首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Common reed (Phragmites australis) and reed canarygrass (Phalaris arundinacea) are two most commonly used plant species in constructed wetlands for wastewater treatment in the Czech Republic. Growth characteristics of both plants (biomass, stem count, and length) have been measured in 13 horizontal sub-surface flow constructed wetlands since 1992. The results revealed that while Phalaris usually reaches its maximum biomass as early as during the second growing season, Phragmites usually reaches its maximum only after three to four growing seasons. The maximum biomass of both species varies widely among systems and the highest measured values (5070 g m−2 for Phragmites and 1900 g m−2 for Phalaris) are similar to those found in eutrophic natural stands. The shoot count of Phragmites decreases after the second growing season while length and weight of individual shoots increases over time due to self-thinning process. Number of Phalaris shoots is the highest during the second season and then the shoot count remains about the same. Also the shoot length remains steady over years of constructed wetland operation.  相似文献   

2.
辽河三角洲河口芦苇沼泽湿地植被固碳潜力   总被引:3,自引:1,他引:2       下载免费PDF全文
增加陆地生态系统碳汇是一种有效应对CO2浓度升高的措施。河口湿地是一类特殊的陆地生态系统,是生产力最高的生态系统之一。研究河口湿地的固碳潜力对准确评估河口湿地碳汇、发挥和提高湿地固碳功能具有重要意义。通过野外调查和数值模型,量化研究了辽河三角洲河口沼泽湿地的植被固碳潜力。根据区域的实际情况,将植被的固碳潜力分为湿地演替、人工灌溉苇田和气候变化的潜力。研究结果表明辽河三角洲河口沼泽湿地植被具有很高的固碳潜力,翅碱蓬(Suaeda pterantha)群落扩张每年可递增固碳潜力0.053—0.07Gg C,滩涂转变为芦苇(Phragmites australis)沼泽每年可递增固碳潜力0.07Gg C,芦苇、獐毛草甸(Aeluropus sinensis)演替为芦苇沼泽的固碳潜力为17.2 Gg C/a,通过灌溉管理措施,芦苇沼泽的固碳潜力为474.6—544.6 Gg C/a。根据未来气候变化情景和预测结果,到2030年、2050年、2100年,芦苇沼泽湿地的固碳潜力分别为576.9—655.1Gg C/a,603.3—684.1Gg C/a,680.9—769.4Gg C/a,其中由人工灌溉苇田的潜力最大。  相似文献   

3.
Primary plant succession was investigated on a well-vegetated glacier foreland on Ellesmere Island in high arctic Canada. A field survey was carried out on four glacier moraines differing in time after deglaciation to assess vegetation development and microsite modification in the chronosequence of succession. The results showed evidence of directional succession without species replacement, which is atypical in the high arctic, reflecting the exceptionally long time vegetation development. During this successional process, Salix arctica dominated throughout all moraines. The population structures of S. arctica on these moraines implied the population growth of this species with progressing succession. The population density of S. arctica reflected the abundance of vascular plants, suggesting that development of the plant community might be related to structural changes and the growth of constituting populations. Through such growths of the population and the whole community with progressing succession, the spatial heterogeneity of vegetation gradually declines. Moreover, this vegetation homogenization is accompanied by changes in the spatial heterogeneity of microsite environments, suggesting significant plant effects on the modification of microsite environments. Accordingly, it was concluded that the directional primary succession observed on this glacier foreland is characterized by the initial sporadic colonization of plants, subsequent population growths, and the community assembly of vascular plants, accompanied by microsite modification.  相似文献   

