首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been reported that genomic DNA methylation decreases gradually during cell culture and an organism's aging. However, less is known about the methylation changes of age-related specific genes in aging. p21(Waf1/Cip1) and p16(INK4a) are cyclin-dependent kinase (Cdk) inhibitors that are critical for the replicative senescence of normal cells. In this study, we show that p21(Waf1/Cip1) and p16(INK4a) have different methylation patterns during the aging process of normal human 2BS and WI-38 fibroblasts. p21(Waf1/Cip1) promoter is gradually methylated up into middle-aged fibroblasts but not with senescent fibroblasts, whereas p16(INK4a) is always unmethylated in the aging process. Correspondently, the protein levels of DNA methyltransferase 1 (DNMT1) and DNMT3a increase from young to middle-aged fibroblasts but decrease in the senescent fibroblasts, while DNMT3b decreases stably from young to senescent fibroblasts. p21(Waf1/Cip1) promoter methylation directly represses its expression and blocks the radiation-induced DNA damage-signaling pathway by p53 in middle-aged fibroblasts. More importantly, demethylation by 5-aza-CdR or DNMT1 RNA interference (RNAi) resulted in an increased p21(Waf1/Cip1) level and premature senescence of middle-aged fibroblasts demonstrated by cell growth arrest and high beta-Galactosidase expression. Our results suggest that p21(Waf1/Cip1) but not p16(INK4a) is involved in the DNA methylation mediated aging process. p21(Waf1/Cip1) promoter methylation may be a critical biological barrier to postpone the aging process.  相似文献   

2.
Numerous studies have shown that supplementation of the growth medium of human fibroblasts with dexamethasone at physiologic concentrations extends replicative lifespan up to 30%. While this extension of lifespan has been used to probe various aspects of the senescent phenotype, no mechanism for the increased lifespan of human fibroblasts grown in the presence of dexamethasone has ever been identified. In the present study we present evidence that the extended lifespan of human lung fibroblasts (WI-38 cells) that occurs when these cells are maintained in culture medium supplemented with dexamethasone is accompanied by a suppression of p21(Waf1/Cip1/Sdi1) levels, which normally increase as these cells enter senescence, while p16(INK4a) levels are unaffected. These results suggest that the delay of senescence in cultures grown in the presence of dexamethasone is due to a suppression of the senescence related increase in p21(Waf1/Cip1/Sdi1). These results are consistent with models of replicative senescence in which p53 and p21(Waf1/Cip1/Sdi1) play a role in the establishment of the senescent arrest.  相似文献   

3.
Vitamin C has inconsistent effects on malignant tumor cells, which vary from growth stimulation to apoptosis induction. It is well known that melanoma cells are more susceptible to vitamin C than any other tumor cells, but the precise mechanism remains to be elucidated. In the present study, the proliferation of B16F10 melanoma cells was suppressed by vitamin C, which induced growth arrest in a dose-dependent manner without cytotoxic effects. Therefore, we investigated the changes in cell cycle distribution of B16F10 melanoma cells by staining DNAs with propidium iodide (PI). The growth inhibition of B16F10 melanoma by vitamin C was associated with an arrest of cell cycle distribution at G1 stage. In addition, the levels of p53-p21Waf1/Cip1 increased during G1 arrest, which were essential for vitamin C-induced cell cycle arrest. The increased p21Waf1/Cip1 inhibited CDK2. Moreover, the activity of p53-p21Waf1/Cip1 pathway was closely related with the activation of checkpoint kinase 2 (Chk2). Inhibitor of the PI3K-family, LY294002 and the ATM/ATR inhibitor, caffeine, blocked vitamin C-induced growth arrest in B16F10 melanoma cells. These results suggest that vitamin C might be a potent agent to inhibit proliferative activity of melanoma cells via the regulation of Chk2-p53-p21Waf1/Cip1 pathway.  相似文献   

4.
The cyclin-dependent kinase (CDK) inhibitor p21(Waf1/Cip1/Sdi1) was identified initially as a gene induced in senescent cells and itself has been shown to cause permanent growth arrest/senescence. Reactive oxygen species (ROS), a byproduct of oxidative processes, can also induce an irreversible growth arrest similar to senescence. Here we show that p21 increased intracellular levels of ROS both in normal fibroblasts and in p53-negative cancer cells. N-acetyl-L-cysteine, an ROS inhibitor, rescued p21-induced senescence, showing that ROS elevation is necessary for induction of the permanent growth arrest phenotype. p16(Ink4a), a CDK4- and CDK6-specific inhibitor, failed to increase ROS levels, and cell cycle arrest induced by p16 was reversible following its down-regulation, demonstrating the specificity of this p21 effect. A p21 mutant that lacked the ability to bind proliferating cell nuclear antigen (PCNA) retained the ability to induce both ROS and permanent growth arrest. All of these findings establish that p21 mediates senescence by a mechanism involving ROS accumulation which does not require either its PCNA binding or the CDK inhibitory functions shared with p16.  相似文献   

