首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wild relatives of barley disperse their seeds at maturity by means of their brittle rachis. In cultivated barley, brittleness of the rachis was lost during domestication. Nonbrittle rachis of occidental barley lines is controlled by a single gene (btr1) on chromosome 3H. However, nonbrittle rachis of oriental barley lines is controlled by a major gene (btr2) on chromosome 3H and two quantitative trait loci on chromosomes 5HL and 7H. This result suggests multiple mutations of the genes involved in the formation of brittle rachis in oriental lines. The btr1 and btr2 loci did not recombine in the mapping population analyzed. This result agrees with the theory of tight linkage between the two loci. A high-density amplified fragment-length polymorphism (AFLP) map of the btr1/btr2 region was constructed, providing an average density of 0.08 cM/locus. A phylogenetic tree based on the AFLPs showed clear separation of occidental and oriental barley lines. Thus, barley consists of at least two lineages as far as revealed by molecular markers linked to nonbrittle rachis genes.Electronic Supplementary Material Supplementary material is available for this article at An erratum to this article can be found at  相似文献   

2.
PK23-2, a line of six-rowed barley (Hordeum vulgare L.) originating from Pakistan, has resistance to Japanese strains I and III of the barley yellow mosaic virus (BaYMV). To identify the source of resistance in this line, reciprocal crosses were made between the susceptible cultivar Daisen-gold and PK23-2. Genetic analyses in the F1 generation, F2 generation, and a doubled haploid population (DH45) derived from the F1 revealed that PK23-2 harbors one dominant and one recessive resistance genes. A linkage map was constructed using 61 lines of DH45 and 127 DNA markers; this map covered 1268.8 cM in 10 linkage groups. One QTL having a LOD score of 4.07 and explaining 26.8% of the phenotypic variance explained (PVE) for resistance to BaYMV was detected at DNA marker ABG070 on chromosome 3H. Another QTL having a LOD score of 3.53 and PVE of 27.2% was located at marker Bmag0490 on chromosome 4H. The resistance gene on chromosome 3H, here named Rym17, showed dominant inheritance, whereas the gene on chromosome 4H, here named rym18, showed recessive inheritance in F1 populations derived from crosses between several resistant lines of DH45 and Daisen-gold. The BaYMV recessive resistance genes rym1, rym3, and rym5, found in Japanese barley germplasm, were not allelic to rym18. These results revealed that PK23-2 harbors two previously unidentified resistance genes, Rym17 on 3H and rym18 on 4H; Rym17 is the first dominant BaYMV resistance gene to be identified in primary gene pool. These new genes, particularly dominant Rym17, represent a potentially valuable genetic resource against BaYMV disease.  相似文献   

3.
The process of vernalization is mainly controlled by two genes in winter barley (Hordeum vulgare L.), VRNH1 and VRNH2. A recessive allele at VRNH1 and a dominant allele at VRNH2 must be present to induce a vernalization requirement. In addition, this process is usually associated with greater low-temperature tolerance. Spanish barleys originated in areas with mild winters and display a reduced vernalization requirement compared with standard winter cultivars. The objective of this study was to investigate the genetic origin of this reduced vernalization requirement and its effect on frost tolerance. We introgressed the regions of a typical Spanish barley line that carry VRNH1 and VRNH2 into a winter cultivar, Plaisant, using marker-assisted backcrossing. We present the results of a set of 12 lines introgressed with all four possible combinations of VRNH1 and VRNH2, which were evaluated for vernalization requirement and frost tolerance. The reduced vernalization requirement of the Spanish parent was confirmed, and was found to be due completely to the effect of the VRNH1 region. The backcross lines showed no decline in frost tolerance compared with that of the recurrent parent unless they carried an extra segment of chromosome 5H. This extra segment, a carryover of the backcross process, apparently contained the well-known frost tolerance quantitative trait locus Fr-H2. We demonstrate that it is possible to manipulate the vernalization requirement with only minor effects on frost tolerance. This finding opens the path to creating new types of barley cultivars that are better suited to specific environments, especially in a climate-change scenario.  相似文献   

