首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By means of differential centrifugation, microsomal fractions enriched in the plasma membrane were isolated from suspension cell cultures of two cultivars of potato (Solanum tuberosum L.) contrasting in their resistance to the causal agent of ring rot (Clavibacter michiganensis subsp. sepedonicus) (Cms). Electrophoresis of the fractions showed that they comprised a wide range of proteins from 15 to 75 kD. The protein bands were more brightly expressed in the microsomal membranes of the cells of susceptible cultivar. The proteins of 70 and 42 kD were present only in the cellular membranes of the resistant cultivar. In order to visualize the binding of exopolysaccharides (EPS) produced by Cms to the receptors of membrane fractions, a conjugate of EPS with a fluorescent marker was used. The membrane fraction isolated from the cells of the susceptible cultivar was found to be richer in receptors for EPS Cms than the membrane fraction from the resistant cultivar. It is supposed that numerous receptors for EPS present on the plasma membrane may partially account for potato susceptibility to Cms. These receptors may facilitate the binding of bacteria to the plant cells, the formation of colonies, and the development of the disease.  相似文献   

2.
The Japanese pear pathotype of Alternaria alternata causes black spot of Japanese pear by producing a host-specific toxin known as AK-toxin. Restriction enzyme-mediated integration (REMI) mutagenesis was used to tag genes required for toxin biosynthesis. Protoplasts of a wild-type strain were treated with a linearized plasmid along with the restriction enzyme used to linearize the plasmid. Of 984 REMI transformants recovered, three produced no detectable AK-toxin and lost pathogenicity on pear leaves. Genomic DNA flanking the integrated plasmid was recovered from one of the mutants. With the recovered DNA used as a probe, a cosmid clone of the wild-type strain was isolated. Structural and functional analyses of an 8.0-kb region corresponding to the tagged site indicated the presence of two genes. One, designated AKT1, encodes a member of the class of carboxyl-activating enzymes. The other, AKT2, encodes a protein of unknown function. The essential roles of these two genes in both AK-toxin production and pathogenicity were confirmed by transformation-mediated gene disruption experiments. DNA gel blot analysis detected AKT1 and AKT2 homologues not only in the Japanese pear pathotype strains but also in strains from the tangerine and strawberry pathotypes. The host-specific toxins of these two pathotypes are similar in structure to AK-toxin. Homologues were not detected in other pathotypes or in non-pathogenic strains of A. alternata, suggesting acquisition of AKT1 and AKT2 by horizontal transfer.  相似文献   

3.
[3H]Cytochalasin B binding and its competitive inhibition by D-glucose have been used to quantitate the number of functional glucose transport units in plasma and microsomal membranes prepared from intact rat diaphragm. In a series of three experiments, plasma membranes prepared from diaphragms which have not been incubated with insulin bind approximately 16 pmol of cytochalasin B/mg of membrane protein to the D-glucose-inhibitable binding site. If 280 nM (40,000 microunits/ml) insulin is present during the incubation, cytochalasin B binding to the plasma membranes is increased approximately 2-fold without alteration in the dissociation constant of this site. Membranes in the microsomal fraction prepared from diaphragms which have been incubated for 30 min in the absence of insulin contain 21 pmol of D-glucose-inhibitable cytochalasin B binding sites/mg of membrane protein. However, in the presence of insulin during the incubation period, the number of these sites in the microsomal fraction is decreased to 12 pmol/mg of membrane protein. These results suggest that insulin stimulates glucose transport in the isolated rat diaphragm primarily through a translocation of functional glucose transport units from an intracellular membrane pool to the plasma membrane. These results are similar to the results observed in rat adipose cells (Cushman, S. W., and Wardzala, L. J. (1980) J. Biol. Chem. 255, 4758-4762) and suggest that this mechanism of insulin-stimulated glucose transport activity may be general to other cell types.  相似文献   