4.
Miller  Rebecca C.  Zedler  Joy B. 《Plant Ecology》2003,167(1):57-69
Monotypic stands of reed canary grass, Phalaris arundinacea, replace native wetland vegetation where stormwater runoff alters hydrologic conditions, nutrient inflows, and sedimentation rates. We asked if different hydrologic conditions could explain the dominance of Phalaris and/or loss of the native grass, Spartina pectinata, and we compared the growth of each species alone and together under four hydroperiods (varying inundation frequency and duration) each at two water depths (surface saturation and flooding to 15 cm). When grown alone, aboveground biomass was similar for the two species, but Phalaris produced twice the stem length of Spartina via its low tissue density. Per unit biomass, Phalaris distributed its leaves over a larger canopy volume. Flooding reduced belowground biomass and increased total shoot length and shoot:root biomass of each species. Phalaris produced the most biomass, shoots, and total shoot length when wetter and drier conditions alternated weekly, while Spartina grew best with prolonged (4-week) inundation. When grown with Spartina, Phalaris changed its morphology by increasing its total shoot length:biomass ratio by 50%. However, ratios of Spartina:Phalaris aboveground biomass, shoot number, and total shoot length in two-species pots were not significantly affected by water depth or hydroperiod. We conclude that two plant attributes facilitate Phalaris' dominance of wetlands: its high ratio of total shoot length:biomass and its adaptable morphology (characterized herein as increased total shoot length:biomass when grown with Spartina).  相似文献   

5.
This paper compares the available North Americanliterature and data concerning several ecologicalfactors affecting Phragmites australisin inlandfreshwater, tidal fresh, and tidal brackish marshsystems. We compare aboveground productivity, plantspecies diversity, and sediment biogeochemistry; andwe summarize Phragmiteseffects on faunalpopulations in these habitats. These data suggest thatPhragmitesaboveground biomass is higher thanthat of other plant species occurring in the samemarsh system. Available data do not indicate anysignificant difference in the aboveground Phragmitesbiomass between marsh types, nor doesthere appear to be an effect of salinity on height.However, Phragmitesstem density wassignificantly lower in inland non-tidal freshwatermarshes than in tidal marshes, whether fresh orbrackish. Studies of the effects of Phragmiteson plant species richness suggest that Phragmitesdominated sites have lower diversity.Furthermore, Phragmiteseradication infreshwater sites increased plant diversity in allcases. Phragmitesdominated communities appearto have different patterns of nitrogen cyclingcompared to adjacent plant communities. Abovegroundstanding stocks of nitrogen (N) were found to behigher in Phragmitessites compared to thosewithout Phragmites. Porewater ammonium(NH4 +) did not differ among plant covertypes in the freshwater tidal wetlands, but inbrackish marshes NH4 +was much higher inSpartinaspp. than in neighboring Phragmitesstands. Faunal uses of Phragmitesdominated sites in North America were found to vary bytaxa and in some cases equaled or exceeded use ofother robust emergent plant communities. In light ofthese findings, we make recommendations for futureresearch.  相似文献   

6.
Efforts to eradicate invasive plants in restorations can unintentionally create conditions that favor reinvasion over the establishment of desired species, especially when remnant invasive propagules persist. Reducing resources needed by the invader for seedling establishment, however, may be an effective strategy to prevent reinvasion. Propagules of Phalaris arundinacea persist after removal from sedge meadow wetlands and reestablish quickly in posteradication conditions, hindering community restoration. A study was conducted in two experimental wetlands with controlled hydrologic regimes to determine if reducing light by sowing short‐lived, nonpersistent native cover crops or immobilizing soil N by incorporating soil–sawdust amendments can prevent Phalaris reinvasion, allowing native communities to recover. A 10‐species perennial target community and Phalaris were sown with high‐diversity, low‐diversity, or no cover crops in soils with or without sawdust, and seedling emergence, establishment, and growth were measured. High‐diversity cover crops reduced light, decreasing Phalaris and target community seedling establishment by 89 and 57%, respectively. Short‐term nitrogen reduction in sawdust‐amended soils delayed Phalaris seedling emergence and decreased Phalaris seedling establishment by 59% but did not affect total target community seedling establishment. The target community reduced Phalaris seedling establishment as effectively as cover crops did. In plots where the target community was grown, amending soils with sawdust further reduced Phalaris seedling growth but not establishment. Results show that use of cover crops can reduce seedling establishment of desired species and is counterproductive to restoration goals. Further, establishing target species is more important and practical for limiting Phalaris reinvasion than is immobilizing nitrogen.  相似文献   