4.
Spring radiation frost is a major abiotic stress in southern Australia, reducing yield potential and grain quality of barley by damaging sensitive reproductive organs in the latter stages of development. Field-based screening methods were developed, and genetic variation for reproductive frost tolerance was identified. Mapping populations that were segregating for reproductive frost tolerance were screened and significant QTL identified. QTL on chromosome 2HL were identified for frost-induced floret sterility in two different populations at the same genomic location. This QTL was not associated with previously reported developmental or stress-response loci. QTL on chromosome 5HL were identified for frost-induced floret sterility and frost-induced grain damage in all three of the populations studied. The locations of QTL were coincident with previously reported vegetative frost tolerance loci close to the vrn-H1 locus. This locus on chromosome 5HL has now been associated with response to cold stress at both vegetative and reproductive developmental stages in barley. This study will allow reproductive frost tolerance to be seriously pursued as a breeding objective by facilitating a change from difficult phenotypic selection to high-throughput genotypic selection.  相似文献   

5.
Fusarium head blight (FHB) is an important disease of wheat worldwide. The cultivar Spark is more resistant than most other UK winter wheat varieties but the genetic basis for this is not known. A mapping population from a cross between Spark and the FHB susceptible variety Rialto was used to identify quantitative trait loci (QTL) associated with resistance. QTL analysis across environments revealed nine QTL for FHB resistance and four QTL for plant height (PH). One FHB QTL was coincident with the Rht-1D locus and accounted for up to 51% of the phenotypic variance. The enhanced FHB susceptibility associated with Rht-D1b is not an effect of PH per se as other QTL for height segregating in this population have no influence on susceptibility. Experiments with near-isogenic lines supported the association between susceptibility and the Rht-D1b allele conferring the semi-dwarf habit. Our results demonstrate that lines carrying the Rht-1Db semi-dwarfing allele are compromised in resistance to initial infection (type I resistance) while being unaffected in resistance to spread within the spike (type II resistance).  相似文献   

6.
Rusts and barley yellow dwarf virus (BYDV) are among the main diseases affecting wheat production world wide for which wild relatives have been the source of a number of translocations carrying resistance genes. Nevertheless, along with desirable traits, alien translocations often carry deleterious genes. We have generated recombinants in a bread wheat background between two alien translocations: TC5, ex-Thinopyrum (Th) intermedium, carrying BYDV resistance gene Bdv2; and T4m, ex-Th. ponticum, carrying rust resistance genes Lr19 and Sr25. Because both these translocations are on the wheat chromosome arm 7DL, homoeologous recombination was attempted in the double hemizygote (TC5/T4m) in a background homozygous for the ph1b mutation. The identification of recombinants was facilitated by the use of newly developed molecular markers for each of the alien genomes represented in the two translocations and by studying derived F2, F3 and doubled haploid populations. The occurrence of recombination was confirmed with molecular markers and bioassays on families of testcrosses between putative recombinants and bread wheat, and in F2 populations derived from the testcrosses. As a consequence it has been possible to derive a genetic map of markers and resistance genes on these previously fixed alien linkage blocks. We have obtained fertile progeny carrying new tri-genomic recombinant chromosomes. Furthermore we have demonstrated that some of the recombinants carried resistance genes Lr19 and Bdv2 yet lacked the self-elimination trait associated with shortened T4 segments. We have also shown that the recombinant translocations are fixed and stable once removed from the influence of the ph1b. The molecular markers developed in this study will facilitate selection of individuals carrying recombinant Th. intermediumTh. ponticum translocations (Pontin series) in breeding programs. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
8.
Net form net blotch (NFNB), caused by Pyrenophora teres f. teres Drechs., is prevalent in barley-growing regions worldwide. A population of 132 recombinant inbred lines (RILs) developed from a cross of the barley varieties ‘Falcon’ and ‘Azhul’ were used to evaluate resistance to NFNB due to their differential reactions to isolates of P. teres f. teres from Australia, Canada, Japan, and the USA. Falcon is a six-rowed, hulless feed barley harboring resistance to NFNB, while Azhul is a six-rowed, hulless food barley with high levels of susceptibility to many P. teres f. teres isolates. Seedling disease resistance data were collected on seedlings of parents, RILs, and checks in a growth chamber. The population was genotyped using Illumina’s GoldenGate assay, and quantitative trait loci (QTL) were detected on chromosomes 2H, 3H, 4H, and 6H. We identified a single genetic region on barley chromosome 4H that provided varying levels of resistance to all P. teres f. teres isolates evaluated.  相似文献   