4.
Subcellular membrane fractions were isolated from dog mesenteric arteries by differential and isopynic sucrose density gradient centrifugations. Isolated membrane fractions were characterized by marker enzyme activities, morphological features and sodium dodecyl sulfate-polyacrylamide gel electrophoretic patterns. Our results show that the microsomal fraction isolated by conventional differential centrifugation was highly heterogenous and contained substantial amount of plasma membranes which could be further enriched as a light density membrane fraction on a discontinuous sucrose density gradient. The microsomal fraction and its subfractions were vesicular in appearance under electron microscope and were capable of binding and actively transporting Ca2+. The binding of Ca2+ and ATP-supported Ca2+-transport in the presence or absence of oxalate paralleled the distribution of plasma membrane marker enzyme activities suggesting that plasma membranes in vascular smooth muscle may play a major role in handling Ca2+ and thus the control of contractile function.  相似文献   

5.
The distribution of inositol 1,4,5-trisphosphate and ryanodine binding sites between plasma membrane, microsomal, and mitochondrial fractions of rat liver were compared. IP3 bound mostly to the plasma membrane fraction (Kd = 6 nM; Bmax = 802 fmol/mg protein). Some IP3 binding sites were also present in the microsomal and mitochondrial fractions (Kd = 2.5 and 2.9 nM; Bmax = 35 and 23 fmol/mg protein respectively). The possibility that these binding sites are due to contamination of the fractions with plasma membrane cannot be excluded. Binding of IP3 to the plasma membrane was inhibited by heparin but not by either caffeine or tetracaine. High-affinity ryanodine binding sites were present mostly in the microsomal fraction (Kd = 13 nM; Bmax = 301 fmol/mg protein). Lower affinity binding sites were also found to be present in the mitochondrial and plasma membrane fractions. Binding of ryanodine to the microsomal fraction was inhibited by both caffeine and tetracaine but not by heparin. These data demonstrate that IP3 and ryanodine binding sites are present in different cellular compartments in the liver. These differences in the localization of the binding sites might be indicative of their functional differences.  相似文献   

6.
[3H]Cytochalasin B binding and its competitive inhibition by D-glucose have been used to identify, the glucose transporter in plasma and microsomal membranes prepared from intact rat diaphragm. Scatchard plot analysis of [3H]cytochalasin B binding yields a binding site with a dissociation constant of roughly 110 nM. Since the inhibition constant of cytochalasin B for D-glucose uptake by diaphragm plasma membranes is similar to this value, this site is identified as the glucose transporter. Plasma membranes prepared from diaphragms bind approx. 17 pmol of cytochalasin B/mg of membrane protein to the D-glucose-inhibitable site. If 280 nM (40000 microunits/ml) insulin is present during incubation, cytochalasin B binding is increased roughly 2-fold without alteration in the dissociation constant of this site. In addition, membranes in the microsomal fraction contain 21 pmol of D-glucose-inhibitable cytochalasin B binding sites/mg of membrane protein. In the presence of insulin during incubation the number of these sites in the microsomal fraction is decreased to 9 pmol/mg of membrane protein. These results suggest that rat diaphragm contain glucose transporters with characteristics identical to those observed for the rat adipose cell glucose transporter. In addition, insulin stimulates glucose transport in rat diaphragm through a translocation of functionally identical glucose transporters from an intracellular membrane pool to the plasma membrane without an alteration in the characteristics of these sites.  相似文献   

7.
A microsomal fraction was prepared by differential centrifugation from the homogenate of dark grown shoots of oats ( Avena sativa L. cv. Sol II). Plasma membranes were prepared from the microsomal fraction by means of an aqueous polymer two phase partition method. The content of phytochrome in the microsomal fraction and the plasma membrane fraction, respectively, were studied after different irradiation treatments of the intact shoots. Red irradiation increased the content of phytochrome in both the microsomal and plasma membrane fraction, especially in the presence of Mg2+. The increase induced by red light was fully reversible by far-red light for the plasma membrane fraction both in the presence and absence of Mg2+, in contrast to the microsomal fraction where Mg2+ had to be omitted. KI treatment of the membranes destroyed the binding of phytochrome whereas agents such as KCI, EDTA, CaCl2 and Triton X-100, did not have this effect, indicating that the phytochrome attachment to the membrane is hydrophobic. This in vivo binding resembles to a large extent the one obtained in vitro by Sundqvist and Widell (Physiol. Plant. 59: 35–41, 1983) even though some differences between the phytochrome species and the membrane side exposed probably occur; so that the present interaction between phytochrome and the plasma membrane does not necessarily reflect the interaction that leads to physiological responses, and there could be more than one type of interaction.  相似文献   

