首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Catalytic activity of catalase (CAT, EC 1.11.1.6), immobilized on carbon black NORIT and soot PM-100, with respect to decomposition of dibenzoyl peroxide (BPO) in non-aqueous media (acetonitrile and tetrachloromethane), was investigated with a quantitative UV-spectrophotometrical approach. Progress of the above reaction was controlled by selected kinetic parameters: the apparent Michaelis constant (Km(app)), the specific rate constant (k(sp)), the activation energy (Ea), the maximum reaction rate (Vmax), and the Arrhenius' pre-exponential factor (Z0). Conclusions on the tentative mechanism of the catalytic process observed were drawn from the calculated values of the Gibbs energy of activation (deltaG*), the enthalpy of activation (deltaH*), and entropy of activation (deltaS*).  相似文献   

2.
The thermal stability of a cysteine-free alkaline protease (Alp) secreted by the eukaryote Aspergillus oryzae was improved both by the introduction of engineered twin disulfide bridges (Cys-69/Cys-101 and Cys-169/Cys-200), newly constructed as part of this study, and by the addition of calcium ions. We performed an extensive kinetic analysis of the increased thermal stability of the mutants as well as the role of calcium dependence. The thermodynamic activation parameters for irreversible thermal inactivation, the activation free energy (deltaG), the activation enthalpy (deltaH), and the activation entropy (deltaS) were determined from absolute reaction rate theory. The values of deltaH and deltaS were significantly and concomitantly increased as a result of introducing the twin disulfide bridges, for which the increase in the value of deltaH outweighed that of deltaS, resulting in significant increases in the value of deltaG. The enhancement of the thermal stability obtained by introducing the twin disulfide bridges is an example of the so-called low-temperature stabilization of enzymes. The stabilizing effect of calcium ions on wild-type Alp is similar to the results we obtained by introducing the engineered twin disulfide bridges.  相似文献   

3.
The inactivation kinetics of glucoso-6-phosphate dehydrogenase (GPDH) and its complexes with glucoso-6-phosphate and NADP+ was characterized in aqueous solutions at 36-47 degrees C under treatment with low frequency (27 kHz, 60 W/cm2) and high frequency ultrasound (880 kHz, 1 W/cm2). To this end, we measured three effective first-order inactivation rate constants: thermal k(in)* , total (thermal and ultrasonic) kin, and ultrasonic kin (US). The values of the constants were found to be higher for the free enzyme than for its complexes GP-DH-GP and GPDH-NADP+ at all temperatures, which confirms the enzyme stabilization by its substrate and cofactor under both thermal and ultrasonic inactivation. Effective values of the activation energies (Ea) were determined and the preexponential factors of the rate constants and thermodynamic activation parameters of inactivation processes (deltaH*, deltaS*, and deltaG*) were calculated from the temperature dependences of the inactivation rate constants of GPDH and its complexes. The sonication of aqueous solutions of free GPDH and its complexes was accompanied by a reduction of Ea and deltaH* values in comparison with the corresponding values for thermal inactivation. The Ea, deltaH*, and deltaS* inactivation values for GPDH are lower than the corresponding values for its complexes. A linear dependence between the growth of the deltaH* and deltaS* values was observed for all the inactivation processes for free GPDH and its complexes.  相似文献   

4.
The thermodynamic and kinetic parameters for spontaneous and oxime reactivation of dimethyl- and diethylphosphoryl butyrylcholinesterases (acylcholine acyl-hydrolase, EC 3.1.1.8) are reported. The enthalpy and entropy changes in both the binding (deltaH0 and deltaS0) and the dephosphorylation steps (deltaH* and deltaS*) were found to be coupled, resulting in a minor variation in free energy changes (deltaG0 and deltaG*). While neither enthalpies nor entropies alone bore any relationship with the kinetic parameters KD and kR, the changes of free energies (deltaG0 and deltaG*) correlated linearly with the logarithmic values of the dissociation constants (KD) and bimolecular rate constants (kR/KD), respectively. Compensation plots of entropies versus enthalpies gave straight lines with compensation temperatures of 275 K for the binding 260 K for the dephosphorylation. Spontaneous reactivation of dimethyl phosphoryl butyrylcholinesterase was investigated at various pH values and three temperatures. It implicated two catalytic sites with values of pKi of 9.4 and 7.5, and heats of ionisation of 5.3 and 9.6 kcal - mol-1, respectively. Possible conformational alteration of the inhibited enzyme arising from the binding of oximes is discussed.  相似文献   