9.
Abscisic acid (ABA) sensitivity in embryos is one of the key factors in the seed dormancy of wheat. Many ABA signaling genes have been isolated in Arabidopsis, while only a few wheat homologues have been identified. In the present study, diploid wheat homologues to Arabidopsis ABA signaling genes were identified by in silico analysis, and mapped them using a population of diploid wheat recombinant inbred lines derived from a cross between Triticum monococcum (Tm) and T. boeoticum (Tb). Four diploid wheat homologues, TmVP1, TmABF, TmABI8 and TmERA1 were located on chromosome 3Am and TmERA3 was on the centromere region of chromosome 5Am. In two consecutive year trials, one major QTL on the long arm of 5Am, two minor QTLs on the long arm of 3Am and one minor QTL on the long arm of 4Am were detected. The 5Am QTL explained 20–27% of the phenotypic variations and the other three QTLs each accounted for approximately 10% of the phenotypic variations. Map positions of the loci of TmABF and TmABI8 matched the LOD peaks of the two QTLs on 3Am, indicating that these two homologues are possible candidate genes for seed dormancy QTLs. Moreover, we have found two SNPs result in amino acid substitutions in TmABF between Tb and Tm. Comparison of the marker positions of QTLs for seed dormancy of barley revealed that the largest QTL on 5Am may be orthologous to the barley seed dormancy QTL, SD1, whereas there seems no orthologous QTL to the corresponding barley SD2 locus. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
To identify a molecular marker closely linked to Vrn-B1, the Vrn-1 ortholog on chromosome 5B, sequence polymorphism at four orthologous RFLP loci closely linked to the Vrn-1 gene family was analyzed by using near-isogenic lines of ”Triple Dirk.” At Xwg644, a RFLP locus, three types of nucleotide sequence differing by the number of (TG) repeats, two or three times, and base changes were detected. A (TG)3-type sequence proved to be specific to chromosome 5B by nulli-tetrasomic analysis, and substitution of single nucleotide (C/T) was detected between TD(B) carrying the former Vrn2 allele and TD(C) carrying the vrn2 allele. A mismatch primer was designed for dCAPS analysis of this single nucleotide polymorphism (SNP). Polymorphism was successfully detected between two NILs, through nested PCR by using a (TG)3-specific primer (1st) and a dCAPS primer (2nd) followed by a NsiI digest. The analysis of a BF2 population [(TD(B)//TD(C)] revealed the close linkage (1.7 cM) between WG644–5B and Vrn2. It was therefore concluded that the former Vrn2 locus is located on chromosome 5B and equivalent to Vrn-B1. Received: 3 May 2001 / Accepted: 19 July 2001  相似文献   

11.
Aluminium (Al) tolerance in barley is conditioned by the Alp locus on the long arm of chromosome 4H, which is associated with Al-activated release of citrate from roots. We developed a high-resolution map of the Alp locus using 132 doubled haploid (DH) lines from a cross between Dayton (Al-tolerant) and Zhepi 2 (Al-sensitive) and 2,070 F2 individuals from a cross between Dayton and Gairdner (Al-sensitive). The Al-activated efflux of citrate from the root apices of Al-tolerant Dayton was 10-fold greater than from the Al-sensitive parents Zhepi 2 and Gairdner. A suite of markers (ABG715, Bmag353, GBM1071, GWM165, HvMATE and HvGABP) exhibited complete linkage with the Alp locus in the DH population accounting 72% of the variation for Al tolerance evaluated as relative root elongation. These markers were used to map this genomic region in the Dayton/Gairdner population in more detail. Flanking markers HvGABP and ABG715 delineated the Alp locus to a 0.2 cM interval. Since the HvMATE marker was not polymorphic in the Dayton/Gairdner population we instead investigated the expression of the HvMATE gene. Relative expression of the HvMATE gene was 30-fold greater in Dayton than Gardiner. Furthermore, HvMATE expression in the F2:3 families tested, including all the informative recombinant lines identified between HvGABP and ABG715 was significantly correlated with Al tolerance and Al-activated citrate efflux. These results identify HvMATE, a gene encoding a multidrug and toxic compound extrusion protein, as a candidate controlling Al tolerance in barley.  相似文献   

12.