8.
1. Light- and heavy-plasma membrane fractions have been isolated from rabbit neutrophils and a chymotrypsin-like esterase has been shown to be present in these fractions. 2. The molecular weight of the chymotrypsin-like esterase of rabbit neutrophil plasma membrane was estimated to be about 200 000. 3. About 93% of the chymotrypsin-like esterase of the plasma membranes is esterase 1 and the susceptibility to potential inhibitors was similar in light- and heavy-plasma membrane. 4. Chemotactic peptide, [3H]formyl-norleucyl-leucyl-phenylalanine [3H]formyl-Nle-Leu-Phe) binding by subcellular fractions shows that the highest specific binding was observed in the light-plasma membrane was about 2-fold higher than the heavy-plasma membrane, about 37-fold higher than the nuclear fraction, about 3-fold higher than lysosomal fraction and about 10-fold higher than the microsomal fraction.  相似文献   

9.
[3H]Cytochalasin B binding and its competitive inhibition by d-glucose have been used to identify the glucose transporter in plasma and microsomal membranes prepared from intact rat diaphragm. Scatchard plot analysis of [3H]cytochalasin B binding yields a binding site with a dissociation constant of roughly 110 nM. Since the inhibition constant of cytochalasin B for d-glucose uptake by diaphragm plasma membranes is similar to this value, this site is identified as the glucose transporter. Plasma membranes prepared from diaphragms bind approx. 17 pmol of cytochalasin B/mg of membrane protein to the d-glucose-inhibitable site. If 280 nM (40 000 μunits/ml) insulin is present during incubation, cytochalasin B binding is increased roughly 2-fold without alteration in the dissociation constant of this site. In addition, membranes in the microsomal fraction contain 21 pmol of d-glucose-inhibitable cytochalasin B binding sites/mg of membrane protein. In the presence of insulin during incubation the number of these sites in the microsomal fraction is decreased to 9 pmol/mg of membrane protein. These results suggest that rat diaphragm contain glucose transporters with characteristics identical to those observed for the rat adipose cell glucose transporter. In addition, insulin stimulates glucose transport in rat diaphragm through a translocation of functionally identical glucose transporters from an intracellular membrane pool to the plasma membrane without an alteration in the characteristics of these sites.  相似文献   

10.
Chlorophyll-free plasma membranes of the unicellular green alga Chlamydomonas reinhardtii Dangeard were purified from a microsomal fraction using an aqueous polymer two-phase system of 6.5% (w/w) dextran T500, 6·5% (w/w) polyethylene glycol 3350, 60 mM NaCI, 0 33 M sucrose and 5 mM potassium phosphate (pH 7·8). The plasma membrane fraction contained only 2·4% of the microsomal membrane protein. Specific activity of the plasma membrane marker enzyme, K*, Mg2+-ATPase (EC 3.6.1.3). was enriched 9-fold over the microsomal fraction, and 22% of total activity was recovered in the upper, polyethylene glycol-rich phase. Contamination from intracellular membranes was minimal. K*, Mg2+-ATPase showed a pH optimum at about 6·5, and addition of 0·05% (w/v) Triton X-100 stimulated the activity 3-fold. [3H]-Nimodipinc was employed to characterize 1,4-dihydropyridine-specific membrane receptors. Two apparent binding sites with different affinities to nimodipine were found in the crude microsomal fraction. The separation of plasma membranes from intracellular membranes revealed that one binding site with higher affinity (KD= 9 nM) was located on the plasma membrane and a second binding site with lower affinity (KD= 36 nM) on an intracellular membrane The apparent dissociation constants determined from the association and dissociation rate constants in kinetic experiments were comparable to those determined by equilibrium experiments. The maximum number of binding sites of the plasma membrane fraction and the intracellular membrane fraction was Bmax= 440 and 470 fmol (mg protein)-1, respectively. [3H]-Nimodipinc binding was inhibited by (±) verapamil and stimulated by D-cis-diltiazem in both fractions. Moreover, ethyle-neglycol-bis(2-aminoethylcther)-N, N'-tetraacctic acid (EGTA) inhibited [3H]-nimo-dipinc binding in the plasma membrane fraction but not in the intracellular membrane fraction This effect was cancelled by the addition of CaCl2.  相似文献   