7.
  • The effects of biological soil crusts (BSC) on vascular plant growth can be positive, neutral or negative, and little information is available on the impacts of different BSC successional stages on vascular plant population dynamics.
  • We analysed seedling emergence, survival, plant growth and reproduction in response to different BSC successional stages (i.e. habitats: bare soil, cyanobacteria, lichen and moss crusts) in natural populations of Echinops gmelinii Turcz. in the Tengger Desert of northwest China. The winter annual E. gmelinii is a dominant pioneer herb after sand stabilisation.
  • During the early stages of BSC succession, the studied populations of E. gmelinii were characterised by high density, plant growth and fecundity. As the BSC succession proceeded beyond moss crusts, the fecundity decreased sharply, which limited seedling recruitment. Differences in seedling survival among the successional stages were not evident, indicating that BSC have little effect on survival in arid desert regions. Moreover, E. gmelinii biomass allocation exhibited low plasticity, and only reproductive allocation was sensitive to the various habitats. Our results further suggest that the negative effects of BSC succession on population dynamics are primarily driven by increasing topsoil water‐holding capacity and decreasing rain water infiltration into deeper soil.
  • We conclude that BSC succession drives population dynamics of E. gmelinii, primarily via its effect on soil moisture. The primary cause for E. gmelinii population decline during the moss‐dominated stage of BSC succession is decreased fecundity of individual plants, with declining seed mass possibly reducing the success of seedling establishment.
  相似文献   

8.
Exotic plant invaders that form monocultures and exclude native plants are often the most detrimental to native diversity and the hardest to eradicate. To generate a monoculture, the invader must garner more resources than resident natives and, once established, persist despite high densities of conspecific neighbors. Coincident with expansion and long-term persistence, successful invaders typically accumulate senesced material, but the role of this litter in mediating the invader’s ability to establish and maintain monospecific dominance has rarely been investigated. We used stands of the common reed, Phragmites australis, a prolific wetland invader in North America, to explore the impact of litter on interspecific competition with the native rush, Juncus gerardii, and intraspecific competition among live shoots. In 10 × 10 m areas positioned on Phragmites expansion fronts, we removed litter to isolate its effect from live Phragmites on light availability, aboveground biomass and community composition. Compared to adjacent, unmanipulated fronts, light availability nearly tripled and Juncus biomass increased >170% in litter removal areas after 4 months. Although the positive response of Juncus and native forbs was most pronounced on the leading edge of Phragmites stands, litter removal triggered a 271% increase in native plant biomass even in the interior of stands where Phragmites’ live stem density was highest. Litter treatment did not significantly affect Phragmites biomass, but more, shorter stems emerged in litter removals revealing Phragmites modifies stem phenotype in response to local litter and light conditions. These results suggest that litter plays a central role in Phragmites’ invasion process, from initial establishment to subsequent monospecific dominance. Thus, prescribed litter removal may be an effective strategy to enhance coexistence of native plant populations in wetlands where eradication of invasive monocultures is not an ecologically or economically feasible option.  相似文献   

