首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 898 毫秒
1.
In the present study, we investigated the peroxidase-catalyzed detoxification of model phenolic compounds and evaluated the inhibitory effects of the detoxified solution on butanol production by Clostridium beijerinckii National Collection of Industrial and Marine Bacteria Ltd. 8052. The six phenolic compounds, p-coumaric acid, ferulic acid, 4-hydroxybenzoic acid, vanillic acid, syringaldehyde, and vanillin, were selected as model fermentation inhibitors generated during pretreatment and hydrolysis of lignocellulose. The enzyme reaction was optimized as a function of the reaction conditions of pH, peroxidase concentration, and hydrogen peroxide to substrate ratio. Most of the tested phenolics have a broad optimum pH range of 6.0 to 9. Removal efficiency increased with the molar ratio of H2O2 to each compound up to 0.5–1.25. In the case of p-coumaric acid, ferulic acid, vanillic acid, and vanillin, the removal efficiency was almost 100% with only 0.01 μM of enzyme. The tested phenolic compounds (1 g/L) inhibited cell growth by 64–74%, while completely inhibiting the production of butanol. Although syringaldehyde and vanillin were less toxic on cell growth, the level of inhibition on the butanol production was quite different. The detoxified solution remarkably improved cell growth and surprisingly increased butanol production to the level of the control. Hence, our present study, using peroxidase for the removal of model phenolic compounds, could be applied towards the detoxification of lignocellulosic hydrolysates for butanol fermentation.  相似文献   

2.
Fuel ethanol production from plant biomass hydrolysates by Saccharomyces cerevisiae is of great economic and environmental significance. This paper reviews the current status with respect to alcoholic fermentation of the main plant biomass-derived monosaccharides by this yeast. Wild-type S. cerevisiae strains readily ferment glucose, mannose and fructose via the Embden–Meyerhof pathway of glycolysis, while galactose is fermented via the Leloir pathway. Construction of yeast strains that efficiently convert other potentially fermentable substrates in plant biomass hydrolysates into ethanol is a major challenge in metabolic engineering. The most abundant of these compounds is xylose. Recent metabolic and evolutionary engineering studies on S. cerevisiae strains that express a fungal xylose isomerase have enabled the rapid and efficient␣anaerobic fermentation of this pentose. l-Arabinose fermentation, based on the expression of a prokaryotic pathway in S. cerevisiae, has also been established, but needs further optimization before it can be considered for industrial implementation. In addition to these already investigated strategies, possible approaches for metabolic engineering of galacturonic acid and rhamnose fermentation by S. cerevisiae are discussed. An emerging and major challenge is to achieve the rapid transition from proof-of-principle experiments under ‘academic’ conditions (synthetic media, single substrates or simple substrate mixtures, absence of toxic inhibitors) towards efficient conversion of complex industrial substrate mixtures that contain synergistically acting inhibitors.  相似文献   

3.

The use of synthetic dyes for laccase induction in vivo has been scarcely explored. We characterized the effect of adding different synthetic dyes to liquid cultures of Pycnoporus sanguineus on laccase production. We found that carminic acid (CA) can induce 722 % and alizarin yellow 317 % more laccase than control does, and they promoted better fungal biomass development in liquid cultures. Aniline blue and crystal violet did not show such positive effect. CA and alizarin yellow were degraded up to 95 % during P. sanguineus culturing (12 days). With this basis, CA was selected as the best inducer and used to evaluate the induction of laccase on solid-state fermentation (SSF), using sugarcane bagasse (SCB) as substrate, in an attempt to reach selective delignification. We found that laccase induction occurred in SSF, and a slight inhibition of cellulase production was observed when CA was added to the substrate; also, a transformation of SCB under SSF was followed by the 13C cross polarization magic angle spinning (CPMAS) solid-state nuclear magnetic resonance (NMR). Results showed that P. sanguineus can selectively delignify SCB, decreasing aromatic C compounds by 32.67 % in 16 days; O-alkyl C region (polysaccharides) was degraded less than 2 %; delignification values were not correlated with laccase activities. Cellulose-crystallinity index was increased by 27.24 % in absence of CA and 15.94 % when 0.01 mM of CA was added to SCB; this dye also inhibits the production of fungal biomass in SSF (measured as alkyl C gain). We conclude that CA is a good inducer of laccase in liquid media, and that P. sanguineus is a fungus with high potential for biomass delignification.