11.
The localization of GTP-binding protein (G-protein) subunits, Go alpha, Gi2 alpha and beta, in subcellular fractions of rat cerebral cortex was determined by means of immunoassays specific for the respective subunits. High concentrations of all three subunits were observed in both crude mitochondrial and microsomal fractions. Muscarinic cholinergic receptors were also densely localized in these fractions. Then the crude mitochondrial and microsomal fractions were subfractionated by sucrose density gradient centrifugation. Each fraction obtained was evaluated morphologically by electron microscopy and biochemically by determination of membrane markers. The crude mitochondrial fraction was subfractionated into myelin, synaptic plasma membrane, and mitochondrial fractions. All the G-protein subunits examined and muscarinic receptors were exclusively localized in the synaptic plasma membrane fraction. Among the submicrosomal fractions, the heavy smooth-surfaced microsomal fraction showed the highest concentrations of all G-protein subunits and receptors, while the rough-surfaced microsomal fraction contained low amounts of them. The heavy smooth-surfaced microsomal fraction also contained high specific activity of (Na(+)-K+)-ATPase, a marker of the plasma membrane. These results indicated that the Go alpha, Gi2 alpha and beta subunits are mainly localized in the plasma membrane in the brain.  相似文献   

12.
Two host-specific phytotoxic metabolites, AK-toxin I and II, were isolated from a culture broth of Alternaria alternata Japanese pear pathotype, the fungus causing black spot disease of susceptible Japanese pear cultivars. From chemical, spectral and X-ray crystallographic data, AK-toxin I was characterized as 8-(2′S, 3′S)-2′-acetylamino-3′-methyl-3′-phenyl-propionyloxy]-(8R,9S)-9,10-epoxy-9-methyl-deca-(2E,4Z,6E)-trienoic acid. The structure of AK-toxin II was also assigned to be 3′-demethyl derivative of AK-toxin I by comparing the spectral data with those of AK-toxin I.  相似文献   

13.
Plasma membranes were isolated from roots of bean (Phaseolus vulgaris L.) plants cultured on phosphate sufficient or phosphate deficient medium. The phospholipid composition of plasma membranes was analyzed and compared with that of the microsomal fraction. Phosphate deficiency had no influence on lipid/protein ratio in microsomal as well as plasma membrane fraction. In phosphate deficient roots phospholipid content was lower in the plasma membrane, but did not change in the microsomal fraction. Phosphatidylcholine and phosphatidylethanolamine were two major phospholipids in plasmalemma and microsomal membranes (80 % of the total). After two weeks of phosphate starvation a considerable decrease (about 50 %) in phosphatidylcholine and phosphatidylethanolamine in microsomal membranes was observed. The decline in two major phospholipids was accompanied by an increase in phosphatidic acid and lysophosphatidylcholine content. The effect of alterations in plasma membrane phospholipids on membrane function e.g. nitrate uptake is discussed.  相似文献   

14.
A method is described for the subfractionation of plasma membranes from thymus lymphocytes by means of affinity chromatography on concanavalin A-Sepharose. Thymus lymphocytes were disrupted by nitrogen cavitation, microsomal membranes isolated by differential centrifugation, and plasma membranes purified from microsomes by sucrose gradient ultracentrifugation. Plasma membranes were highly purified as indicated by marker enzymes and chemical analysis. To obtain membrane preparations suited for lectin-dependent affinity chromatography, sucrose was removed slowly by gradient dialysis. Plasma membranes were then equilibrated for 20 min at 4°C with concanavalin A-Sepharose, which allowed the separation of membranes into a fraction eluting freely (MF1) and a second fraction binding to the affinity absorbent (MF2), with a total recovery of about 90%. Increasing the temperature or binding time did not alter the fractionation of the plasma membrane into the two subfractions. Fractionation required the binding of matrix-bound concanavalin A to plasma membrane binding sites. Both plasma membrane subfractions proved to have preserved their original orientation (right-side out). The method described is suited to isolate different domains of the lymphocyte plasma membrane.  相似文献   

