首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li ML  Rao P  Krug RM 《The EMBO journal》2001,20(8):2078-2086
The cap-dependent endonuclease of the influenza viral RNA polymerase, which produces the capped RNA primers that initiate viral mRNA synthesis, is comprised of two active sites, one for cap binding and one for endonuclease cleavage.We identify the amino acid sequences that constitute these two active sites and demonstrate that they are located on different polymerase subunits. Binding of the 5' terminal sequence of virion RNA (vRNA) to the polymerase activates a tryptophan-rich, cap-binding sequence on the PB2 subunit. At least one of the tryptophans functions in cap binding, indicating that this active site is probably similar to that of other known cap-binding proteins. Endonuclease cleavage, which is activated by the subsequent binding of the 3' terminal sequence of vRNA, resides in a PB1 sequence that contains three essential acidic amino acids, similar to the active sites of other enzymes that cut polynucleotides to produce 3'-OH ends. These results, coupled with those of our previous study, provide a molecular map of the five known essential active sites of the influenza viral polymerase.  相似文献   

2.
Rao P  Yuan W  Krug RM 《The EMBO journal》2003,22(5):1188-1198
In viral cap-snatching, the endonuclease intrinsic to the viral polymerase cleaves cellular capped RNAs to generate capped fragments that are primers for viral mRNA synthesis. Here we demonstrate that the influenza viral polymerase, which is assembled in human cells using recombinant proteins, effectively uses only CA-terminated capped fragments as primers for viral mRNA synthesis in vitro. Thus we provide the first in vitro system that mirrors the cap-snatching process occurring in vivo during virus infection. Further, we demonstrate that when a capped RNA substrate contains a CA cleavage site, the functions of virion RNA (vRNA) differ from those previously described: the 5' terminal sequence of vRNA alone is sufficient for endonuclease activation, and the 3' terminal sequence of vRNA functions solely as a template for mRNA synthesis. Consequently, we are able to identify the vRNA sequences that are required for each of these two separable functions. We present a new model for the influenza virus cap-snatching mechanism, which we postulate is a paradigm for the cap-snatching mechanisms of other segmented, negative-strand and ambisense RNA viruses.  相似文献   

3.
4.
5.
S González  J Ortín 《The EMBO journal》1999,18(13):3767-3775
The influenza virus RNA polymerase is a heterotrimer comprising the PB1, PB2 and PA subunits. PB1 is the core of the complex and accounts for the polymerase activity. We have studied the interaction of PB1 with model cRNA template by in vitro binding and Northwestern analyses. The binding to model cRNA was specific and showed an apparent Kd of approximately 7x10(-8) M. In contrast to the interaction with vRNA, PB1 was able to bind equally the 5' and 3' arm of the cRNA panhandle. The N-terminal 139 amino acids of PB1 and sequences between positions 267 and 493 proved positive for binding to cRNA, whereas the interaction with vRNA template previously was mapped to the N- and C-terminal regions. Competition experiments using the 5' and 3' arms of either the vRNA or cRNA panhandle indicated that the N-terminal binding site is shared by both templates. The data indicate that the PB1 RNA-binding sites are constituted by: (i) residues located at the N-terminus (probably common for vRNA and cRNA binding) and, either (ii) residues from the central part of PB1 (for cRNA) or (iii) residues from the C-terminal region of PB1 (for vRNA), and suggest that PB1 undergoes a conformational change upon binding to cRNA versus vRNA templates.  相似文献   

6.
7.
8.
The interaction of the PB1 subunit of the influenza virus polymerase with the viral RNA (vRNA) template has been studied in vitro. The experimental approach included the in vitro binding of labeled model vRNA to PB1 protein immobilized as an immunoprecipitate, as well as Northwestern analyses. The binding to model vRNA was specific, and an apparent Kd of about 2 × 10−8 M was determined. Although interaction with the isolated 3′ arm of the panhandle was detectable, interaction with the 5′ arm was prominent and the binding was optimal with a panhandle analog structure (5′+3′ probe). When presented with a panhandle analog mixed probe, PB1 was able to retain the 3′ arm as efficiently as the 5′ arm. The sequences of the PB1 protein involved in vRNA binding were identified by in vitro interaction tests with PB1 deletion mutants. Two separate regions of the PB1 protein sequence proved positive for binding: the N-terminal 83 amino acids and the C-proximal sequences located downstream of position 493. All mutants able to interact with model vRNA were capable of binding the 5′ arm more efficiently than the 3′ arm of the panhandle. Taken together, these results suggest that two separate regions of the PB1 protein constitute a vRNA binding site that interacts preferentially with the 5′ arm of the panhandle structure.  相似文献   

9.
10.
11.
12.
13.
14.
Liang Y  Hong Y  Parslow TG 《Journal of virology》2005,79(16):10348-10355
The influenza A virus genome consists of eight negative-sense RNA segments. The cis-acting signals that allow these viral RNA segments (vRNAs) to be packaged into influenza virus particles have not been fully elucidated, although the 5' and 3' untranslated regions (UTRs) of each vRNA are known to be required. Efficient packaging of the NA, HA, and NS segments also requires coding sequences immediately adjacent to the UTRs, but it is not yet known whether the same is true of other vRNAs. By assaying packaging of genetically tagged vRNA reporters during plasmid-directed influenza virus assembly in cells, we have now mapped cis-acting sequences that are sufficient for packaging of the PA, PB1, and PB2 segments. We find that each involves portions of the distal coding regions. Efficient packaging of the PA or PB1 vRNAs requires at least 40 bases of 5' and 66 bases of 3' coding sequences, whereas packaging of the PB2 segment requires at least 80 bases of 5' coding region but is independent of coding sequences at the 3' end. Interestingly, artificial reporter vRNAs carrying mismatched ends (i.e., whose 5' and 3' ends are derived from different vRNA segments) were poorly packaged, implying that the two ends of any given vRNA may collaborate in forming specific structures to be recognized by the viral packaging machinery.  相似文献   

15.
16.
17.
18.
19.
20.
Influenza virus polymerase complex is a heterotrimer consisting of polymerase basic protein 1 (PB1), polymerase basic protein 2 (PB2), and polymerase acidic protein (PA). Of these, only PB1, which has been implicated in RNA chain elongation, possesses the four conserved motifs (motifs I, II, III, and IV) and the four invariant amino acids (one in each motif) found among all viral RNA-dependent RNA or RNA-dependent DNA polymerases. We have modified an assay system developed by Huang et al. (T.-J. Huang, P. Palese, and M. Krystal, J. Virol. 64:5669-5673, 1990) to reconstitute the functional polymerase activity in vivo. Using this assay, we have examined the requirement of each of these motifs of PB1 in polymerase activity. We find that each of these invariant amino acids is critical for PB1 activity and that mutation in any one of these residues renders the protein nonfunctional. We also find that in motif III, which contains the SSDD sequence, the signature sequence of influenza virus RNA polymerase, SDD is essentially invariant and cannot accommodate sequences found in other RNA viral polymerases. However, conserved changes in the flanking sequences of SDD can be partially tolerated. These results provide the experimental evidence that influenza virus PB1 possesses a similar polymerase module as has been proposed for other RNA viruses and that the core SDD sequence of influenza virus PB1 represents a sequence variant of the GDN in negative-stranded nonsegmented RNA viruses, GDD in positive-stranded RNA virus and double-stranded RNA viruses, or MDD in retroviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号