首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reductive metabolism of strigolactones (SLs) in several plants was investigated. Analysis of aquaculture filtrates of cowpea and sorghum each fed with four stereoisomers of GR24, the most widely used synthetic SL, revealed stereospecific reduction of the double bond at C-3′ and C-4′ in the butenolide D-ring with preference for an unnatural 2′S configuration. The cowpea metabolite converted from 2′-epi-GR24 and the sorghum metabolite converted from ent-GR24 had the methyl group at C-4′ in the trans configuration with the substituent at C-2′, different from the cis configuration of the synthetic H2-GR24 reduced with Pd/C catalyst. The plants also reduced the double bond in the D-ring of 5-deoxystrigol isomers with a similar preference. The metabolites and synthetic H2-GR24 stereoisomers were much less active than were the GR24 stereoisomers in inducing seed germination of the root parasitic weeds Striga hermonthica, Orobanche crenata, and O. minor. These results provide additional evidence of the importance of the D-ring for bioactivity of SLs.  相似文献   

2.
The germination stimulants for root parasitic plants Striga and Orobanche produced by cotton (Gossypium hirsutum L.) were examined in detail. Seeds of cotton were germinated and grown on glass wool wetted with sterile distilled water in sterile filter units. The root exudate was collected daily and extracted with ethyl acetate. Each of these ethyl acetate extracts was analyzed directly by high-performance liquid chromatography linked with tandem mass spectrometry (LC/MS/MS). The results demonstrate that cotton roots exuded strigol and strigyl acetate, but no other known strigolactones such as orobanchol and alectrol. The production of strigol was detected even in the root exudate collected during the first 24 h of incubation and reached a maximum 5-7 days later. The average exudation of strigol and strigyl acetate during the incubation period was ca. 15 and 2 pg/plant/day, respectively, indicating that strigol mainly contributed to germination stimulation by the cotton root exudate.  相似文献   

3.
Nitrogen is one of the crucial elements that regulate plant growth and development. It is well-established that plants can acquire nitrogen from soil in the form of low-molecular-mass compounds, namely nitrate and ammonium, but also as amino acids. Nevertheless, nitrogen in the soil occurs mainly as proteins or proteins complexed with other organic compounds. Proteins are believed not to be available to plants. However, there is increasing evidence to suggest that plants can actively participate in proteolysis by exudation of proteases by roots and can obtain nitrogen from digested proteins. To gain insight into the process of organic nitrogen acquisition from proteins by leek roots (Allium porrum L. cv. Bartek), casein, bovine serum albumin and oxidized B-chain of insulin were used; their degradation products, after exposure to plant culture medium, were studied using liquid chromatography–mass spectrometry (LC–MS). Casein was degraded to a great extent, but the level of degradation of bovine serum albumin and the B-chain of insulin was lower. Proteases exuded by roots cleaved proteins, releasing low-molecular-mass peptides that can be taken up by roots. Various peptide fragments produced by digestion of the oxidized B-chain of insulin suggested that endopeptidase, but also exopeptidase activity was present. After identification, proteases were similar to cysteine protease from Arabidopsis thaliana. In conclusion, proteases exuded by roots may have great potential in the plant nitrogen nutrition.  相似文献   

4.
5.
Strigolactones are plant hormones that regulate the development of different plant parts. In the shoot,they regulate axillary bud outgrowth and in the root,root architecture and root-hair length and density. Strigolactones are also involved with communication in the rhizosphere,including enhancement of hyphal branching of arbuscular mycorrhizal fungi. Here we present the role and activity of strigolactones under conditions of phosphate deprivation.Under these conditions,their levels of biosynthesis and exudation increase,leading to changes in shoot and root development. At least for the latter,these changes are likely to be associated with alterations in auxin transport and sensitivity. On the other hand,strigolactones may positively affect plant–mycorrhiza interactions and thereby promote phosphate acquisition by the plant. Strigolactones may be a way for plants to fine-tune their growth pattern under phosphate deprivation.  相似文献   

6.
Summary Datura arborea and D. sanguinea hairy roots were produced by cocultivation of leaf fragments with Agrobacterium rhizogenes strain NCPP 1855. Adventitious buds emerged spontaneously, without exogenous growth regulators, from seven hairy root clones of D. arborea and from one hairy root clone of D. sanguinea. Regenerated plants were successfully acclimatized in the greenhouse. The integration of the bacterial TL-DNA into the genome of the putative transformed plants was confirmed by Southern blot analysis. Transgenic plants displayed increased ability to root in vivo. Morphological traits with relevant ornamental value like plant height, leaf number, size and shape, internode number, and internode length were also affected. Transformation by wild-type Ri TL-DNA provided the chance to study plant growth and differentiation and to select improved genotypes.  相似文献   