  相似文献   

4.
Several secondary metabolites are present in Lantana camara L. as its leaves serve as reservoirs for various bioactive compounds. Callus cultures of L. camara were induced from leaf discs incubated on Murashige and Skoog medium supplemented with 5 μM 6-benzyladenine, 1 μM 2,4-dichlorophenoxyacetic acid, and 1 μM α-naphthalene acetic acid (NAA). An aqueous extract (0.23%), obtained from these calli (50 g dry mass), had an apparent cytotoxic effect on HeLa cells with an IC50 value of 1,500 μg/ml in 36 h. A dose-time dependent activity of the extract was established wherein higher dosage exhibited increased activity; however, over time cell necrosis was observed.  相似文献   

5.
A laboratory-scale study was conducted to evaluate the feasibility of using palm oil mill effluent (POME) as a major substrate and other nutrients for maximum production of citric acid using the potential fungal strain Aspergillus niger (A103). Statistical optimization of medium composition (substrate–POME, co-substrates–wheat flour and glucose, and nitrogen source–ammonium nitrate) and fermentation time was carried out by central composite design (CCD) to develop a polynomial regression model through the effects of linear, quadratic, and interaction of the factors. The statistical analysis of the results showed that, in the range studied, ammonium nitrate had no significant effect whereas substrate, co-substrates and fermentation time had significant effects on citric acid production. The optimized medium containing 2% (w/w) of substrate concentration (POME), 4% (w/w) of wheat flour concentration, 4% (w/w) of glucose concentration, 0% (w/v) of ammonium nitrate and 5 days fermentation time gave the maximum predicted citric acid of 5.37 g/l which was found to be 1.5 g/l in the experimental run. The determination of coefficient (R 2) from the analysis observed was 0.964, indicating a satisfactory adjustment of the model with the response. The analysis showed that the major substrate POME (P < 0.05), glucose (P < 0.01), nutrient (P < 0.05), and fermentation time (P < 0.01) was more significant for citric acid production. The bioconversion of POME for citric acid production using optimal conditions showed the higher removal of chemical oxygen demand (82%) with the production of citric acid (5.2 g/l) on the final day of fermentation process (7 days). The pH and biosolids accumulation were observed during the bioconversion process.  相似文献   

6.
A simple procedure has been described for simultaneous determination and improved yield of three pentacyclic triterpenoids—betulinic, oleanolic, and ursolic acids—from callus cultures of Lantana camara. Cell biomass was obtained from leaf disk explants cultured on Murashige and Skoog (Physiol Plant 15:473–497, 1962) medium supplemented with 5 μM 6-benzylaminopurine, 1 μM 2,4-dichlorophenoxyacetic acid, and 1 μM α-naphthaleneacetic acid. Optimum separation of the three compounds was achieved by reverse-phase high-pressure liquid chromatography on a C18 column with 80:20 (v/v) acetonitrile/water as mobile phase. With this route, a yield of 3.1% betulinic acid, 1.88% oleanolic acid, and 4.12% ursolic acid per gram dry weight was obtained from cultures. Leaves from the parent plant, used as control, showed total absence of betulinic acid, and the quantities of oleanolic and ursolic acids present in them were only marginally higher than that found in in vitro-raised cultures. Presence of the three compounds was further confirmed by electrospray ionization mass spectrometry.  相似文献   