Key message

We report the first study on the unique allele from wild barley that can improve waterlogging tolerance in cultivated barley with a substantially higher contribution to aerenchyma formation.

Abstract

Waterlogging is one of the major abiotic stresses that dramatically reduce barley crop yield. Direct selection on waterlogging tolerance in the field is less effective due to its viability to environment. The most effective way of selection is to choose traits that make significant contributions to the overall tolerance and are easy to score. Aerenchyma formation under waterlogging stress is one of the most effective mechanisms to provide adequate oxygen supply and overcome stress-induced hypoxia imposed on plants. In this study, a new allele for aerenchyma formation was identified from a wild barley accession TAM407227 on chromosome 4H. Compared to that identified in cultivated barley, this allele not only produced a greater proportion of aerenchyma but made a greater contribution to the overall waterlogging tolerance. The QTL explained 76.8% of phenotypic variance in aerenchyma formation with a LOD value of 51.4. Markers co-segregating with the trait were identified and can be effectively used in marker assisted selection.
  相似文献   

13.
Pre-harvest sprouting (PHS) can easily lead to yield losses of wheat and downgrading of grain quality in wheat-growing areas where long periods of wet weather occur frequently during harvest. As a main component of PHS, seed dormancy is often evaluated by germination index (GI). Previous researches have proved allelic variations of Vp-1B to have a close relationship with dormancy of white-grained wheat. In the present study, a mapping population covering 157 recombinant inbred lines was developed from a cross of two white-grained varieties, Wanxianbaimaizi and Jing411. Wanxianbaimaizi is a strongly dormant landrace carrying a novel allele, Vp-1Bf; whereas, Jing411 is a non-dormant variety with wild allele, Vp-1Ba. Our objective was to validate the association between the novel allele and seed dormancy using the population. The results of sequences alignment indicated an insertion of 193 bp and a deletion of 109 bp were both identified in the novel allele, respectively, compared with wild allele in Jing411. Here, the deletion was first detected. As for lines possessing Vp-1Ba, the average GI value was 0.584, significantly higher than that of lines holding Vp-1Bf. Among three genotypes, Vp-1Bf allele was generally corresponded to the lowest average of GI value (0.195), and the highest dormancy; in addition, lines with heterozygous genotype often showed intermediate GI value (0.356). Of 92 RILs with Vp-1Ba, over 70 lines showed higher GI value (>0.40), and only about 7 lines had lower GI value (<0.20). On the other hand, among 60 RILs with Vp-1Bf, over 50 lines showed lower GI value (<0.40), and only about 7 lines had higher GI value (>0.60). The result of composite interval mapping revealed that a major QTL for seed dormancy was flanked by Xwmc446 and Vp1 on 3BL, which was proximal to Vp1 (7.6–8.4 cM). The locus could explain 24.6–40.7% of total phenotypic variation across three crop seasons. The above results could confirm that the novel allele had a striking association with high seed dormancy, and may be useful for improving PHS tolerance of white-grained wheat.  相似文献   