5.
To improve the previous DNA/DNA nearest-neighbor parameters, thermodynamic parameters (deltaH degrees, deltaS degrees and deltaG degrees) of 50 DNA/DNA duplexes were measured. Enthalpy change of a helix initiation factor is also considered though the parameters reported recently did not contain the factor. A helix initiation factor for DNA/DNA duplex determined here was the same as that of RNA/RNA duplex (deltaG degrees(37) = 3.4 kcal/mol). The improved nearest-neighbor parameters reproduced not only these 50 experimental values used here but also 15 other experimental values obtained in different studies. Comparing deltaG degrees(37) values of DNA/DNA nearest-neighbor parameters obtained here with those of RNA/RNA and RNA/DNA, RNA/RNA duplex was generally the most stable of the three kinds of duplexes with the same nearest-neighbor sequences. Which is more stable between DNA/DNA and RNA/DNA duplexes is sequence dependent.  相似文献   

6.
Formyltetrahydrofolate synthetase monomers are converted to catalytically active tetramers in the presence of monovalent cations. The stoichiometry of the reaction is 4M + 2C+ in equilibrium M4C2(2+). A positive deltaS compensates for an unfavorable positive deltaH so that the overall reaction is exergonic. Both deltaH and deltaS become more positive as the temperature is increased. Association of subunits of the enzyme prepared from Clostridium cylindrosporum is second order with respect to monomer concentration, consistent with a rate-determining dimerization step. Activation parameters for this step at 20 degrees are: deltaG, 12.6 kcal mol-1; deltaH, 12.5 kcal mol-1; deltaS, -05 e.u. The rate-limiting step for the cation-dependent association of Clostridium acidi-urici monomers is believed to be a conformational alteration since first order kinetics is observed. The Eyring plot of the kinetic data obtained for the C. acidi-urici system has a sharp break at 15 degrees. Activation parameters for cation-induced association at 20 degrees are: deltaG, 21.5 kcal mol-1; deltaH, 14.0 kcal mol-1; deltaS, -26.6 e.u.  相似文献   

7.
Catalytic activities of catalase (CAT) immobilized on graphite--GMZ, soot--"NORIT" and "PM-100" to mediate decomposition of 3-Cl-C6H4COOOH (3-CPBA) in acetonitrile have been investigated. Under these conditions, the kinetic parameters Km, k, Ea, Vmax, and Z0 were calculated. Conclusions on a probable mechanism of the catalytic process observed were drawn from the calculated values of deltaG*, deltaH*, and deltaS*. A quantitative UV-spectrophotometrical approach was used as the basic analytical tool. The electrochemical reduction of oxygen generated in enzyme catalysed 3-CPBA decomposition was examined with polarization curves method.  相似文献   

8.
It is known that most living systems can live and operate optimally only at a sharply defined temperature, or over a limited temperature range, at best, which implies that many basic biochemical interactions exhibit a well-defined Gibbs free energy minimum as a function of temperature. The Gibbs free energy change, deltaG(o) (T), for biological systems shows a complicated behavior, in which deltaG(o)(T) changes from positive to negative, then reaches a negative value of maximum magnitude (favorable), and finally becomes positive as temperature increases. The critical factor in this complicated thermodynamic behavior is a temperature-dependent heat capacity change (deltaCp(o)(T) of reaction, which is positive at low temperature, but switches to a negative value at a temperature well below the ambient range. Thus, the thermodynamic molecular switch determines the behavior patterns of the Gibbs free energy change, and hence a change in the equilibrium constant, Keq, and/or spontaneity. The subsequent, mathematically predictable changes in deltaH(o)(T), deltaS(o)(T), deltaW(o)(T), and deltaG(o)(T) give rise to the classically observed behavior patterns in biological reactivity, as demonstrated in three interacting protein systems: the acid dimerization reaction of alpha-chymotrypsin at low pH, interaction of chromogranin A with the intraluminal loop peptide of the inositol 1,4,5-triphosphate receptor at pH 5.5, and the binding of L-arabinose and D-galactose to the L-arabinose binding protein of Escherichia coli. In cases of protein unfolding of four mutants of phage T4 lysozyme, no thermodynamic molecular switch is observed.  相似文献   