9.
Abstract. Common reed (Phragmites australis Trin.) has spread in fen meadows on the Swiss Plateau during the last decades. An increased dominance of this tall grass may reduce the plant species richness and displace rare or endangered species because of the additional shade. To investigate whether this has actually happened and whether shading by Phragmites was likely to be responsible for the reduction, the plant species composition was surveyed in 241 plots (4 m2) with differing above-ground biomass of Phragmites (ABP). Species richness and the occurrence of characteristic fen species were negatively related to site productivity (total above-ground biomass), but correlations with ABP were generally weaker. The main change associated with increasing ABP within species-rich fens (alliances Molinion and Caricion davallianae) was an increase of species characteristic of the more species-poor alliance Filipendulion. Thus, Phragmites did apparently not play a disproportionate role in the reduction of species richness in the plant communities studied. Selective clipping experiments and light measurements also indicated that shading by Phragmites does not have a strong effect upon the performance of other species in the community, at least in the short term. The reason appeared to lie in the later seasonal growth of Phragmites compared with the other species. These results suggest that the direct impact of shading by Phragmites on the species richness of fen meadows is probably lower than has been assumed. However, possible long-term or indirect effects still need to be investigated.  相似文献   

10.
D. M. Pegtel 《Plant Ecology》1994,114(2):109-121
Arnica montana, one of the character species of the replacement plant communityViolion caninae on sandy acid humic podzol, is declining in the Netherlands since 1950. Locally, it is even extinct.This process of decline may be attributed to (i) autonomic succession; (ii) increased rate of acidification of the soil and/or (iii) change in competitive relations amongArnica and more productive plant species, such as the successive dominantDeschampsia flexuosa. This paper examines the last two hypothesized factors, supposedly being regulated by atmospheric input of N-input, by (a) describing the habitat characteristics of a seemingly still healthy individual-rich population ofArnica and (b) growingArnica andDeschampsia in mixed humic podzol soil (mainly A1 horizon) fertilized with variously-composed nutrient solutions in order to assess the nutrient supplying capacity of the podzol soil and species-specific nutritional demands related to their respective growth capabilities.The results suggest that an increased rate of soil acidification yielding extra supply of ionic Al and Mn is presumably of less importance. The implications of growth rate differences amongArnica andDeschampsia as related to their nutritional demands are likely far more important.Arnica grows more slowly thanDeschampsia in fertilized humus podzol. The latter species has a much more efficient use of nutrients. Furthermore, both species differ in K-nutrition if NH4 + is the dominant N-source, a situation normally occurring in acid podzolic soils.Deschampsia possesses the capability to adapt its metabolic nutrition (avoiding nutritional imbalances) to a wide range of nutrient supplies thereby maintaining a rather constant level of growth.Arnica, on the contrary, lacks this capability. These results are discussed in the framework of competitive relations among co-occurring plant species in the plant communityViolion caninae. It is concluded that maintenance ofArnica and likely other character species of that alliance — all characterized by a low growth rate — will only be achieved when the plant community is properly managed by trampling, mowing or light levels of grazing (low stocking rate). Of prime importance is to maintain a low and relatively open vegetation structure at a relatively low level of nutrient supply.  相似文献   

11.
To identify the causes of the rapid expansion of the semi-emergent Phalaris arundinacea L. community in a nutrient-loaded river, we investigated the factors that determine the distribution of the Phalaris and other aquatic macrophyte communities and the shoot growth of P. arundinacea. The Phalaris community was distributed through areas with high organic nitrogen (Org-N), total phosphorus (T-P), PO4-P and suspended solids (SS) concentrations and low dissolved oxygen (DO). P. arundinacea shoots grow better in deep mud and high SS and T-P, all of which were strongly correlated with slower stream currents. Accordingly, although the concentration of total nitrogen constantly increased from 1985 to 1998, the determining nutrient for the expansion of the Phalaris community and P. arundinacea shoot growth stimulation was phosphorus rather than nitrogen. The Phalaris community increased rapidly between 1991 and 1996, when brief but prominent loadings of phosphorus were observed. We concluded that the Phalaris community was restricted due to phosphorus deficiency under nitrogen excess until 1991 and subsequently rapidly expanded over the channel due to the temporary excess phosphorus present during this period. Thereafter, the rapid expansion of the Phalaris community was maintained by the clogging effect of the floating mats formed by shoots and their remains of P. arundinacea, which results in slower currents. A slower current resulted in low DO, the sedimentation of degraded plant remains (high Org-N), and the adsorption of phosphorus by suspended matter (high SS and T-P). The anaerobic conditions caused by low oxygen and the accumulation of decomposable organic matter ensure the continuous development of the Phalaris community through the release of soluble phosphorus from the sediment.  相似文献   