5.
6.
7.
Here we report the characterization of a series of telomerase-immortalized human umbilical vein endothelial cell lines (i-HUVEC). These cells maintain endothelial characteristics such as marker expression, dependence on basic fibroblast growth factor for proliferation, and the ability to form tube structures on Matrigel. In addition, these cells do not show signs of tumorigenic transformation because their growth is contact-inhibited, serum-dependent, and anchorage-dependent. In addition, i-HUVEC do not grow or survive when implanted subcutaneously in immunocompromised mice. Notably, the i-HUVEC lines maintain normal p53-dependent checkpoint control, inducing expression of p21Cip1/Waf1 in response to DNA damage. These cells subsequently decrease phosphorylation of pRb and arrest in G1. Furthermore, the i-HUVEC lines maintain normal p53-independent checkpoint control, inducing expression of p27Kip1 in response to lovastatin treatment, with a subsequent decrease in pRb phosphorylation. Lovastatin-treated i-HUVEC lines undergo a G1 arrest that can be reversed with comparable kinetics to that of low passage HUVEC. Together these data demonstrate that telomerase-immortalized endothelial cells can retain normal phenotypes and cell cycle regulation. This result could have significant implications in the study of angiogenic processes such as tumor growth, wound healing, and the vascularization of engineered tissue.  相似文献   

8.
9.
Thioredoxin (TRX) is a ubiquitous multifunctional thiol protein that is critically involved in maintaining cellular redox homeostasis. Levels of thioredoxin-1 (TRX1), the major isoform of TRX, have been shown to correlate with organismal lifespan and age-associated tissue deterioration. Accordingly, we investigated the direct functional effects of suppressing TRX1 levels on cellular senescence, a phenomenon intimately linked with tissue degeneration and aging. Here we find that suppression of TRX1 expression via shRNA rapidly induces premature senescence in young human skin fibroblasts through upregulation of the p53/p21Cip1/Waf1 and p16INK4a tumor suppressor pathways. Moreover, inhibition of these pathways by introduction of SV40 Large T Antigen prevents TRX1 suppression-induced premature senescence but not susceptibility to oxidative stressors. Thus our results suggest that TRX1 has a role in suppressing senescence in normal cells in addition to its function as a redox-protective protein.  相似文献   

10.
p57(Kip2) and p21(Cip1/Waf1) are members of cyclin-dependent kinase (Cdk) inhibitors which play critical roles in the terminal differentiation of skeletal muscle and lung. We investigated mRNA levels of p57(Kip2) and p21(Cip1/Waf1) in skeletal muscle and lung of mice during maturation and aging using Northern hybridization. The mRNA levels of p57(Kip2) and p21(Cip1/Waf1) decreased in skeletal muscle and lung of mice during maturation and aging except that the level of p21(Cip1/Waf1) mRNA in skeletal muscle of mice showed an increase only during maturation. The decrease of the p57(Kip2) mRNA level involved neither a change of DNA methylation at the promoter region nor an alteration of the imprinting status in aged mice. The decreases of p57(Kip2) and p21(Cip1/Waf1) mRNA levels during aging suggest that the process of tissue-specific terminal differentiation may be gradually downregulated with senescence in tissues where p57(Kip2) and p21(Cip1/Waf1) play key roles in differentiation. The downregulation of p57(Kip2) and p21(Cip1/Waf1) during aging is contrary to the upregulation of Cdk inhibitors during cellular replicative senescence, indicating that aging in an organismal level is mediated by mechanisms different from replicative senescence of cultured cells.  相似文献   