14.
An earliness per se gene, designated Eps-Am1, was mapped in diploid wheat in F2 and single-seed descent mapping populations from the cross between cultivated (DV92) and wild (G3116) Triticum monococcum accessions. A QTL with a peak on RFLP loci Xcdo393 and Xwg241, the most distal markers on the long arm of chromosome 1Am, explained 47% of the variation in heading date (LOD score 8.3). Progeny tests for the two F2:3 families with critical recombination events between Xcdo393 and Xwg241 showed that the gene was distal to Xcdo393 and linked to Xwg241. Progeny tests and replicated experiments with line #3 suggested that Eps-Am1 was distal to Xwg241. This gene showed a large effect on heading date in the controlled environment experiments, and a smaller, but significant, effect under natural conditions. Eps-Am1 showed significant epistatic interactions with photoperiod and vernalization treatments, suggesting that the different classes of genes affecting heading date interact as part of a complex network that controls the timing of flowering induction. Besides its interactions with other genes affecting heading date, Eps-Am1 showed a significant interaction with temperature. The effect of temperature was larger in plants carrying the DV92 allele for late flowering than in those carrying the G3116 allele for early flowering. Average differences in heading date between the experiments performed at 16 °C and 23 °C were approximately 11 days (P < 0.001) for the lines carrying the Eps-Am1 allele for early flowering but approximately 50 days (P < 0.0001) for the lines carrying the allele for late flowering. The large differences in heading time (average 80 days) observed between plants carrying the G3116 and DV92 alleles when grown at 16 °C, suggest that it would be possible to produce very detailed maps for this gene to facilitate its future positional cloning.  相似文献   

15.
Three quantitative trait loci (QTL) for resistance to Thrips tabaci and Frankliniella schultzei were identified using a cowpea recombinant inbred population of 127 F2:8 lines. An amplified fragment length polymorphism (AFLP) genetic linkage map and foliar feeding damage ratings were used to identify genomic regions contributing toward resistance to thrips damage. Based on Pearson correlation analysis, damage ratings were highly correlated (r ≥ 0.7463) across seven field experiments conducted in 2006, 2007, and 2008. Using the Kruskall–Wallis and Multiple-QTL model mapping packages of MapQTL 4.0 software, three QTL, Thr-1, Thr-2, and Thr-3, were identified on linkage groups 5 and 7 accounting for between 9.1 and 32.1% of the phenotypic variance. AFLP markers ACC-CAT7, ACG-CTC5, and AGG-CAT1 co-located with QTL peaks for Thr-1, Thr-2, and Thr-3, respectively. Results of this study will provide a resource for molecular marker development and the genetic characterization of foliar thrips resistance in cowpea.  相似文献   

16.
Powdery mildew is a prevalent fungal disease affecting oat (Avena sativa L.) production in Europe. Common oat cultivar Rollo was previously shown to carry the powdery mildew resistance gene Eg-3 in common with cultivar Mostyn. The resistance gene was mapped with restriction fragment length polymorphism (RFLP) markers from Triticeae group-1 chromosomes using a population of F3 lines from a cross between A. byzantina cv. Kanota and A. sativa cv. Rollo. This comparative mapping approach positioned Eg-3 between cDNA-RFLP marker loci cmwg706 and cmwg733. Since both marker loci were derived from the long arm of barley chromosome 1H, the subchromosomal location of Eg-3 was assumed to be on the long arm of oat chromosome 17. Amplified fragment length polymorphism (AFLP) marker technology featured as an efficient means for obtaining markers closely linked to Eg-3.  相似文献   

17.
Rice stripe disease, caused by rice stripe virus (RSV), is one of the most serious diseases in temperate rice-growing areas. In the present study, we performed quantitative trait locus (QTL) analysis for RSV resistance using 98 backcross inbred lines derived from the cross between the highly resistant variety, Kasalath, and the highly susceptible variety, Nipponbare. Under artificial inoculation in the greenhouse, two QTLs for RSV resistance, designated qSTV7 and qSTV11 KAS , were detected on chromosomes 7 and 11 respectively, whereas only one QTL was detected in the same location of chromosome 11 under natural inoculation in the field. The stability of qSTV11 KAS was validated using 39 established chromosome segment substitution lines. Fine mapping of qSTV11 KAS was carried out using 372 BC3F2:3 recombinants and 399 BC3F3:4 lines selected from 7,018 BC3F2 plants of the cross SL-234/Koshihikari. The qSTV11 KAS was localized to a 39.2 kb region containing seven annotated genes. The most likely candidate gene, LOC_Os11g30910, is predicted to encode a sulfotransferase domain-containing protein. The predicted protein encoded by the Kasalath allele differs from Nipponbare by a single amino acid substitution and the deletion of two amino acids within the sulfotransferase domain. Marker-resistance association analysis revealed that the markers L104-155 bp and R48-194 bp were highly correlated with RSV resistance in the 148 landrace varieties. These results provide a basis for the cloning of qSTV11 KAS , and the markers may be used for molecular breeding of RSV resistant rice varieties.  相似文献   