12.
Invasive plants that most threaten biodiversity are those that rapidly form a monospecific stand, like the clonal grass, Phalaris arundinacea. Understanding complex and potentially interacting factors that are common in urban and agricultural landscapes and underlie rapid invasions requires an experimental, factorial approach. We tested the effects of flooding and nutrient and sediment additions (3 × 3 × 3 = 27 treatments, plus a control with no additions) on invasion of Phalaris into mesocosms containing wet prairie vegetation. We discovered a three-step invasion and degradation process: (1) initially, resident native species declined with prolonged flooding and sediment additions, and (2) prolonged flooding, sedimentation, and nutrients accelerated Phalaris aboveground growth; biomass rose to 430 times that of the control within just two growing seasons. The dramatic expansion of Phalaris in the second year resulted in the formation of monospecific stands in over one-third of the treatments, as (3) native species continued their decline in year 2. Disturbances acted alone and in combination to make the resident wetland community more invasible and Phalaris more aggressive, leading to monospecific stands. Yet, Phalaris did not always “win”: under the least disturbed conditions, the resident plant canopy remained dense and vigorous and Phalaris remained small. When anthropogenic disturbances coincide with increases in the gross supply of resources, more tolerant, fast-growing, and morphologically plastic plants like Phalaris can invade very rapidly. The fluctuating resource hypothesis should thus be refined to consider the role of interacting disturbances in facilitating invasions.  相似文献   

13.
Shifts in canopy structure associated with nonnative plant invasions may interact with species-specific patterns of canopy resource allocation to reinforce the invasion process. We documented differences in canopy light availability and canopy resource allocation in adjacent monospecific and mixed stands of Phragmites australis and Typha spp. in a Great Lakes coastal wetland presently undergoing Phragmites invasion to better understand how light availability influences leaf nitrogen content (Nmass) and photosynthetic capacity (Amax) in these species. Due to their horizontally oriented leaves, light attenuates more rapidly in monospecific stands of Phragmites than in monospecific stands of Typha, where leaves are more vertically-oriented. Whereas Typha canopies followed our prediction that patterns of Nmass and Amax should closely parallel patterns of canopy light availability, Nmass and Amax were consistent throughout Phragmites’ canopies. Moreover, we observed overall greater Nmass and lower photosynthetic nitrogen use efficiency in leaves of Phragmites than in leaves of Typha. Improved understanding of the link between Nmass and Amax in these canopies should improve our understanding of carbon and nitrogen cycling consequences of Phragmites invasion in wetland ecosystems.  相似文献   

14.
Phragmites australis (common reed) has expanded in many wetland habitats. Its ability to exclude other plant species has led to both control and eradication programs. This study examined two control methods—herbicide application or a herbicide‐burning combination—for their efficacy and ability to restore plant biodiversity in non‐tidal wetlands. Two Phragmites‐dominated sites received the herbicide glyphosate. One of these sites was burned following herbicide application. Plant and soil macroinvertebrate abundance and diversity were evaluated pre‐treatment and every year for four years post‐treatment using belt transects. The growth of Phragmites propagules—seeds, rhizomes, and rooted shoots—was examined in the greenhouse and under bare, burned, or vegetated soil conditions. Both control programs greatly reduced Phragmites abundance and increased plant biodiversity. Plant re‐growth was quicker on the herbicide‐burn site, with presumably a more rapid return to wetland function. Re‐growth at both sites depended upon a pre‐existing, diverse soil seed bank. There were no directed changes in soil macroinvertebrate abundance or diversity and they appeared unaffected by changes in the plant community. Phragmites seeds survived only on bare soils, while buried rhizomes survived under all soil conditions. This suggests natural seeding of disturbed soils and inadvertent human planting of rhizomes as likely avenues for Phragmites colonization. Herbicide control, with or without burning, can reduce Phragmites abundance and increase plant biodiversity temporarily. These changes do not necessarily lead to a more diverse animal community. Moreover, unless Phragmites is eradicated and further human disturbance is prohibited, it will likely eventually re‐establish dominance.  相似文献   

