首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have subcloned a portion of the Escherichia coli mtlA gene encoding the hydrophilic, C-terminal domain of the mannitol-specific enzyme II (mannitol permease; molecular mass, 68 kilodaltons [kDa]) of the phosphoenolpyruvate-dependent carbohydrate phosphotransferase system. This mtlA fragment, encoding residues 379 to 637 (residue 637 = C terminus), was cloned in frame into the expression vector pCQV2 immediately downstream from the lambda pr promoter of the vector, which also encodes a temperature-sensitive lambda repressor. E. coli cells carrying a chromosomal deletion in mtlA (strain LGS322) and harboring this recombinant plasmid, pDW1, expressed a 28-kDa protein cross-reacting with antipermease antibody when grown at 42 degrees C but not when grown at 32 degrees C. This protein was relatively stable and could be phosphorylated in vitro by the general phospho-carrier protein of the phosphotransferase system, phospho-HPr. Thus, this fragment of the permease, when expressed in the absence of the hydrophobic, membrane-bound N-terminal domain, can apparently fold into a conformation resembling that of the C-terminal domain of the intact permease. When transformed into LGS322 cells harboring plasmid pGJ9-delta 137, which encodes a C-terminally truncated and inactive permease (residues 1 to ca. 480; molecular mass, 51 kDa), pDW1 conferred a mannitol-positive phenotype to this strain when grown at 42 degrees C but not when grown at 32 degrees C. This strain also exhibited phosphoenolpyruvate-dependent mannitol phosphorylation activity only when grown at the higher temperature. In contrast, pDW1 could not complement a plasmid encoding the complementary N-terminal part of the permease (residues 1 to 377). The pathway of phosphorylation of mannitol by the combined protein products of pGJ9-delta 137 and pDPW1 was also investigated by using N-ethylmaleimide to inactivate the second phosphorylation sites of these permease fragments (proposed to be Cys-384). These results are discussed with respect to the domain structure of the permease and its mechanism of transport and phosphorylation.  相似文献   

2.
Three positive selection procedures were developed for the isolation of plasmid-encoded mutants which were defective in the mannitol enzyme II (IIMtl) of the phosphotransferase system (mtlA mutants). The mutants were characterized with respect to the following properties: (i) fermentation, (ii) transport, (iii) phosphoenolpyruvate(PEP)-dependent phosphorylation, and (iv) mannitol-1-phosphate-dependent transphosphorylation of mannitol. Cell lysis in response to indole acrylic acid, which causes the lethal overexpression of the plasmid-encoded mtlA gene, was also scored. No correlation was noted between residual IIMtl activity in the mutants and sensitivity to the toxic effect of indole acrylic acid. Plasmid-encoded mutants were isolated with (i) total or partial loss of all activities assayed, (ii) nearly normal rates of transphosphorylation but reduced rates of PEP-dependent phosphorylation, (iii) nearly normal rates of PEP-dependent phosphorylation but reduced rates of transphosphorylation, and (iv) total loss of transport activity but substantial retention of both phosphorylation activities in vitro. A mutant of this fourth class was extensively characterized. The mutant IIMtl was shown to be more thermolabile than the wild-type enzyme, it exhibited altered kinetic behavior, and it was shown to arise by a single nucleotide substitution (G-895----A) in the mtlA gene, causing a single amino acyl substitution (Gly-253----Glu) in the permease. The results show that a single amino acyl substitution can abolish transport function without abolishing phosphorylation activity. This work serves to identify a site which is crucial to the transport function of the enzyme.  相似文献   

3.
D-Mannitol is transported and phosphorylated by a specific enzyme II of the phosphotransferase system of Escherichia coli. This protein was purified previously in detergent solution and has been partially characterized. As one approach in understanding the structure and mechanism of this enzyme/permease, we have tested a number of sugar alcohols and their derivatives as substrates and/or inhibitors of this protein. Our results show that the mannitol permease is highly, but not absolutely, specific for D-mannitol. Compounds accepted by the enzyme include those with substitutions in the C-2(= C-5) position of the carbon backbone of the natural substrate as well as D-mannonic acid, one heptitol and one pentitol. All of these compounds were both inhibitors and substrates for the mannitol permease except for D-mannoheptitol, which was an inhibitor but was not phosphorylated by the enzyme. No compound examined, however, exhibited an affinity for the enzyme as high as that for its natural substrate. We have also investigated the phospholipid requirements of the mannitol permease using phospholipids purified from E coli. The purified protein was significantly activated by phosphatidylethanolamine, but little activation was observed with phosphatidylglycerol or cardiolipin. These observations partially delineate requirements for interaction of sugar alcohols and phospholipids with the mannitol permease. They suggest approaches for the design of specific active site probes for the protein, and strategies for stabilizing the enzyme's activity in vitro.  相似文献   