7.
Plant hormones play key roles in defence against pathogen attack. Recent work has begun to extend this role to encompass not just the traditional disease/stress hormones, such as ethylene, but also growth‐promoting hormones. Strigolactones (SLs) are the most recently defined group of plant hormones with important roles in plant–microbe interactions, as well as aspects of plant growth and development, although the knowledge of their role in plant–pathogen interactions is extremely limited. The oomycete Pythium irregulare is a poorly controlled pathogen of many crops. Previous work has indicated an important role for ethylene in defence against this oomycete. We examined the role of ethylene and SLs in response to this pathogen in pea (Pisum sativum L.) at the molecular and whole‐plant levels using a set of well‐characterized hormone mutants, including an ethylene‐insensitive ein2 mutant and SL‐deficient and insensitive mutants. We identified a key role for ethylene signalling in specific cell types that reduces pathogen invasion, extending the work carried out in other species. However, we found no evidence that SL biosynthesis or response influences the interaction of pea with P. irregulare or that synthetic SL influences the growth or hyphal branching of the oomycete in vitro. Future work should seek to extend our understanding of the role of SLs in other plant interactions, including with other fungal, bacterial and viral pathogens, nematodes and insect pests.  相似文献   

8.
缺磷条件下的小麦根系酸性磷酸酶活性研究   总被引:34,自引:2,他引:34  
1 引  言植物根可向根际分泌许多有机化合物 ,其中有许多物质都能促进植物对矿质养分的吸收 .作为必需大量营养元素的P ,在土壤中以无机磷酸盐阴离子的形式被吸收 ,而有机磷酸酯必须被水解成无机P后才能进入植物根 ,在这一过程中有一非常重要的步骤 ,就是由微生物、菌根外真菌和植物根分泌酸性磷酸酶 .土壤中的有机P一般占全P的 30 %~ 5 0 % ,有的可达95 % .因此 ,如何发挥植物自身利用土壤有机P的潜力已成为目前植物营养学研究的热点之一 .Goldstein等[3 ] 研究P胁迫条件下悬浮培养细胞时发现 ,抑制植物生长和诱导酸性…  相似文献   

9.
10.
Summary The action of L-amino-acid oxydase, D-amino-acid oxydase and L-glutamic decarboxylase on ninhydrin-positive compounds present in root-tip exudates and root-scraping extracts of pea seedlings, is described. Results of Fukuda et al. are confirmed as to the presence of D-alanine in -glutamyl-alanine.The possible inhibitory effects of -L-glutamyl-D-alanine and of Unknown Y (most probably 2-alanyl-isoxazolin-5-one) on bacterial growth are discussed. re]19760809  相似文献   

11.
In this work, synchrotron radiation total reflection X-ray fluorescence spectrometry (SRTXRF) was used to determine trace elements in eight hypoglycemiant plants (Trigonella foenum graecum, Panax ginseng, Pfaffia paniculata, Myrcia speciosa, Zea mays, Harpagophytum procumbens, Syzygium jambolona, and Bauhinia forficate). The elements P, K, Ca, Ti, Mn, Fe, Cu, Zn, Rb, and Sr were detected in all medicinal plants investigated, whereas Si, S, Sc, V, Cr, Co, Ni, Se, Nb, Mo, Sn, Sb, Ba, Hg, and Pb were detected only in some of the samples. The concentration of elements in hypoglycemiant plants varied from 0.15 μg/g of Co to 3.0×104 μg/g of K and the mean of experimental limit of detection for these elements were 0.14 and 3.6 μg/g, respectively.  相似文献   

12.
? Premise of the study: Research on the evolutionary role of exonic microsatellites currently lacks an understanding of the evolutionary pressures that promote or limit their expansion. Contrasting levels of variability and genetic structures at anonymous and transcribed microsatellite loci of varying lengths are likely to provide useful insights regarding the relative strength of selection acting on different classes of microsatellites. We have developed primers for long transcribed microsatellites in Helianthus annuus to make these comparisons. ? Methods and Results: Eight relatively long microsatellites from sequences in the expressed sequence tag database of H. annuus were characterized. A total of 63 individuals from three populations in Kansas were genotyped. The number of alleles per locus ranged from four to 11 with an average observed heterozygosity of 0.723. ? Conclusions: Our study has generated suitable tools for studying the population genetics of long transcribed microsatellites that are potentially influenced by selection.  相似文献   