9.
Beta-amyloid peptide (A beta), in fibrillar form, is the primary constituent of senile plaques, a defining feature of Alzheimer's disease (AD). In solution assays, fibrils form with a lag time, interpreted as a nucleation/condensation-dependent process. The kinetics of fibrillogenesis is controlled by two key parameters: nucleation and elongation rate constants. We report here the study of the temperature dependence of the nucleation rate constant on an A beta monomer concentration of 18.4 microM at pH 7.4 and at temperatures ranging from 302 to 318 K. We found that the nucleation constant varied as in the Arrhenius law, giving an activation energy of 311.2 kJ mol(-1). The corresponding values of enthalpy of activation (deltaH*), entropy of activation (deltaS*) and Gibbs energy of activation (deltaG*) were evaluated by Eyring's equation of absolute reaction rate. A Gibbs energy of activation of approximately 110 kJ mol(-1) was obtained.  相似文献   

10.
We investigated the interaction between colchicine and human serum albumin (HSA) by fluorescence and UV-vis absorption spectroscopy. In the mechanism discussion, it was proved that the fluorescence quenching of HSA by colchicine is a result of the formation of colchicines-HSA complex; van der Waals interactions and hydrogen bonds play a major role in stabilizing the complex. The modified Stern-Volmer quenching constant K(a) and corresponding thermodynamic parameters deltaH, deltaG, deltaS at different temperatures were calculated. The distance r between donor (Trp214) and acceptor (colchicine) was obtained according to fluorescence resonance energy transfer (FRET).  相似文献   

11.
We have examined the kinetics and thermodynamics of the exchange of a fluorescent amphiphile derived from a phospholipid, NBD-DMPE, between serum albumin and the serum lipoproteins of high density (HDL2 and HDL3), LDL, and VLDL. Binding of the fluorescent lipid amphiphile to bovine serum albumin is characterized, at 35 degrees C, by an equilibrium binding constant of approximately 3 x 10(6) M(-1) and a characteristic time < or = 0.1 s. Association of NBD-DMPE with the lipoprotein particles, if considered as a partitioning of amphiphile monomers between the aqueous phase and the lipoprotein particles, is characterized by an equilibrium partition coefficient between 10(5) and 10(6), being highest for LDL and lowest for HDL. The association of NBD-DMPE monomers with lipoprotein particles can be described by insertion rate constants on the order of 10(5) M(-1) s(-1) for VLDL and LDL and 10(4) M(-1) s(-1) for HDL. The desorption rate constants are on the order of 10(-5) s(-1) for all particles. The study was performed as a function of temperature between 15 and 35 degrees C. This permitted the calculation of the equilibrium thermodynamic parameters (deltaG(o), deltaH(o), and deltaS(o)) as well as the activation parameters (deltaG++(o), deltaH++(o), and deltaS++(o)) for the insertion and desorption processes. The association equilibrium is dominated by the entropic contribution to the free energy in all cases. The results are discussed in relation to phospholipid and amphiphile exchange phenomena involving the lipoproteins.  相似文献   

12.
Interaction of an organic selenium compound with human serum albumin   总被引:3,自引:0,他引:3  
The interaction between 4,4'-diselenadibenzoic acid and human serum albumin (HSA) was investigated by fluorescence and absorption spectroscopy. The quenching mechanism of fluorescence of HSA by 4,4'-diselenadibenzoic acid was discussed. It is proved that the fluorescence quenching of HSA by 4,4'-diselenadibenzoic acid is a result of the formation of the HSA-4,4'-diselenadibenzoic acid complex. The binding sites number n, apparent corporation constant K, and corresponding thermodynamic parameters, deltaH(theta), deltaG(theta), and deltaS(theta) were calculated. Results indicate that the electrostatic interactions forces played major role in the reaction.  相似文献   