4.
M M Stephan  G R Jacobson 《Biochemistry》1986,25(25):8230-8234
Two proteolytic fragments of the Escherichia coli mannitol permease (EIImtl) have been identified on autoradiograms of sodium dodecyl sulfate-polyacrylamide gels and mapped with respect to the membrane. EIImtl was selectively radiolabeled with either [35S]methionine or a mixture of 14C-labeled amino acids in E. coli minicells harboring a plasmid containing the mannitol operon. The intact permease (Mr 65,000) in everted vesicles derived from labeled minicells was cleaved by mild trypsinolysis into two smaller fragments (Mr 34,000 and 29,000). The 34,000-dalton fragment remained in the membrane and was insensitive to further proteolysis by trypsin. This fragment was identified as the N-terminal half of the protein by comparing the amount of the original [35S]methionine label that it retained with the known differential distribution of methionine in the two halves of EIImtl. The 29,000-dalton fragment, which was released into the soluble fraction and was sensitive to further trypsinolysis, therefore corresponds to the C-terminal half of the mannitol permease. Both fragments were shown to be antigenically related to EIImtl by immunoblotting with anti-EIImtl antibody. The 34,000-dalton fragment was further shown to form an oligomer under conditions which allow the intact enzyme to dimerize, suggesting that this domain plays an important role in EIImtl subunit interactions. These results support a model in which EIImtl consists of two domains of approximately equal size: a membrane-bound, N-terminal domain with a tendency to self-associate, and a cytoplasmic C-terminal domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The mannitol-specific enzyme II (mannitol permease) of the Escherichia coli phosphotransferase system (PTS) catalyzes the concomitant transport and phosphorylation of D-mannitol. Previous studies have shown that the mannitol permease (637 amino acid residues) consists of 2 structural domains of roughly equal size: an N-terminal, hydrophobic, membrane-bound domain and a C-terminal, hydrophilic, cytoplasmic domain. The C-terminal domain can be released from the membrane by mild proteolysis of everted membrane vesicles [Stephan, M.M., & Jacobson, G.R. (1986) Biochemistry 25, 8230-8234]. In this report, we show that phosphorylation of the intact permease by [32P]HPr (a general phosphocarrier protein of the PTS) followed by tryptic separation of the two domains resulted in labeling of only the C-terminal domain. Phosphorylation of the C-terminal domain occurred even in the complete absence of the N-terminal domain, showing that the former contains most, if not all, of the critical residues comprising the interaction site for phospho-HPr. The phosphorylated C-terminal domain, however, could not transfer its phospho group to mannitol, suggesting that the N-terminal domain is necessary for mannitol binding and/or phosphotransfer from the enzyme to the sugar. The elution profile of the C-terminal domain after molecular sieve chromatography showed that the isolated domain is monomeric, unlike the native permease which is likely a dimer in the membrane. Experiments employing a deletion mutation of the mtlA gene, which encodes a protein lacking the first phosphorylation site in the C-terminal domain (His-554) but retaining the second phosphorylation site (Cys-384), demonstrated that a phospho group could be transferred from phospho-HPr to Cys-384 of the deletion protein, and then to mannitol, only in the presence of the full-length permease.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Using a functional lactose permease mutant devoid of Cys residues (C-less permease), each amino acid residue in the hydrophilic N-terminus and the first putative transmembrane helix was systematically replaced with Cys (from Tyr-2 to Trp-33). Twenty-three of 32 mutants exhibit high lactose accumulation (70-100% or more of C-less), and an additional 8 mutants accumulate to lower but highly significant levels. Surprisingly, Cys replacement for Gly-24 or Tyr-26 yields fully active permease molecules, and permease with Cys in place of Pro-28 also exhibits significant transport activity, although previous mutagenesis studies on these residues suggested that they may be required for lactose transport. As expected, Cys replacement for Pro-31 completely inactivates, in agreement with previous findings indicating that "helix-breaking" propensity at this position is necessary for full activity (Consler TG, Tsolas O, Kaback HR, 1991, Biochemistry 30:1291-1297). Twenty-nine mutants are present in the membrane in amounts comparable to C-less permease, whereas membrane levels of mutants Tyr-3-->Cys and Phe-12-->Cys are slightly reduced, as judged by immunological techniques. Dramatically, mutant Phe-9-->Cys is hardly detectable when expressed from the lac promoter/operator at a relatively low rate, but is present in the membrane in a stable form when expressed at a high rate from the T7 promoter. Finally, studies with N-ethylmalemide show that 6 Cys-replacement mutants that cluster at the C-terminal end of putative helix I are inactivated significantly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The determination of the amino acid sequence of the enzyme dihydrofolate reductase (5,6,7,8-tetrahydrofolate:NADP+ oxidoreductase, EC 1.5.1.3) from a mutant of Escherichia coli B is described. The 159 residues were positioned by automatic Edman degradation of the whole protein, of the reduced and alkylated cyanogen bromide fragments, and of selected tryptic, chymotryptic, and thermolytic digestion products. An N-bromosuccinimide produced fragment of the largest cyanogen bromide peptide was also used in the sequence determination.  相似文献   

