles to both activities and some played important role in selectivity of compound to the 5-HT(1A) antagonistic activity. The presence of COONHPr group at the ortho-position of the phenyl ring might be disadvantageous and Br at meta-position might be conducive to the activity. COOPr at the ortho-position might be disfavored the adrenergic alpha(1)-antagonistic activity, thus increase the selectivity.  相似文献   

18.
Das VA  Chathu F  Paulose CS 《Life sciences》2006,79(16):1507-1513
Sympathetic stimulation inhibits insulin secretion. alpha(2)-Adrenergic receptor is known to have a regulatory role in the sympathetic function. We investigated the changes in the alpha(2)-adrenergic receptors in the brain stem and pancreatic islets using [(3)H]Yohimbine during pancreatic regeneration in weanling rats. Brain stem and pancreatic islets of experimental rats showed a significant decrease (p<0.001) in norepinephrine (NE) content at 72 h after partial pancreatectomy. The epinephrine (EPI) content showed a significant decrease (p<0.001) in pancreatic islets while it was not detected in brain stem at 72 h after partial pancreatectomy. Scatchard analysis of [(3)H]Yohimbine showed a significant decrease (p<0.05) in B(max) and K(d) at 72 h after partial pancreatectomy in the brain stem. In the pancreatic islets, Scatchard analysis of [(3)H]Yohimbine showed a significant decrease (p<0.001) in B(max) and K(d) (p<0.05) at 72 h after partial pancreatectomy. The binding parameters reversed to near sham by 7 days after pancreatectomy both in brain stem and pancreatic islets. This shows that pancreatic insulin secretion is influenced by central nervous system inputs from the brain stem. In vitro studies with yohimbine showed that the alpha(2)-adrenergic receptors are inhibitory to islet DNA synthesis and insulin secretion. Thus our results suggest that decreased alpha(2)-adrenergic receptors during pancreatic regeneration functionally regulate insulin secretion and pancreatic beta-cell proliferation in weanling rats.  相似文献   

19.
The neurotensin receptor protein, solubilized with digitonin/asolectin from bovine cerebral cortex membranes, was purified to apparent homogeneity by affinity chromatography using immobilized neurotensin. The product exhibits saturable and specific binding of [3,11-tyrosyl-3,5-3H]neurotensin with an apparent affinity (Kd = 5.5 nM) comparable to that measured in intact membranes and crude soluble extracts. The affinity-purified material, after reduction with 100 mM dithiothreitol, in denaturing gel electrophoresis showed a single polypeptide of Mr 72,000. Under nonreducing conditions the apparent Mr, however, was 50,000, suggesting the presence of intramolecular disulfide bonds. The purified neurotensin receptor was judged to be homogeneous, in that (i) only a single polypeptide was detectable; and (ii) the overall purification was 30,000-50,000-fold, giving a specific neurotensin-binding activity close to the theoretical maximum.  相似文献   

20.
Summary In the present study, we have employed the monoradioiodinated 2-agonist clonidine ([125I]-CLO) to characterize duck hypothalamic 2-adrenoceptors and to localize 2-specific binding sites in the duck brain. To validate the 2-specificity of [125I]-CLO using an enriched duck hypothalamic membrane fraction, a radioreceptor assay was established by altering the membrane protein concentration, time, temperature and ionic milieu of incubation, and in the presence or absence of protease inhibitors. Competitive displacement studies revealed the following sequence of potency to displace [125I]-CLO: yohimbine>(-)-epinephrine>clonidine> (-)-norepinephrine>phentolamine>(-)-phenylephrine>(-)-isoproterenol>prazosin. The non-hydrolyzable guanosine 5-triphosphate analog guanylylimidodiphosphate markedly inhibited [125I]-CLO binding suggestive of G-protein involvement. With regard to the histological distribution, diencephalic structures, such as the habenula and the nucleus reticularis of the thalamus, were densely labeled by [125I]-CLO. In the hypothalamus, 2-adrenoceptors were detected in the antidiuretic hormone-synthesizing nucleus paraventricularis, the nucleus praeopticus medialis, the nucleus anterior medialis hypothalami, the nucleus magnocellularis praeopticus, the nucleus commissurae pallii, the nucleus inferior hypothalami and the regio lateralis hypothalami. Circumventricular organs, such as the plexus choroidei, organum subfornicale, organum paraventriculare and the corpus pineale, were endowed with 2-specific binding sites, as were the cell layers of the tectum opticum. In addition, telencephalic structures revealed high receptor densities. The presence of well characterized 2-specific adrenoceptors in hypothalamic structures of the duck brain including associated telencephalic regions supports physiological investigations with regard to functional 2-adrenergic modulation of antidiuretic hormone release in the duck.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号