13.
Roots that form from non-root tissues (adventitious roots) are crucial for cutting propagation in the forestry and horticulture industries. Strigolactone has been demonstrated to be an important regulator of these roots in both Arabidopsis and pea using strigolactone deficient mutants and exogenous hormone applications. Strigolactones are produced from a carotenoid precursor which can be blocked using the widely available but broad terpenoid biosynthesis blocker, fluridone. We demonstrate here that fluridone can be used to promote adventitious rooting in the model species Pisum sativum (pea). In addition, in the garden species Plumbago auriculata and Jasminium polyanthum fluridone was equally as successful at promoting roots as a commercial rooting compound containing NAA and IBA. Our findings demonstrate that inhibition of strigolactone signaling has the potential to be used to improve adventitious rooting in commercially relevant species.  相似文献   

14.
Karrikins and strigolactones are novel plant growth regulators that contain similar molecular features, but very little is known about how they elicit responses in plants. A tentative molecular mechanism has previously been proposed involving a Michael-type addition for both compounds. Through structure-activity studies with karrikins, we now propose an alternative mechanism for karrikin and strigolactone mode of action that involves hydrolysis of the butenolide ring.  相似文献   

15.
入侵植物繁殖性状的研究可为揭示植物入侵机制提供重要的科学依据。为研究土壤养分对入侵植物和本地植物繁殖性状的影响, 并进一步研究养分添加是否更能促进入侵植物的繁殖能力, 我们设置了低、高两个养分水平, 通过同质园实验比较了不同土壤养分对假臭草(Praxelis clematidea)、胜红蓟(Ageratum conyzoides)、三叶鬼针草(Bidens pilosa) 3种菊科一年生入侵种和夜香牛(Vernonia cinerea)、一点红(Emilia sonchifolia)、墨旱莲(Eclipta prostrata) 3种本地种繁殖性状的影响。研究结果显示, 养分添加提高了6种菊科植物的开花株高、株高、地上生物量、单粒种子重量、总花序数、每花序种子数、总种子数量、总种子重量, 并使开花时间提前、花期延长。养分添加对入侵种的开花株高和单粒种子重量的提高幅度要比本地种更显著。相对于部分本地植物(夜香牛、墨旱莲), 养分添加更能促进部分入侵植物(假臭草、胜红蓟)的繁殖能力。三叶鬼针草和一点红的总种子数量和总种子重量在两种土壤养分水平下均较小。本地种墨旱莲的总种子数量和总种子重量在低养分条件下高于3个入侵种。这些结果表明, 高土壤养分仅能促进部分入侵植物相对于部分本地植物的繁殖能力。  相似文献   

16.
Strigolactones (SLs) and their derivatives were recently defined as novel phytohormones that orchestrate shoot and root growth. Levels of SLs, which are produced mainly by plant roots, increase under low nitrogen and phosphate levels to regulate plant responses. Here, we summarize recent work on SL biology by describing their role in the regulation of root development and hormonal crosstalk during root deve-lopment. SLs promote the elongation of seminal/primary roots and adventitious roots (ARs) and they repress lateral root formation. In addition, auxin signaling acts downstream of SLs. AR formation is positively or negatively regulated by SLs depending largely on the plant species and experimental conditions. The relationship between SLs and auxin during AR formation appears to be complex. Most notably, this hormonal response is a key adaption that radically alters rice root architecture in response to nitrogen- and phosphate-deficient conditions.  相似文献   

17.
Origin of strigolactones in the green lineage   总被引:1,自引:0,他引:1  
? The aims of this study were to investigate the appearance of strigolactones in the green lineage and to determine the primitive function of these molecules. ? We measured the strigolactone content of several isolated liverworts, mosses, charophyte and chlorophyte green algae using a sensitive biological assay and LC-MS/MS analyses. In parallel, sequence comparison of strigolactone-related genes and phylogenetic analyses were performed using available genomic data and newly sequenced expressed sequence tags. The primitive function of strigolactones was determined by exogenous application of the synthetic strigolactone analog, GR24, and by mutant phenotyping. ? Liverworts, the most basal Embryophytes and Charales, one of the closest green algal relatives to Embryophytes, produce strigolactones, whereas several other species of green algae do not. We showed that GR24 stimulates rhizoid elongation of Charales, liverworts and mosses, and rescues the phenotype of the strigolactone-deficient Ppccd8 mutant of Physcomitrella patens. ? These findings demonstrate that the first function of strigolactones was not to promote arbuscular mycorrhizal symbiosis. Rather, they suggest that the strigolactones appeared earlier in the streptophyte lineage to control rhizoid elongation. They may have been conserved in basal Embryophytes for this role and then recruited for the stimulation of colonization by glomeromycotan fungi.  相似文献   