13.
14.
A calorimetric procedure for determining deltaH, deltaG, deltaS and Keq of a bimolecular reaction with two or more products is described. By using this method the thermodynamic parameters of the phosphofructokinase reaction are determined. At pH 7.0 and 25 degrees C a reaction enthalpy of-6.96kcal/mole was found after correction for the neutralization enthalpy of the buffer and of the enthalpy difference of the magnesium complexes of ATP and ADP, respectively. The free energy of the phosphofructokinase reaction has been found under these conditions to be -3.96kcal/mole.  相似文献   

15.
The contribution of the Ser45 hydrogen bond to biotin binding activation and equilibrium thermodynamics was investigated by biophysical and X-ray crystallographic studies. The S45A mutant exhibits a 1,700-fold greater dissociation rate and 907-fold lower equilibrium affinity for biotin relative to wild-type streptavidin at 37 degrees C, indicating a crucial role in binding energetics. The crystal structure of the biotin-bound mutant reveals only small changes from the wild-type bound structure, and the remaining hydrogen bonds to biotin retain approximately the same lengths. No additional water molecules are observed to replace the missing hydroxyl, in contrast to the previously studied D128A mutant. The equilibrium deltaG degrees, deltaH degrees, deltaS degrees, deltaC degrees(p), and activation deltaG++ of S45A at 37 degrees C are 13.7+/-0.1 kcal/mol, -21.1+/-0.5 kcal/mol, -23.7+/-1.8 cal/mol K, -223+/-12 cal/mol K, and 20.0+/-2.5 kcal/mol, respectively. Eyring analysis of the large temperature dependence of the S45A off-rate resolves the deltaH++ and deltaS++ of dissociation, 25.8+/-1.2 kcal/mol and 18.7+/-4.3 cal/mol K. The large increases of deltaH++ and deltaS++ in the mutant, relative to wild-type, indicate that Ser45 could form a hydrogen bond with biotin in the wild-type dissociation transition state, enthalpically stabilizing it, and constraining the transition state entropically. The postulated existence of a Ser45-mediated hydrogen bond in the wild-type streptavidin transition state is consistent with potential of mean force simulations of the dissociation pathway and with molecular dynamics simulations of biotin pullout, where Ser45 is seen to form a hydrogen bond with the ureido oxygen as biotin slips past this residue after breaking the native hydrogen bonds.  相似文献   

16.
Thirty-four RNA duplexes containing single nucleotide bulges were optically melted, and the thermodynamic parameters deltaH degrees, deltaS degrees, deltaG degrees (37), and T(M) for each sequence were determined. Data from this study were combined with data from previous thermodynamic data [Longfellow, C. E., Kierzek, R., and Turner, D. H. (1990) Biochemistry 29, 278-85] to develop a model that will more accurately predict the free energy of an RNA duplex containing a single nucleotide bulge. Differences between purine and pyrimidine bulges as well as differences between Group I duplexes, those in which the bulge is not identical to either neighboring nucleotide, and Group II duplexes, those in which the bulge is identical to at least one neighboring nucleotide, were considered. The length of the duplex, non-nearest-neighbor effects, and bulge location were also examined. A model was developed which divides sequences into two groups: those with pyrimidine bulges and those with purine bulges. The proposed model for pyrimidine bulges predicts deltaG degrees (37,bulge) = 3.9 kcal/mol + 0.10deltaG degrees (37,nn) + beta, while the model for purine bulges predicts deltaG degrees (37,bulge) = 3.3 kcal/mol - 0.30deltaG degrees (37,nn) + beta, where beta has a value of 0.0 and -0.8 kcal/mol for Group I and Group II sequences, respectively, and deltaG degrees (37,nn) is the nearest-neighbor free energy of the base pairs surrounding the bulge. The conformation of bulge loops present in rRNA was examined. Three distinct families of structures were identified. The bulge loop was either extrahelical, intercalated, or in a "side-step" conformation.  相似文献   