7.
Proteins in delimed tannery fleshings were fermentatively hydrolysed using Enterococcus faecium NCIM5335 and also hydrolysed using mild organic acids (formic acid and propionic acid). The liquor portion containing hydrolysed proteins was spray dried, in both the cases, to obtain a powder. The spray dried powder was evaluated for in vitro antioxidant activities with respect to scavenging different free radicals and antibacterial properties against nine different pathogens. Fermentation and acid hydrolysates scavenged 83 and 75.3% of 2,2-azino-bis-3-ethyl-benzthiazoline-6-sulphonic acid (ABTS) radicals, respectively, at a protein concentration of 0.25 mg. Further, fermentation hydrolysate showed higher 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity of 59% as compared to 56% scavenging by acid hydrolysate at a protein concentration of 5 mg. Acid hydrolysate exhibited lesser (82.3%) peroxy radical scavenging compared to hydrolysate from fermentation (88.2%) at a protein concentration of 10 mg. However, acid hydrolysate exhibited higher (89.2%) superoxide anion scavenging while its fermentation counterpart showed lower activity (85.4%) at 2.5 mg hydrolysate protein. Well as superoxide anion scavenging properties. All the in vitro antioxidant properties exhibited dose dependency. Fermentation hydrolysate exhibited maximum antagonistic activity against Salmonella typhi FB231, from among host of pathogens evaluated. Both the hydrolysates have potential to be ingredients in animal feeds and can help reduce oxidative stress in the animals.  相似文献   

8.
Coir pith represents ∼50% of the waste from the coir industries and was tested for its potential in serving as a growth substrate for the production of species of oyster mushroom, Pleurotus florida. Due to its high lignin (∼48%) content and amorphous powdery nature, coir pith supported poor mushroom mycelial growth and yields were considerably low (∼25% bioconversion efficiency). Pre-treating coir pith with hot water did not prove economical to produce the mushroom yields. Acid swelling and alkali delignification of coir pith though served to change the structure of coir pith; the mushroom yields were not improved. Amendment of coir pith with rice (Oryza sativa) straw and horse gram (Dolichos biflorus) plant residue tended to greatly modify the physical characteristics of the inoculated mushroom bed. Such a supplementation of coir pith growth substrate resulted in production of mushroom yields with 110–125% bioconversion efficiency. Implications of supplementing coir pith with rice straw/horse gram plant residue in terms of holocellulose:lignin ratio are discussed. Sensorially, the mushrooms so produced did not differ from that on rice straw, the economic growth substrate recommended for production of the mushroom yields on commercial scale. Changes in cellulose, hemicellulose and lignin contents of coir pith amended with rice straw were studied. Cellulase, hemicellulase and protease enzyme activities in the amended coir pith substrate showed a continuous increase from inoculation till the end of fructification, whereas laccase activity decreased during fructification, in consonance with decreased lignin degradation during fructification.  相似文献   

9.
We have identified two types of invertases, one bound ionically and the other covalently to the particulate fraction in grains of heat tolerant C 306 and heat susceptible WH 542 cultivars of wheat (Triticum aestivum L.). The cell walls contained a high level of invertase activity, of which 79.2–72.8% was extractable by 2 M NaCl and 14.9–21.1% by 0.5% EDTA in C 306 and WH 542, respectively. The NaCl-released invertase constituted the predominant fraction. Using 5–100 mM sucrose and pH range of 4.0–7.0, the apparent Michaelis constant (K m, enzyme substrate affinity measure) of enzyme ranged from 5.73 to 16.06 mM for C 306 and from 6.08 to 19.86 mM for WH 542. The V max (maximum catalytic rate) values at these pH were higher in C 306 (0.63–11.04 μg sucrose hydrolysed min−1) than WH 542 (0.51–8.73 μg sucrose hydrolysed min−1). By employing photo-oxidation and by studying the effect of pH on K m and V max, the involvement of histidine and α-carboxyl groups at the active site of the enzyme was indicated. The two cultivars also showed differential response in terms of thermodynamic properties of the enzyme i.e. energy of activation (E a), enthalpy change (ΔH) and entropy change (ΔS). NaCl-released invertase showed differential response to metal ions in two cultivars suggesting their distinctive nature. Mn2+, Cu2+, Hg2+, Mg2+, Zn2+ and Cd2+ were strong inhibitors in WH 542 as compared to C 306 while K+, Ca2+ were stimulators in both the cultivars. Overall the results suggest that genetic differences exist in wall bound invertase properties of wheat grains as evident in its altered kinetic behaviour.  相似文献   