8.
A novel gene of Escherichia coli, rhtB, has been characterized. Amplification of this gene provides resistance to homoserine and homoserine lactone. Another E. coli gene, rhtC, provides resistance to threonine. The homologues of RhtB are widely distributed among various eubacteria and archaea, from one to 12 copies of family members that differ in their primary structure were found in the genomes. Most of them are genes that encode hypothetical transmembrane proteins. Experimental data that indicate participation of the rhtB product in the excretion of homoserine have been obtained.  相似文献   

9.
Studies on amino acid binding proteins of Escherichia coli   总被引:1,自引:0,他引:1  
  相似文献   

10.
The general aromatic amino acid permease, AroP, of Escherichia coli is responsible for the active transport of phenylalanine, tyrosine, and tryptophan. A proposed topological model for the AroP permease, consisting of 12 hydrophobic transmembrane spans connected by hydrophilic loops, is very similar to that of the closely related phenylalanine-specific permease. The validity of this model and its similarity to that of the PheP permease were investigated by studying fusion proteins of AroP permease and alkaline phosphatase. Based on the results obtained from the AroP-alkaline phosphatase sandwich fusions, we have significantly revised the proposed topological model for AroP in two regions. In this modified AroP topological model, the three charged residues E151, E153, and K160 are repositioned within the membrane in span 5. These three residues are conserved in a large family of amino acid transport proteins, and site-directed mutagenesis identifies them as being essential for transport activity. It is postulated that these residues together with E110 in transmembrane span 3 may be involved in a proton relay system.  相似文献   

11.
A cysteine cross-linking approach was used to identify residues at the dimer interface of the Escherichia coli mannitol permease. This transport protein comprises two cytoplasmic domains and one membrane-embedded C domain per monomer, of which the latter provides the dimer contacts. A series of single-cysteine His-tagged C domains present in the native membrane were subjected to Cu(II)-(1,10-phenanthroline)(3)-catalyzed disulfide formation or cysteine cross-linking with dimaleimides of different length. The engineered cysteines were at the borders of the predicted membrane-spanning alpha-helices. Two residues were found to be located in close proximity of each other and capable of forming a disulfide, while four other locations formed cross-links with the longer dimaleimides. Solubilization of the membranes did only influence the cross-linking behavior at one position (Cys(73)). Mannitol binding only effected the cross-linking of a cysteine at the border of the third transmembrane helix (Cys(134)), indicating that substrate binding does not lead to large rearrangements in the helix packing or to dissociation of the dimer. Upon mannitol binding, the Cys(134) becomes more exposed but the residue is no longer capable of forming a stable disulfide in the dimeric IIC domain. In combination with the recently obtained projection structure of the IIC domain in two-dimensional crystals, a first proposal is made for alpha-helix packing in the mannitol permease.  相似文献   