17.
The interaction between Arsenazo-TB and human serum albumin (HSA) was studied by Rayleigh light scattering (RLS) technique and Fourier transformed IR (FT-IR). The binding parameters of Arsenazo-TB with HSA were studied at different temperature of 288, 298, 308, 318 K under the optimum conditions. It is indicated by the Scatchard plots that the binding constant K decreased from 5.03 x 10(7) to 7.13 x 10(6) and the maximum binding number N reduced from 53 to 36 with the increasing of the temperature. The binding process was exothermic, enthalpy driven and spontaneous, as indicated by the thermodynamic analyses, and the major part of the binding energy is hydrophobic interaction. The free energy change deltaG0, the enthalpy change deltaH0 and the entropy change deltaS0 of 288 K were calculated to be -42.46 kJ/mol, -49.17 kJ/mol and 318.15 J/mol K, respectively. The alterations of protein secondary structure in the presence of Arsenazo-TB in aqueous solution were quantitatively calculated from FT-IR spectroscopy with reductions of alpha-helix from 57% to 40% and with increases of beta-sheet from 36% to 39%, beta-turn from 7% to 21%.  相似文献   

18.
Razvi A  Scholtz JM 《Biochemistry》2006,45(13):4084-4092
A thermodynamic stability study of five histidine-containing phosphocarrier protein (HPr) homologues derived from organisms inhabiting diverse environments is described. These HPr homologues are from Bacillus subtilis (Bs), Streptococcus thermophilus (St), Bacillus staerothermophilus (Bst), Bacillus halodurans (Bh), and Oceanobacillus iheyensis (Oi). Analyses of solvent and thermal denaturation experiments provide the cardinal thermodynamic parameters, like deltaG, deltaH, deltaS, T(m), and deltaC(p), that characterize the conformational stability for each homologue. The homologue from Bacillus staerothermophilus (BstHPr) was established as the most thermostable homologue and also the homologue with highest deltaG at all temperatures. A good correlation between habitat temperature of the organism and thermal stability of the protein is also seen. Stability curves (deltaG vs T) for every homologue are also reported; these reveal very similar deltaC(p) and temperature of maximum stability (T(S)) values for all HPr homologues. Stability curves show that the higher thermal stability of some homologues is not a result of change in curvature of the curve or a shift to higher temperature, but rather a displacement of the stability curves to higher deltaG values. Stability curves also allowed estimation of deltaG at habitat temperature of the organisms, and we find good agreement between homologues. Electrostatic contributions to stability of each homologue were investigated by measuring stability as a function of varying pH and NaCl concentration, and our results suggest that most HPr homologues share similar electrostatic contributions to stability.  相似文献   

19.
The oxidation of beta-D-glucose by the enzyme glucose oxidase was studied in aqueous medium, in solutions of surfactants AOT (2-ethylhexylsulfosuccinate, sodium salt) TX-100 (polyethylene glycol p-tert octyl phenyl ether) and in w/o microemulsion medium (water/AOT/decane) at different water/AOT mole ratio (omega), pH, temperature and in presence of additives. The time-dependent activities of the enzyme in aqueous and microemulsion media were determined. The catalytic process was retarded in the presence of TX-100 and AOT. In microemulsion medium, kcat values exhibited a deformed W-shaped profile with omega. At pH 7, a maximum value of kcat was observed at omega = 10.6. The kcat values were found to be higher in microemulsion medium than in aqueous medium at both pH's 7 and 8. Activation parameters for the kinetic process were evaluated together with the thermodynamics of the enzyme-substrate Michaelis complex. The deltaG* was lower, whereas deltaH* and deltaS* were higher in microemulsion than in water. The Michaelis constant, KM was also lower in microemulsion. The inhibition effects of the additives, NaNO3 and NaC were studied in both aqueous and microemulsion media by examining their influences on catalytic constant, kcat and Michaelis constant KM. In microemulsion, both the additives NaNO3 and NaC produced non-competitive inhibition.  相似文献   

20.
Kinetics of demethylation of a number of amines involving hepatic microsomal cytochrome P-450 and organic hydroperoxides (tret-butyl- and cumylhydroperoxide) have been investigated. Decomposition rate constants for the substrate-cytochrome P-450-ROOH complexes have been determined in a generalized form. Activation parameters, deltaH* and deltaS*, are calculated for decomposition of the complexes. There is a linear relation between deltaH* and deltaS*: deltaH*=18.7 kcal + 333 degrees K deltaS*. Compensation relationship is characterized by the value of alpha=333 degrees K/Taverage=1.11. The nature of the limiting step in the cytochrome P-450-NADPH-O2-system and the cytochrome P-450-ROOH-system is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号