10.
Potato chip processing waste of trimmed potato, potato peel and substandard (low-quality) potato chips, obtained from a potato chip processing plant, were used as substrates for chitosan production from Rhizopus oryzae. It was cultured on each waste product at 30 ± 2°C and 70% moisture content for 21 days. Fermented potato peel had the highest yield after 5 days of fermentation. The cultivation condition of chitosan obtained from R. oryzae was optimum for a peel size of less than 6 mesh, 70% moisture content and a pH of 5. Furthermore, the best extraction condition was using 46% sodium hydroxide at 46°C for 13 h followed by 2% acetic acid at 95°C for 8 h. The maximum chitosan yield obtained by these conditions was 10.8 g/kg substrate. Fungal chitosan properties were found to be 86–90% degree of deacetylation, molecular weight of 80–128 kDa and viscosity of 3.1–6.1 mPa s. Therefore, potato peel could be applied as a low cost substrate for chitosan production from R. oryzae.  相似文献   

11.
An acid proteinase from Monascus purpureus No. 3403, MpuAP, was previously purified and some characterized in our laboratory (Agric Biol Chem 48:1637–1639, 1984). However, further information about this enzyme is lacking. In this study, we investigated MpuAP’s comprehensive substrate specificity, storage stability, and prospects for reducing antigenicity of whey proteins for application in the food industry. MpuAP hydrolyzed primarily five peptide bonds, Gln4–His5, His10–Leu11, Ala14–Leu15, Gly23–Phe24 and Phe24–Phe25 in the oxidized insulin B-chain. The lyophilized form of the enzyme was well preserved at 30–40°C for 7 days without stabilizers. To investigate the possibility of reducing the antigenicity of the milk whey protein, enzymatic hydrolysates of the whey protein were evaluated by inhibition ELISA. Out of the three main components of whey protein, casein and α-lactalbumin were efficiently degraded by MpuAP. The sequential reaction of MpuAP and trypsin against the whey protein successfully degraded casein, α-lactalbumin and β-lactoglobulin with the highest degree of hydrolysis. As a result, the hydrolysates obtained by using the MpuAP–trypsin combination showed the lowest antigenicity compared with the single application of pepsin, trypsin or pepsin–trypsin combination. Therefore, the overall result suggested that the storage-stable MpuAP and trypsin combination will be a productive approach for making hypoallergic bovine milk whey protein hydrolysates.  相似文献   

12.
Decomposition processes of Camellia japonica leaf litter were investigated over an 18-month period with reference to the role of fungal succession in the decomposition of lignin and holocellulose. Decomposition and fungal succession were studied in bleached and nonbleached portions of litter, which were precolonized by ligninolytic and cellulolytic fungi, respectively. Coccomyces nipponicum and Lophodermium sp. (Rhytismataceae), which can attack lignin selectively, caused mass loss of lignin and were responsible for bleaching during the first 4 months (stage I), whereas cellulolytic fungi caused mass loss of holocellulose in adjacent nonbleached portions. Soluble carbohydrates and polyphenols also decreased rapidly during this stage. Pestalotiopsis guepini, coelomycete sp.1, and the Nigrospora state of Khuskia oryzae caused mass loss of holocellulose between 4 and 14 months (stage II) and Xylaria sp. caused mass loss of both lignin and holocellulose from 14–18 months (stage III). In stages II and III, decomposition was more rapid in bleached portions than in nonbleached portions probably due to the prior delignification of lignified holocellulose in bleached portions. Frequencies of these fungi showed different responses among species to the pattern of changes in lignin and holocellulose contents during decomposition. Total hyphal length increased in both portions over the study period, but mycelia of basidiomycetes accounted for about 2% of total hyphal length, suggesting that their role in fungal succession and decomposition was low. Lignin and nitrogen contents were consistently lower and holocellulose content was higher in bleached portions than in nonbleached portions during decomposition. The succession of ligninolytic and cellulolytic fungi was a major driving factor that promoted decomposition and precolonization by ligninolytic fungi enhanced decomposition.  相似文献   