15.
The acetylene reduction activity (ARA) of soil-plant cores and intact, soil-free plant-root systems was used to study the influence of soil moisture content, diurnal cycles of temperature and light, and inorganic N and P on the nitrogenase activity (AR) associated with Phalaris arundinacea L. and Phragmites australis (Cav.) Trin. from two eutrophic lakes (lochs), Balgavies and Forfar.A positive correlation (r = 0.81, n = 26) was established between AR and soil moisture content in individual soil-plant cores of Phalaris from Forfar Loch. Nitrogenase activity, soil moisture and NO2-N increased with decreasing distance from lake water in Balgavies Loch.Diurnal fluctuations in AR, probably attributable to a combined effect of soil temperature and illumination changes, were observed under field conditions for Phalaris and Phragmites. Under laboratory conditions, the shading and cutting of Phalaris shoots did not inhibit ARA, which suggested that new photosynthates did not necessarily supply substrate for activity in the short term.Partial and temporary inhibition of ARA was obtained in dissected soil-plant cores after a single application of NH4+-N and NO3-N (350 μg N g−1 fresh weight). At concentrations equivalent to 300 μg P g−1 fresh weight of Phalaris cores, PO43−-P also caused partial and temporary inhibition of ARA of soil-free plant-root systems, but stimulated activity in intact simulated in situ systems.  相似文献   

16.
This study is aimed at retention of K, Na, Mg, and Ca in two constructed wetlands (CWs) in the Czech Republic, and on the evaluation of particular standing stocks in both above- and belowground plant biomass. The study revealed that CWs with horizontal subsurface flow are not effective in retention of studied elements. Removal of K, Na, Mg, and Ca averaged only 10.6, 7.4, 6.1, and 1.4%, respectively. In general, concentrations of studied elements in various parts of Phragmites australis and Phalaris arundinacea were found within the range of concentrations reported from both natural and CWs. Aboveground standing stocks for K, Na and Mg were comparable with those reported from natural stands for both Phalaris and Phragmites, but Ca aboveground standing stocks found in our study were lower compared to those found in several natural Phragmites wetlands. Aboveground to belowground standing stock ratio was generally >1.0. However, this amount formed usually <1% of the annual inflow load of particular elements. The results of this study provide comprehensive information on retention and sequestration of K, Na, Mg, and Ca in vegetation during municipal wastewater treatment in CWs with subsurface horizontal flow.  相似文献   

17.
Selected nitrogen and phosphorus pools in two freshwater tidal marsh ecosystems on the lower Connecticut River were measured relative to Phragmites, Typha and mixed native wetland plant cover types. For both the Chapman Pond Preserve and Chester Creek Marsh, significant differences were found between plant cover types in porewater ammonium and phosphate for some months during the 1998 growing season; porewater nitrate was always below the detection limit. At Chapman Pond, no significant differences were detected between Phragmites and Typha for plant tissue N concentrations. The standing stock of nitrogen was higher in Phragmites stands, however, owing to its greater aboveground biomass. No significant difference was found between plant cover types for total soil N at Chapman Pond, but KCl extractable ammonium was higher in the mixed cover type than Phragmites or Typha. The results of this study suggest that Phragmites is affecting nutrient pools in freshwater tidal marshes, a result that should be considered in future management design.  相似文献   