11.
Zhang W  Chan HM  Gao Y  Poon R  Wu Z 《EMBO reports》2007,8(10):952-958
  相似文献   

12.
13.
p21(Cip1/Waf1) inhibits cell-cycle progression by binding to G1 cyclin/CDK complexes and proliferating cell nuclear antigen (PCNA) through its N- and C-terminal domains, respectively. Here, we report a novel p21(Cip1/Waf1)-interacting protein, Ciz1 (for Cip1 interacting zinc finger protein), which contains polyglutamine repeats and glutamine-rich region in the N-terminus as well as three zinc-finger motifs and one MH3 (matrin 3-homologous domain 3) in the C-terminal region. Ciz1 bound to the N-terminal, the CDK2-interacting part of p21(Cip1/Waf1), and the interaction was disrupted by the overexpression of CDK2. A region of about 150 amino acids containing the first zinc-finger motif in Ciz1 was the binding site for p21(Cip1/Waf1). When Ciz1 and p21(Cip1/Waf1) were individually overexpressed in U2-OS cells, they mostly localized in the nucleus. However, coexpression of Ciz1 induced cytoplasmic distribution of p21(Cip1/Waf1). These data indicate that Ciz1 is a unique nuclear protein that regulates the cellular localization of p21(Cip1/Waf1).  相似文献   

14.
Chen X  Zhang W  Gao YF  Su XQ  Zhai ZH 《Cell research》2002,12(3-4):229-233
P21(Waf1/Cip1) is a potent cyclin-dependent kinase inhibitor. As a downstream mediator of p53, p21(Waf1/Cip1) involves in cell cycle arrest, differentiation and apoptosis. Previous studies in human cells provided evidence for a link between p21(Waf1/Cip1) and cellular senescence. While in murine cells, the role of p21(Waf1/Cip1) is indefinite. We explored this issue using NIH3T3 cells with inducible p21(Waf1/Cip1) expression. Induction of p21(Waf1/Cip1) triggered G1 growth arrest, and NIH3T3-p21 cells exhibited morphologic features, such as enlarged and flattened cellular shape, specific to the senescence phenotype. We also showed that p21(Waf1/Cip1)-transduced NIH3T3 cells expressed beta-galactosidase activity at pH 6.0, which is known to be a marker of senescence. Our results suggest that p2l(Waf1/Cip1) can also induce senescence-like changes in murine cells.  相似文献   

15.
Replicative senescence of human diploid fibroblasts (HDFs) is largely implemented by the cyclin-dependent kinase (CDK) inhibitors p16(INK4a) and p21(CIP1). Their accumulation results in a loss of CDK2 activity, and cells arrest with the retinoblastoma protein (pRb) in its hypophosphorylated state. It has become standard practice to bypass the effects of p16(INK4a) by overexpressing CDK4 or a variant form that is unable to bind to INK4 proteins. Although CDK4 and CDK6 and their INK4-insensitive variants can extend the life span of HDFs, they also cause a substantial increase in the levels of endogenous p16(INK4a). Here we show that CDK4 and CDK6 can extend the life span of HDFs that have inactivating mutations in both alleles of INK4a or in which INK4a levels are repressed, indicating that overexpression of CDK4/6 is not equivalent to ablation of p16(INK4a). However, catalytically inactive versions of these kinases are unable to extend the replicative life span, suggesting that the impact of ectopic CDK4/6 depends on their ability to phosphorylate as yet unidentified substrates rather than to sequester CDK inhibitors. Since p16(INK4a) deficiency, CDK4 expression, and p53 or p21(CIP1) ablation have additive effects on replicative life span, our results underscore the idea that senescence is an integrated response to diverse signals.  相似文献   

16.
Cyclin-dependent kinase inhibitor p21Waf1/Cip1 plays the key part in cell cycle arrest at the G1/S checkpoint in response to DNA damage, and is involved in the assembly of active cyclin–kinase complexes, in particular, cyclin D–Cdk4/6. Recent studies extended the range of known p21Waf1/Cip1 functions. In addition to the cell-cycle control, p21Waf1/Cip1 participates in important cell processes such as differentiation, senescence, and apoptosis. The balance of p21Waf1/Cip1 functional activity appears to shift depending on the cell state (senescence, exposure to stress, expression of viral oncogenes). This is due to direct or indirect interaction with various modulators or to modification (phosphorylation, partial proteolysis) of p21Waf1/Cip1. The review considers the structure of p21Waf1/Cip1, its posttranslational modification, interactions with various cell or viral proteins, and their effects on the p21Waf1/Cip1 function and on the cell.  相似文献   