12.
13.
In Escherichia coli, amino acid starvation triggers the rapid synthesis of two guanosine polyphosphates, pppGpp and ppGpp (the 3'-pyrophosphates of GTP and GDP, respectively). Determination of the turnover rate of the ppGpp pool indicated that during serine deprivation, as opposed to other amino acid starvations, the rate of ppGpp degradation is dramatically decreased. This results in a slow but significant accumulation of this regulatory nucleotide in a relA mutant during serine starvation. Similar ppGpp accumulation can be seen during serine starvation in different serine auxotrophic mutants carrying different relA alleles. On the other hand, no ppGpp accumulation is induced in various relaxed strains by serine hydroxamate treatment.  相似文献   

14.
Era is an essential GTP binding protein in Escherichia coli. Two homologs of this protein, Sgp from Streptococcus mutans and Era from Coxiella burnetii, can substitute for the essential function of Era in E. coli. Site-specific and randomly generated Era mutants which may indicate regions of the protein that are of functional importance are described.  相似文献   

15.
In Escherichia coli, iron assimilation by means of the siderophore enterobactin requires two hydrophobic cytoplasmic membrane proteins, FepD and FepG, which are essential components of a binding-protein-dependent transport system. Such components are typically difficult to detect. Here we report observation of the fepD and fepG gene products in polyacrylamide gels; they appeared as diffuse bands at positions consistent with smaller sizes than those predicted by sequence analysis. Translational coupling was suggested by the lack of a detectable product from the fepG message in the absence of translation of the upstream fepD message. The orientation of FepD/FepG in the membrane was predicted based on their similarities in sequence and hydrophobicity to FhuB.  相似文献   

16.
The membrane insertion of the mannitol permease (MtlA protein) of Escherichia coli, a polytopic cytoplasmic membrane protein possessing an uncleaved amphiphilic signal sequence, was studied using a cell-free protein synthesis system. The MtlA protein synthesized in the presence of inside-out cytoplasmic membrane vesicles was shown to insert into the membranes based on the following criteria: (a) co-sedimentation of the majority of the MtlA protein with the vesicles; (b) selective extraction of the membrane-associated MtlA by doxycholate but not by urea treatment; and (c) protease resistance of a defined MtlA fragment observed exclusively in the presence of membranes. Post-translational addition of membrane vesicles allowed membrane association of MtlA but did not allow efficient integration. In cell-free systems having reduced levels of the export factors SecA and SecB and exhibiting defective translocation of preOmpA and preLamB, insertion of the in vitro synthesized MtlA apparently occurred normally. In contrast, when membranes from the secY24ts mutant or trypsin-treated membranes were used, insertion of MtlA was reduced. In vivo experiments monitoring the permease activity of MtlA in the secA and secY mutants supported the conclusions of the in vitro results. Thus, the insertion of MtlA is essentially SecA- and SecB-independent but may be dependent on SecY and/or an as yet unidentified membrane protein. The requirements for the insertion of the mannitol permease are therefore clearly different from those for the translocation of most proteins having a cleavable hydrophobic signal sequence.  相似文献   

17.
P C Hinkle  P V Hinkle  H R Kaback 《Biochemistry》1990,29(49):10989-10994
Mutants in putative helix VIII of lactose permease that retain the ability to accumulate lactose were created by cassette mutagenesis. A mutagenic insert encoding amino acid residues 259-278 was synthesized chemically by using reagents contaminated with 1% each of the other three bases and ligated into a KpnI/BclI site in the lacY gene in plasmid pGEM-4. Mutants that retain transport activity were selected by transforming a strain of Escherichia coli containing a wild-type lacZ gene, but deleted in lacY, with the mutant library and identifying colonies that transport lactose on indicator plates. Sequencing of the mutated region in lacY in 129 positive colonies reveals 43 single amino acid mutations at 26 sites and 26 multiple mutations. The variable amino acid positions are largely on one side of the putative alpha-helix, a stripe opposite Glu269. This mutable stripe of low information content is probably in contact with the membrane phospholipids.  相似文献   