15.
The interaction of extracellular polysaccharides (EPS) of the potato ring rot bacterial pathogen Clavibacter michiganensis ssp. sepedonicus (Spieck. et Kott.) Skaptason et Burkh. (Cms) with protoplasts isolated both from leaf cells of plants grown in vitro and microsomal membrane fractions obtained from cell suspension cultures of two potato (Solanum tuberosum L.) cultivars contrasted by their resistance to this pathogen was studied. The EPS intensively bind to protoplast surfaces and microsomal membranes of the susceptible cultivar but not to those of the resistant cultivar. Treatment with protease, excess of unlabelled EPS, and with dextran, did not lead to the binding of fluorochrome‐labelled EPS to protoplasts and microsomal membranes (from both cultivars). It is proposed that (a) a great number of receptors to EPS Cms are present in the plasma membranes of potato cells of susceptible cultivars, (b) these receptors contain proteinaceous sites exposed on the external side of the plasma membrane which participate in EPS binding, and (c) the plasma membranes of cells of resistant cultivars contain a small but sufficient quantity of receptors to EPS able to induce defensive responses in plants.  相似文献   

16.
S-Adenosylhomocysteine (AdoHcy) binding to various membrane fractions of rat liver was determined at pH 7.4, using an oil centrifugation technique. The highest binding activity was found in the heavy microsomal (M-H) fraction enriched in endoplasmic reticulum, but high binding activity was also observed in the light microsomal fractions enriched in blood sinusoidal membranes (M-L fraction), and the heavy nuclear fraction (N-H fraction) containing the contiguous area. A substantial portion of AdoHcy binding activity in the M-L fraction may be ascribed to contamination of this fraction with endoplasmic reticulum, as indicated by the distribution of NADPH cytochrome c reductase activity. Binding activity was low in the light nuclear (N-L) fraction corresponding to the bile canaliculi. Phospholipid methyltransferase activity was determined in the same membrane fractions under similar conditions (pH 7.4), and in the absence and presence of added phospholipids. The distribution of the enzyme activity was dependent on the presence of exogenous phospholipids, and grossly similar to AdoHcy binding, the highest activities being observed in the M-H and the M-L fractions. The N-H fraction, rich in AdoHcy-binding activity, demonstrated, however, a very low phospholipid methyltransferase activity. It is concluded that AdoHcy-binding activity is not confined to the plasma membranes, and a major fraction of the binding activity resides on membranes derived from the endoplasmic reticulum. Also, the present results add to previous data suggesting that phospholipid methyltransferase does not totally account for the AdoHcy-binding sites on rat liver membranes.  相似文献   

17.
The time-course and insulin concentration dependency of internalization of insulin and its receptor have been examined in isolated rat adipose cells at 37 degrees C. The internalization of insulin was assessed by examining the subcellular distribution of cell-associated [125I]insulin among plasma membrane, and high-density (endoplasmic reticulum-enriched) and low-density (Golgi-enriched) microsomal membrane fractions prepared by differential ultracentrifugation. The distribution of receptors was measured by the steady-state exchange binding of fresh [125I]insulin to these same membrane fractions. At 37 degrees C, insulin binding to intact cells is accompanied initially by the rapid appearance of intact insulin in the plasma membrane fraction, and subsequently, by its rapid appearance in both the high-density and low-density microsomal membrane fractions. An apparent steady-state distribution of insulin per mg of membrane protein among these subcellular fractions is achieved within 30 min in a ratio of 1:1.54:0.80, respectively. Concomitantly, insulin binding to intact cells is associated with the rapid disappearance of approx. 30% of the insulin receptors initially present in the plasma membrane fraction and appearance of 20-30% of those lost in the low-density microsomal membrane fraction. However, the number of receptors in the high-density microsomal membrane fraction does not change. This redistribution of receptors also appears to reach a steady-state within 30 min. Both processes are insulin concentration-dependent, correlating with receptor occupancy in the intact cell, and are partially inhibited at 16 degrees C. While the steady-state subcellular distributions of insulin and its receptor do not correlate with that of acid phosphatase, chloroquine markedly increases the levels of insulin associated with all three membrane fractions in apparent proportion to the distribution of this lysosomal marker enzyme activity, without more than marginally potentiating insulin's effects on the distribution of receptors. These results demonstrate that insulin, initially bound to the plasma membrane of the isolated rat adipose cell, is rapidly translocated by a receptor-mediated process into at least two intracellular compartments associated with the cell's high- and low-density microsomes. Furthermore, insulin simultaneously induces the translocation of its own receptor from the plasma membrane into the latter compartment. These translocations appear to represent the internalization and partial dissociation of the insulin-receptor complex through insulin-induced receptor cycling.  相似文献   