18.
Physical conditions and biotic interactions are believed to be the determinants of plant zonation in saltmarshes. However, in rapidly developing estuarine marshes, succession is regarded as the primary process responsible for plant zonation and it is controlled mainly by environmental factors. Salinity and inundation are two important factors responsible for the distribution pattern of dominant plants in coastal saltmarshes. Here we conducted a common garden experiment as well as a field transplanting to examine the responses of four dominant saltmarsh plants (native Scirpus mariqueter, Scirpus triqueter and Phragmites australis, and exotic Spartina alterniflora) in the Yangtze River estuary to environmental gradients, which may help us understand their current and potential zonation. The results showed that Scirpus adapted to freshwater and less inundated habitats, Phragmites performed well in brackish or freshwater environments with less inundation, and Spartina tolerated the highest salinity and deepest inundation. In the harshest environments (the highest salinity and water level), only Spartina performed well. In the mild environments, however, there were only minor differences in the performances among the four species. The potential ranges of Phragmites and Spartina were predicted to be larger than their current ones, and their lower boundaries might be set by tidal scour rather than edaphic factors. With the saltmarsh succession, invasive Spartina in the Yangtze River estuary might ultimately replace Scirpus, and alter the zonal patterns of native saltmarsh plants, which will lead to severe ecosystem consequences. Thus, proper management measures (e.g., repeated mowing) need to be implemented to control this invasive exotic plant, and restore the vulnerable ecosystems invaded by Spartina in the Yangtze River estuary.  相似文献   

19.
We document the regeneration of native freshwater wetland plant assemblages following removal of the common reed, Phragmites australis (Cav.) Trin. ex Steudel from two sites at Chapman Pond, East Haddam, Connecticut, USA. We gathered field data on composition of the vegetation 1 year before and for each of the 3 years after the removal in fall 1995/spring 1996 of Phragmites by two slightly different methods (hand-removal and herbiciding in one area, mowing/mulching and herbiciding in another). An area where Phragmites was left intact was similarly monitored. Our goals for this monitoring were: (1) to document plant species composition and richness before and after Phragmites removal and (2) to examine temporal and spatial variability in patterns of plant recruitment. Phragmites declined in both density and extent in both plots where removal treatments were applied. Richness, evenness, and density of non-Phragmites species increased steadily from 1996 to 1997 in all removal and intact plots. However, the species composition of the removal plots was richer than that of the intact plot, and more closely resembled that of comparable, uninvaded freshwater tidal wetlands. Rates of recovery of species richness in the removal plots declined from 1997 to 1998, potentially reflecting saturation of available colonization space, or the return of Phragmites. Phragmites has expanded its range in both of the removal plots since 1997. A model of its colonization indicates that Phragmites occupies space through localized proliferation of dense rhizomes rather than diffusely foraging with long tillers. Vigilance in monitoring is needed to document the spread of invasives, to evaluate the multi-faceted ecological effects of eradication efforts on both the invader and the regenerating community, and develop strategies for preventing re-invasion.  相似文献   

20.
《Aquatic Botany》2007,87(1):49-60
Wetland emergent vegetation of Tablas de Daimiel National Park (Central Spain), mainly composed by Cladium mariscus, Phragmites australis and Typha domingensis, was studied to test if population responses to environmental factors were invariant to scaling-up conditions from the single plant to the entire wetland. While the significance of the main controlling, abiotic factors (wetland location, sedimentary and water nitrogen and phosphorus, water level, duration of flooding) was that of earlier studies, the importance of them changed along with the level of plant organization. Our study showed that multiple effects occurred in the responses of helophyte populations to abiotic factors, and that these responses appeared to depend upon the level of observation involved, showing positive (Typha biomass and sedimentary phosphorus), negative (Cladium biomass and sedimentary phosphorus, Cladium large patch growth and total phosphorus), delayed (landscape cover of Phragmites and Cladium and water level of the previous year), saturation (Cladium biomass and water level), threshold (small patch growth rate of Cladium and water level of the previous month) and non-linear (landscape cover of Phragmites and Cladium and total phosphorus in water) effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号