18.
Two quantitative trait loci (Fr-H1 and Fr-H2) for frost tolerance (FT) have been discovered on the long arm of chromosome 5H in barley. Two tightly linked groups of CBF genes, known to play a key role in the FT regulatory network in A. thaliana, have been found to co-segregate with Fr-H2. Here, we investigate the allelic variations of four barley CBF genes (HvCbf3, HvCbf6, HvCbf9 and HvCbf14) in a panel of European cultivars, landraces and H. spontaneum accessions. In the cultivars a reduction of nucleotide and haplotype diversities in CBFs compared with the landraces and the wild ancestor H. spontaneum, was evident. In particular, in cultivars the loss of HvCbf9 genetic variants was higher compared to other sequences. In order to verify if the pattern of CBF genetic variants correlated with the level of FT, an association procedure was adopted. The pairwise analysis of linkage disequilibrium (LD) among the genetic variants in four CBF genes was computed to evaluate the resolution of the association procedure. The pairwise plotting revealed a low level of LD in cultivated varieties, despite the tight physical linkage of CBF genes analysed. A structured association procedure based on a general liner model was implemented, including the variants in CBFs, of Vrn-H1, and of two reference genes not involved in FT (α-Amy1 and Gapdh) and considering the phenotypic data for FT. Association analysis recovered two nucleotide variants of HvCbf14 and one nucleotide variant of Vrn-H1 as statistically associated to FT.  相似文献   

19.
High-temperature adult-plant (HTAP) resistance to stripe rust (caused by Puccinia striiformis f. sp. tritici) is a durable type of resistance in wheat (Triticum aestivum L.). This study identified quantitative trait loci (QTL) conferring HTAP resistance to stripe rust in a population consisting of 169 F8:10 recombinant inbred lines (RILs) derived from a cross between a susceptible cultivar Rio Blanco and a resistant germplasm IDO444. HTAP resistance was evaluated for both disease severity and infection type under natural infection over two years at two locations. The genetic linkage maps had an average density of 6.7 cM per marker across the genome and were constructed using 484 markers including 96 wheat microsatellite (SSR), 632 Diversity Arrays Technology (DArT) polymorphisms, two sequence-tagged-site (STS) from semi-dwarf genes Rht1 and Rht2, and two markers for low molecular-weight glutenin gene subunits. QTL analysis detected a total of eight QTL significantly associated with HTAP resistance to stripe rust with two on chromosome 2B, two on 3B and one on each of 1A, 4A, 4B and 5B. QTL on chromosomes 2B and 4A were the major loci derived from IDO444 and explained up to 47 and 42% of the phenotypic variation for disease severity and infection type, respectively. The remaining five QTL accounted for 7–10% of the trait variation. Of these minor QTL, the resistant alleles at the two QTL QYrrb.ui-3B.1 and QYrrb.ui-4B derived from Rio Blanco and reduced infection type only, while the resistant alleles at the other three QTL, QYrid.ui-1A, QYrid.ui-3B.2 and QYrid.ui-5B, all derived from IDO444 and reduced either infection type or disease severity. Markers linked to 2B and 4A QTL should be useful for selection of HTAP resistance to stripe rust.  相似文献   

20.

Key message

In this study we mapped the QTL Qgls8 for gray leaf spot (GLS) resistance in maize to a ~130 kb region on chromosome 8 including five predicted genes.

Abstract

In previous work, using near isogenic line (NIL) populations in which segments of the teosinte (Zea mays ssp. parviglumis) genome had been introgressed into the background of the maize line B73, we had identified a QTL on chromosome 8, here called Qgls8, for gray leaf spot (GLS) resistance. We identified alternate teosinte alleles at this QTL, one conferring increased GLS resistance and one increased susceptibility relative to the B73 allele. Using segregating populations derived from NIL parents carrying these contrasting alleles, we were able to delimit the QTL region to a ~130 kb (based on the B73 genome) which encompassed five predicted genes.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号