18.
Erigeron breviscapus is an important medicinal plant in Compositae and the first species to realize the whole process from the decoding of the draft genome sequence to scutellarin biosynthesis in yeast. However, the previous low‐quality genome assembly has hindered the optimization of candidate genes involved in scutellarin synthesis and the development of molecular‐assisted breeding based on the genome. Here, the E. breviscapus genome was updated using PacBio RSII sequencing data and Hi‐C data, and increased in size from 1.2 Gb to 1.43 Gb, with a scaffold N50 of 156.82 Mb and contig N50 of 140.95 kb, and a total of 43,514 protein‐coding genes were obtained and oriented onto nine pseudo‐chromosomes, thus becoming the third plant species assembled to chromosome level after sunflower and lettuce in Compositae. Fourteen genes with evidence for positive selection were identified and found to be related to leaf morphology, flowering and secondary metabolism. The number of genes in some gene families involved in flavonoid biosynthesis in E. breviscapus have been significantly expanded. In particular, additional candidate genes involved in scutellarin biosynthesis, such as flavonoid‐7‐O‐glucuronosyltransferase genes (F7GATs) were identified using updated genome. In addition, three candidate genes encoding indole‐3‐pyruvate monooxygenase YUCCA2 (YUC2), serine carboxypeptidase‐like 18 (SCPL18), and F‐box protein (FBP), respectively, were identified to be probably related to leaf development and flowering by resequencing 99 individuals. These results provided a substantial genetic basis for improving agronomic and quality traits of E. breviscapus, and provided a platform for improving other draft genome assemblies to chromosome‐level.  相似文献   

19.
DNA barcodes have proved to be efficient for plants species discrimination and identification using short and standardized genomic regions. The genus Sinosenecio(Asteraceae) is used for traditional medicinal purposes in China. Most species of the genus occur in restricted geographical regions and exhibit a wide range of morphological variations within species, making them difficult to differentiate in the field. Previously, taxonomic revisions have been made based on morphological and cytological evidence. In the present study, barcoding analysis was performed on 107 individuals representing 38 species in this genus to evaluate the performance of four candidate barcoding loci (matK, rbcL, trnH-psbA and internal transcribed spacer [ITS]) and detect geographical patterns. Three different methods based on genetic distance, sequence similarity, and the phylogenetic tree were used. Comparably high species discrimination power was detected in species-level taxonomic process by the ITS dataset alone or combined with other loci, which was suggested to be the most suitable barcode for Sinosenecio. Our results are congruent with previous taxonomic studies concerning the monophyly of the S. oldhamianus group. The present study provides an empirical paradigm for the identification of medicinal plant species and their geographical patterns, ascertaining the congruence between taxonomical studies and barcoding analysis inSinosenecio.  相似文献   

20.
Characterization of antifreeze activity in Antarctic plants   总被引:9,自引:0,他引:9  
Deschampsia antarctica and Colobanthus quitensis are the only vascular plants to have colonized the Maritime Antarctic, which is characterized by its permanently low temperature and frequent summer frosts. To understand how the plants survive freezing temperatures year-round, antifreeze activity was assayed in apoplastic extracts obtained from both non-acclimated and cold-acclimated Antarctic plants. By observing the shape of ice crystals grown in dilution series of the extracts, it was found that D. antarctica had antifreeze activity, but C. quitensis did not. D. antarctica exhibited antifreeze activity in the non-acclimated state and this activity increased after cold acclimation. The antifreeze activity in D. antarctica was labile to proteolysis and high temperature, active over a wide pH range, and associated with molecules greater than 10 kDa in molecular weight. These results show that D. antarctica produces antifreeze proteins that are secreted into the apoplast. When examined by SDS-PAGE, the apoplastic extracts from cold-acclimated D. antarctica exhibited 13 polypeptides. It is concluded that D. antarctica accumulates AFPs as part of its mechanism of freezing tolerance. Moreover, this is the first plant in which antifreeze activity has been observed to be constitutive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号