13.
Several fungal endophytes of the Egyptian marine sponge Latrunculia corticata were isolated, including strains Trichoderma sp. Merv6, Penicillium sp. Merv2 and Aspergillus sp. Merv70. These fungi exhibited high cellulase activity using different lignocellulosic substrates in solid state fermentations (SSF). By applying mutagenesis and intergeneric protoplast fusion, we have obtained a recombinant strain (Tahrir-25) that overproduced cellulases (exo-β-1,4-glucanase, endo-β-1,4-glucanase and β-1,4-glucosidase) that facilitated complete cellulolysis of agricultural residues. The process parameters for cellulase production by strain Tahrir-25 were optimized in SSF. The highest cellulase recovery from fermentation slurries was achieved with 0.2% Tween 80 as leaching agent. Enzyme production was optimized under the following conditions: initial moisture content of 60% (v/w), inoculum size of 106 spores ml−1, average substrate particle size of 1.0 mm, mixture of sugarcane bagasse and corncob (2:1) as the carbon source supplemented with carboxymethyl cellulose (CMC) and corn steep solids, fermentation time of 7 days, medium pH of 5.5 at 30°C. These optimized conditions yielded 450, 191, and 225 units/gram dry substrate (U gds−1) of carboxylmethyl cellulase, filter-paperase (FPase), and β-glucosidase, respectively. Subsequent fermentation by the yeast, Saccharomyces cerevisiae NRC2, using lignocellulose hydrolysates obtained from the optimized cellulase process produced the highest amount of ethanol (58 g l−1). This study has revealed the potential of exploiting marine fungi for cost-effective production of cellulases for second generation bioethanol processes.  相似文献   

14.
Antioxidants are molecules that may reverse, prevent or slow cellular damage caused by free radicals. Increasing dietary intake of antioxidants is thought to reduce oxidative stress that may contribute to the development of several diseases. Mushrooms are known to contain antioxidants such as selenium, ergothioneine and phenolics that may serve this role. Here we sought to enhance selenium and ergothioneine concentration in Pleurotus eryngii var. eryngii basidiomata by modifying the techniques used for their commercial cultivation. To enhance selenium content in mushrooms, substrates were supplemented with sodium selenite (Na2SeO3) to reach selenium concentrations of 5 and 10 μg/g. Basidiomata of one commercial isolate (WC888) accumulated selenium up to 4.6 and 9.3 μg/g (d.w.), respectively. Therefore, a serving size (85 g) of fresh P. eryngii mushrooms produced on substrates supplemented with 5 and 10 μg/g of Na2SeO3 would supply 70.4 and 116.3% of the daily value of selenium (DV = 70 μg), respectively. Since selenium-enriched mushrooms would supply more than 20% of the DV, they could be considered an excellent source of selenium. Ergothioneine concentration was enhanced in mushrooms produced on low-moisture (55%) substrate compared to the commonly used 60% (high-moisture) in commercial cultivation. Mushrooms produced on low-moisture substrate had ergothioneine concentrations of 3.0 mg/g, while mushrooms produced on high-moisture substrate contained 2.2 mg/g or less. Use of a casing overlay for mushroom production resulted in significant yield increases on low-moisture substrate but not on high-moisture substrate.  相似文献   