18.
This study describes the use of magnetic Dynabeads to purify microsomes from a crude microsomal fraction. A 28 kDa membrane-associated protein is proposed to mediate the binding of progesterone and other steroid hormones to ocular lens membranes and the rapid-nongenomic actions of these steroids. The subcellular location of this membrane steroid binding protein (MSBP) was probed by capture of organelles containing MSBP by magnetic beads displaying an antibody to a cytoplasmic domain of the protein. The beads were exposed to a crude microsomal fraction from lens epithelia. Western blotting was used to identify captured organelles and confirm the presence of MSBP. Microsomes and trace fiber cell plasma membrane were captured. Microsomes contained the 28 kDa MSBP. Lens fiber cell membrane contained a 55 kDa immunoreactive protein. The role of this serendipitously recognized protein in binding of steroids is unknown.  相似文献   

19.
The possibility that estrogen receptors may exist in uterine plasma membranes was investigated by covalent labeling of estrogen receptors in mouse uterine cells with [3H]tamoxifen aziridine (TA). Isolated epithelial and stromal cells of immature mice were incubated with [3H]TA in the presence or absence of unlabeled tamoxifen, homogenized and separated into nuclear, cytosolic and microsomal fractions by differential centrifugation. These fractions were subjected to SDS-polyacrylamide gel electrophoresis and the proteins labeled covalently with TA were visualized by autoradiography. Proteins labeled specifically with [3H]TA were observed almost exclusively in the nuclear fraction of both epithelial and stromal cells. In contrast, very little labeled protein was detected in the cytosolic or microsomal fraction. Although these data do not preclude the possibility that estrogen binding sites are present in plasma membranes of uterine cells, this cellular fraction is definitely not labeled to a significant extent by [3H]TA. Thus, if membrane estrogen binding sites exist, their structural conformations may be different from that of nuclear estrogen receptors.  相似文献   

20.
The time-course and insulin concentration dependency of internalization of insulin and its receptor have been examined in isolated rat adipose cells at 37°C. The internalization of insulin was assessed by examining the subcellular distribution of cell-associated [125I]insulin among plasma membrane, and high-density (endoplasmic reticulum-enriched) and low-density (Golgi-enriched) microsomal membrane fractions prepared by differential ultracentrifugation. The distribution of receptors was measured by the steady-state exchange binding of fresh [125I]insulin to these same membrane fractions. At 37°C, insulin binding to intact cells is accompanied initially by the rapid appearance of intact insulin in the plasma membrane fraction, and subsequently, by its rapid appearance in both the high-density and low-density microsomal membrane fractions. An apparent steady-state distribution of insulin per mg of membrane protein among these subcellular fractions is achieved within 30 min in a ratio of 1:1.54:0.80, respectively. Concomitantly, insulin binding to intact cells is associated with the rapid disappearance of approx. 30% of the insulin receptors initially present in the plasma membrane fraction and appearance of 20–30% of those lost in the low-density microsomal membrane fraction. However, the number of receptors in the high-density microsomal membrane fraction does not change. This redistribution of receptors also appears to reach a steady-state within 30 min. Both processes are insulin concentration-dependent, correlating with receptor occupancy in the intact cell, and are partially inhibited at 16°C. While the steady-state subcellular distributions of insulin and its receptor do not correlate with that of acid phosphatase, chloroquine markedly increases the levels of insulin associated with all three membrane fractions in apparent proportion to the distribution of this lysosomal marker enzyme activity, without more than marginally potentiating insulin's effects on the distribution of receptors. These results demonstrate that insulin, initially bound to the plasma membrane of the isolated rat adipose cell, is rapidly translocated by a receptor-mediated process into at least two intracellular compartments associated with the cell's high- and low-density microsomes. Furthermore, insulin simultaneously induces the translocation of its own receptor from the plasma membrane into the latter compartment. These translocations appear to represent the internalization and partial dissociation of the insulin-receptor complex through insulin-induced receptor cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号