18.
Studies of the protein function of Borrelia burgdorferi have been limited by a lack of tools for manipulating borrelial DNA. We devised a system to study the function of a B. burgdorferi oligopeptide permease (Opp) orthologue by complementation with Escherichia coli Opp proteins. The Opp system of E. coli has been extensively studied and has well defined substrate specificities. The system is of interest in B. burgdorferi because analysis of its genome has revealed little identifiable machinery for synthesis or transport of amino acids and only a single intact peptide transporter operon. As such, peptide uptake may play a major role in nutrition for the organism. Substrate specificity for ABC peptide transporters in other organisms is determined by their substrate binding protein. The B. burgdorferi Opp operon differs from the E. coli Opp operon in that it has three separate substrate binding proteins, OppA-1, -2 and -3. In addition, B. burgdorferi has two OppA orthologues, OppA-4 and -5, encoded on separate plasmids. The substrate binding proteins interact with integral membrane proteins, OppB and OppC, to transport peptides into the cell. The process is driven by two ATP binding proteins, OppD and OppF. Using opp-deleted E. coli mutants, we transformed cells with B. burgdorferi oppA-1, -2, -4 or -5 and E. coli oppBCDF. All of the B. burgdorferi OppA proteins are able to complement E. coli OppBCDF to form a functional Opp transport system capable of transporting peptides for nutritional use. Although there is overlap in substrate specificities, the substrate specificities for B. burgdorferi OppAs are not identical to that of E. coli OppA. Transport of toxic peptides by B. burgdorferi grown in nutrient-rich medium parallels borrelial OppA substrate specificity in the complementation system. Use of this complementation system will pave the way for more detailed studies of B. burgdorferi peptide transport than currently available tools for manipulating borrelial DNA will allow.  相似文献   

19.
Escherichia coli grows over a wide range of pHs (pH 4.4 to 9.2), and its own metabolism shifts the external pH toward either extreme, depending on available nutrients and electron acceptors. Responses to pH values across the growth range were examined through two-dimensional electrophoresis (2-D gels) of the proteome and through lac gene fusions. Strain W3110 was grown to early log phase in complex broth buffered at pH 4.9, 6.0, 8.0, or 9.1. 2-D gel analysis revealed the pH dependence of 19 proteins not previously known to be pH dependent. At low pH, several acetate-induced proteins were elevated (LuxS, Tpx, and YfiD), whereas acetate-repressed proteins were lowered (Pta, TnaA, DksA, AroK, and MalE). These responses could be mediated by the reuptake of acetate driven by changes in pH. The amplified proton gradient could also be responsible for the acid induction of the tricarboxylic acid (TCA) enzymes SucB and SucC. In addition to the autoinducer LuxS, low pH induced another potential autoinducer component, the LuxH homolog RibB. pH modulated the expression of several periplasmic and outer membrane proteins: acid induced YcdO and YdiY; base induced OmpA, MalE, and YceI; and either acid or base induced OmpX relative to pH 7. Two pH-dependent periplasmic proteins were redox modulators: Tpx (acid-induced) and DsbA (base-induced). The locus alx, induced in extreme base, was identified as ygjT, whose product is a putative membrane-bound redox modulator. The cytoplasmic superoxide stress protein SodB was induced by acid, possibly in response to increased iron solubility. High pH induced amino acid metabolic enzymes (TnaA and CysK) as well as lac fusions to the genes encoding AstD and GabT. These enzymes participate in arginine and glutamate catabolic pathways that channel carbon into acids instead of producing alkaline amines. Overall, these data are consistent with a model in which E. coli modulates multiple transporters and pathways of amino acid consumption so as to minimize the shift of its external pH toward either acidic or alkaline extreme.  相似文献   

20.
A mutant of Neurospora crassa (pm-nbg27) was isolated on the basis of its resistance of p-fluoro-phenylalanine on ammonium-deficient Vogel's medium. This mutant was found to be devoid of both conidial and post-conidial (after 180 min of preincubation) transport activity of all amino acids. Genetic analysis of pm-nbg27 by crossing it to wild-type (74A) resulted in the predicted segregants exhibiting transport characteristics of pm-n, pm-b, pm-g, pm-nb, pm-ng, pm-bg and parental types. The above observations confirm the postulated general amino acid permease system as well as a single genetic locus control of that activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号