15.
The degradation and utilization of solid waste (SW) from anaerobic digestion of poultry litter by Agrocybe aegerita was evaluated through mushroom production, loss of organic matter (LOM), lignocellulolytic enzymes activity, lignocellulose degradation and mushroom nutrients content. Among the substrate combinations (SCs) tested, substrates composed of 10–20% SW, 70–80% wheat straw and 10% millet was found to produce the highest mushroom yield (770.5 and 642.9 g per 1.5 kg of substrate). LOM in all SCs tested varied between 8.8 and 48.2%. A. aegerita appears to degrade macromolecule components (0.6–21.8% lignin, 33.1–55.2% cellulose and 14–53.9% hemicellulose) during cultivation on the different SCs. Among the seven extracellular enzymes monitored, laccase, peroxidase and CMCase activities were higher before fruiting; while xylanase showed higher activities after fruiting. A source of carbohydrates (e.g., millet) in the substrate is needed in order to obtain yield and biological efficiency comparable to other commercially cultivated exotic mushrooms.  相似文献   

16.
 Recently, several species of basidiomycetes were shown to produce de novo high concentrations of chloroaromatic metabolites. Since these lignocellulose-degrading fungi play a major role in the ecosphere, the purpose of this study was to determine the ubiquity of organohalogen production among basidiomycetes. A total of 191 fungal strains were monitored for adsorbable organic halogen (AOX) production when grown on defined liquid media. Approximately 50% of the strains tested and 55% of the genera tested produced AOX. A low production of 0.1–0.5 mg AOX/l was observed among 25% of the strains, a moderate production of 0.5–5.0 mg AOX/l was observed among 16% of the strains and 9% of the strains produced high levels (5–67 mg AOX/l). The latter group was dominated by species belonging to the genera Hypholoma, Mycena and Bjerkandera, showing specific AOX productions in the range 1074–30893 mg AOX/kg dry weight of mycelial biomass. Many highly ecologically significant fungal species were identified among the moderate to high producers. These species were also able to produce AOX when cultivated on natural lignocellulosic substrates. Hypholoma fasciculare and Mycena metata respectively produced up to 132 mg and 193 mg AOX/kg dry weight of forest litter substrate in 6 weeks. Received: 5 October 1995/Received revision: 28 December 1995/Accepted: 12 February 1996  相似文献   

17.
A pilot plant for hydrothermal treatment of wheat straw was compared in reactor systems of two steps (first, 80°C; second, 190–205°C) and of three steps (first, 80°C; second, 170–180°C; third, 195°C). Fermentation (SSF) with Sacharomyces cerevisiae of the pretreated fibers and hydrolysate from the two-step system gave higher ethanol yield (64–75%) than that obtained from the three-step system (61–65%), due to higher enzymatic cellulose convertibility. At the optimal conditions (two steps, 195°C for 6 min), 69% of available C6-sugar could be fermented into ethanol with a high hemicellulose recovery (65%). The concentration of furfural obtained during the pretreatment process increased versus temperature from 50 mg/l at 190°C to 1,200 mg/l at 205°C as a result of xylose degradation. S. cerevisiae detoxified the hydrolysates by degradation of several toxic compounds such as 90–99% furfural and 80–100% phenolic aldehydes, which extended the lag phase to 5 h. Acetic acid concentration increased by 0.2–1 g/l during enzymatic hydrolysis and 0–3.4 g/l during fermentation due to hydrolysis of acetyl groups and minor xylose degradation. Formic acid concentration increased by 0.5–1.5 g/l probably due to degradation of furfural. Phenolic aldehydes were oxidized to the corresponding acids during fermentation reducing the inhibition level.  相似文献   