17.
The irreversible G1 arrest in senescent human diploid fibroblasts is probably caused by inactivation of the G1 cyclin-cyclin-dependent kinase (Cdk) complexes responsible for phosphorylation of the retinoblastoma protein (pRb). We show that the Cdk inhibitor p21(Sdi1,Cip1,Waf1), which accumulates progressively in aging cells, binds to and inactivates all cyclin E-Cdk2 complexes in senescent cells, whereas in young cells only p21-free Cdk2 complexes are active. Furthermore, the senescent-cell-cycle arrest occurs prior to the accumulation of the Cdk4-Cdk6 inhibitor p16(Ink4a), suggesting that p21 may be sufficient for this event. Accordingly, cyclin D1-associated phosphorylation of pRb at Ser-780 is lacking even in newly senescent fibroblasts that have a low amount of p16. Instead, the cyclin D1-Cdk4 and cyclin D1-Cdk6 complexes in these cells are associated with an increased amount of p21, suggesting that p21 may be responsible for inactivation of both cyclin E- and cyclin D1-associated kinase activity at the early stage of senescence. Moreover, even in the late stage of senescence when p16 is high, cyclin D1-Cdk4 complexes are persistent, albeit reduced by 相似文献   

18.
Replicative senescence is known to be an intrinsic mechanism in determining the finite life span of in vitro cultured cells. Since this process is recognized as an evolutionarily conserved mechanism from yeast to mammalian cells, we compared the senescence-associated genetic alterations in the p53, p16(INK4a), and telomere regulatory pathways using replicative senescent human, mouse, and chicken fibroblast cells. Normal human diploid fibroblast (HDF; WI38) and chicken embryonic fibroblast (CEF) cells were shown to have a more extended in vitro proliferative potential than their mouse embryonic fibroblast (MEF) counterpart. In contrast to the HDF and CEF cells, MEF cells were shown to express telomerase mRNA and maintain telomerase activity throughout their in vitro life span. Functional p53 activity was shown to increase in the replicative senescent HDF and CEF cells, but not in replicative senescent MEF cells. On the other hand, there was a gradual elevation of p16(INK4a) expression with increased cell passages which reached a maximum in replicative senescent MEF cells. Taken together, the present study demonstrates that the p53, p16(INK4a), and telomere regulatory functions may be differentially regulated during replicative senescence in human, mouse, and chicken fibroblast cells.  相似文献   

19.
Alpha-fetoprotein (AFP) expression is observed in embryonic tissues and, the expression of this protein is absent in normal adult tissues. The re-elevation of serum AFP strongly suggests generation of a malignant tumor in an adult. We demonstrated here that AFP-producing gastric cancer (AFP-gastric cancer) could be treated by a combination therapy with a low dose of Mitomycin-C (MMC) and lymphokineactivated killer T (LAK-T) cells. Treatment with MMC of AFP-gastric cancer cells enhanced their susceptibility to LAK-T cells and induced ATBF1 gene expression. We revealed here a novel signal pathway for regulation of the cell cycle of AFP-gastric cancer cells through ATBF1, which enhances the promoter activity of the p21 (Waf1/Cip1) gene. Immunoprecipitation revealed the direct interaction between ATBF1 and p53. Overexpressed ATBF1 stimulated p21 (Waf1/Cip1) promoter activity up to 4-fold compared with basal activity. The expression level of ATBF1 mRNA was doubled by MMC (0.05 microg/ml) treatment. The MMC treatment and ATBF1 overexpression synergistically activated the p21 (Waf1/Cip1) promoter activity in a dose-dependent manner up to 7-fold compared with basal activity.  相似文献   

20.
JNK1/2 proteins belong to the family of stress-activated protein kinases. They play a complex role in growth regulation, inducing either cell death or growth support. In this report, we provide evidence that, in human melanoma cells, JNK inhibition with the small molecule inhibitor SP600125 induces either predominantly a G2/M arrest or apoptosis depending on the cell line. In 1205Lu cells, JNK inhibition induced cell cycle arrest through p53-dependent induction of p21 Cip1/Waf1 expression, while in WM983B cells, induction of apoptosis by JNK inhibition was accompanied by p53, Bad and Bax induction, not p21 Cip1/Waf1. JNK inhibition with the small molecule inhibitor SP600125 slowed growth of all cell lines, although the effect was markedly greater in cells exhibiting high phospho- (P-)JNK1 levels. Specific gene knockdown of JNK1 by means of siRNA oligonucleotides inhibited cell growth only in melanoma cell lines exhibiting high P-JNK1 levels. siRNAs directed against JNK2 did not reduce cell growth in any of the cell lines tested. Together, our findings demonstrate that JNK, and in particular the JNK1 isoform, support the growth of melanoma cells, by controlling either cell cycle progression or apoptosis depending on the cellular context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号