18.
The strategy of optimization using sequential factorial design was employed to enhance the tensio-active emulsifying agent produced by Candida lipolytica using soybean oil refinery residue as substrate. A full factorial design was used to evaluate the impact of three fermentation factors—amounts of refinery residue, glutamic acid and yeast extract. This allowed exclusion of the yeast extract. Full factorials designs were then sequentially used to optimize the levels of the residue and glutamic acid. The surface tension value was finally reduced to 25.29 mN/m. The maximum emulsifier activity using different substrates was within 40 h of cultivation. The surface tension of the cell-free broth containing the biosurfactant remained very stable during exposure to a wide range of pH (2–12), temperatures (0–120°C) and salinity (2–10% NaCl). The combination of an industrial waste and a cheap substrate therefore seems to be very promising for the low-cost production of potent biosurfactant.  相似文献   

19.
Chinese pine (Pinus tabulaeformis) trees were sampled in the Helan Mountain, northwest China. The stable carbon isotope (δ13C) values of whole wood, holocellulose and alpha-cellulose in tree rings over 30 years (1968–1997) were measured to study the δ13C response of different tree-ring components to past environmental change. There were obvious differences in the δ13C values of the three components. The Pearson correlation coefficient between the δ13C of alpha-cellulose and that of holocellulose was 0.547 (ρ < 0.01); between alpha-cellulose and whole wood, the coefficient was −0.126 (ρ > 0.10); between holocellulose and whole wood, the coefficient was −0.056. Correlation function analyses indicated that the δ13C content of tree-ring alpha-cellulose correlated strongly with the average temperature from June to August (r = 0.427, ρ < 0.05), more than that of holocellulose (0.324, ρ < 0.10) or total wood (−0.245, ρ > 0.10). Significant correlations were observed between δ13C of tree-ring alpha-cellulose and the precipitation from the current year’s February to July (r = −0.514, ρ < 0.01) that were much higher than that of holocellulose (−0.481, ρ < 0.05) or total wood (−0.249, ρ > 0.10). A significant correlation (−0.545, ρ < 0.01) was also found between the ring width and the δ13C residual chronologies. These results suggest that more past environmental information is retained in the δ13C of tree-ring alpha-cellulose. Thus, the δ13C of alpha-cellulose of tree rings is the most suitable among the studied parameters for reconstructing the past climatic conditions during the growing season. The δ13C values of other organic compounds in Pinus tabulaeformis xylem were affected by the external environment after carbon was fixed from the atmosphere.  相似文献   

20.
The present study investigated the allelopathic interference of leaf debris of Ageratum conyzoides (billy goat weed; Asteraceae)—a weed of cultivated land—against rice (Oryza sativa). Seedling length and dry weight of rice were significantly reduced (16–20%) in soil from A. conyzoides infested fields compared to the soil from an area devoid of the weed. It indicated the presence of certain phytotoxins in the A. conyzoides infested soil. To explore the possible contribution of the weed in releasing these phytotoxins, growth studies involving leaf debris extracts and amended soils (prepared by incorporating leaf debris—5, 10, 20 g kg−1 soil, w/w, or its extracts—0.5%, 1.0% and 2.0%, v/v) were conducted. The growth of rice was severely inhibited in A. conyzoides leaf debris- and debris extract-amended soils compared to unamended control soil. A significant amount of water-soluble phenolics, the potent phytotoxins, was found in the A. conyzoides infested soil, leaf debris, and debris-amended soils. These phenolics were identified as gallic acid, coumalic acid, protocatechuic acid, catechin and p-hydroxybenzoic acid. Among these, protocatechuic acid was in the maximum amount (35.72%) followed by coumalic acid (33.49%) and these two accounted for >69% of total phenolic compounds. Further, there was a significant increase in the available nutrient content in soil amended with A. conyzoides leaf debris thus ruling out the possibility of any resource depletion upon residue incorporation and their negative role in causing growth reduction. Based on the observations, the present study concludes that leaf debris of A. conyzoides deleteriously affects the early growth of rice by releasing water-soluble phenolic acids into the soil environment and not through soil nutrient depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号