首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For pastures, root turnover can have an important influence on nutrient and carbon cycling, and plant performance. Turnover was calculated from mini‐rhizotron observations for chicory (Cichorium intybus), lucerne (Medicago sativa), perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) grown in the Manawatu, New Zealand. The species were combined factorially with four earthworm species treatments and a no‐earthworm control. Split plots compared the effects of not cutting and cutting the shoots at intervals. Observations were made c. 18 days apart for 2.5 years. This article concentrates on differences between plant species in root turnover in the whole soil profile to 40 cm depth. At this scale, earthworm effects were generally small and short lived. For ryegrass and white clover, root length and mass were linearly related (R2 = 0.82–0.99). For chicory and lucerne, the relationships were poorer (R2 = 0.38–0.77), so for those species length turnover may be a poor indicator of mass turnover. Standing root length, total growth and death generally decreased in the sequence ryegrass > lucerne > chicory = white clover. In length terms, scaled turnover (growth divided by average standing root length) generally followed the sequence lucerne > white clover > perennial ryegrass = chicory. Across species the scaled turnover rate averaged 3.4 per year or 0.9% per day. Cutting shoots reduced standing root length, growth and death, but increased scaled turnover. These results indicate fast and prolonged root turnover. For ryegrass and white clover, at least there is need to reappraise how to measure and model shoot : root ratios, dry matter production and carbon cycling.  相似文献   

2.
Evidence for biological nature of the grape replant problem in California   总被引:2,自引:0,他引:2  
Westphal  Andreas  Browne  Greg T.  Schneider  Sally 《Plant and Soil》2002,242(2):197-203
A bioassay was developed to investigate causes of grape replant problems under controlled conditions. Soils were collected from methyl bromide-fumigated and non-fumigated plots at a site cleared from a 65-year-old grape vineyard (Vitis vinifera cv. Thompson seedless) at Parlier, CA. Subsamples of the non-fumigated soil were either left non-treated, subjected to autoclaving (twice 45 min), or heating at 40, 50, 60, 70, 80 or 90 °C for 30 min. Subsequently, the samples were placed in 120-mL pots, planted with rooted hardwood grape cuttings (V. vinifera, cv. Carignane) and placed in a greenhouse or growth chamber. Three months after transplanting, vines from non-treated or 40 °C-treated soil had lower shoot weights and densities of healthy lateral roots than vines from the other treatments. Pythium spp. were isolated from 45 to 55% of the plated root segments from vines grown in non-treated, or soil that had been heated at 40 or 50 °C but were not detected in roots from soil given other treatments. Egg masses of root-knot nematode, Meloidogyne spp., were produced on roots from non-treated or heated at 40 °C soil, but no egg masses were detected on roots of the other treatments. In another test with the same soils, remnant roots from non-fumigated or pre-plant methyl bromide-fumigated soil were extracted and amended to non-fumigated soil, soil from fumigated field plots, soil fumigated in a small container, or autoclaved potting mix. The transfer of old vine roots from non-fumigated field soil resulted in incidence of Pythium spp. on grape assay roots, but there was no measurable effect of the transfer on growth and health of the bioassay plant roots. The results of the bioassays indicate that grape replant problem at the California site had biological causes. The bioassay approach may aid in future determinations of the etiology of grape replant problems.  相似文献   

3.
Abstract. The role of phosphorus (P) in leaf magnesium (Mg) concentrations and photosynthesis was investigated in field and glasshouse experiments with grapevine (Vitis vinifera L., cvs. Chenin blane. Chardonnay, and Carignane). In the field, leaves of vines growing on soil with low available P exhibited symptoms of Mg deficiency and had low P and Mg concentrations. The rate of photosynthesis for leaves of untreated control vines was approximately 0.7 nmol CO2 cm 2 s 1. When P fertilizer was applied to the soil, Mg deficiency symptoms were eliminated, and leaf P and Mg concentrations increased to above critical levels. When Mg was applied as a foliar spray, leaf Mg increased to above critical levels, but leaf P did not change significantly. In both experiments, the rate of photosynthesis increased to greater than 1.0 nmol CO2 cm 2 s 1 after nutrient applications. Thus, under low soil P conditions, leaf photosynthesis was limited by leaf Mg concentrations. In glasshouse experiments in which vines were grown with and without P for three seasons, Mg accumulated in large roots of - P vines to approximately twice the concentration found in roots of + P vines. Analysis of the xylem exudate from detopped plants showed that Mg concentration in xylem sap of + P vines was twice as great as that in - P vines. When P was supplied to - P vines, the concentration of Mg increased to the concentration of + P vines within 2 days. The results show that the translocation of Mg from roots to shoots of grapevine is dependent upon P supply to the roots and suggest that Mg translocation is more sensitive than uptake to P supply.  相似文献   

4.
The study of fine roots growing under field conditions is limited by the techniques currently available for separating these roots from soil. This study had two objectives: to measure the total root length of field grown corn (Zea mays L.) by root diameter class, and to develop an inexpensive and efficient root washing device that would effectively capture all of the roots in a field soil sample. An inexpensive Fine Root Extraction Device (FRED) was constructed from readily available materials and was successful at extracting all roots, including very fine diameter roots (0.025 mm), from field soil samples. Greater than 99.7% of marked roots introduced to the FRED were recaptured by the device. Soil samples from three depths, and on three dates, from field grown corn were placed in the FRED. We found that more than 56% of total root length occurred in roots whose diameters were smaller than 0.175 mm, and more than 35% of root length occurred in roots smaller than 0.125 mm in diameter. Corn roots of the diameters described here have not been reported in field soils prior to this study. Root researchers who fail to measure these very fine roots will significantly underestimate root length density. Widespread use of the FRED should improve our understanding of root distribution in field soils.  相似文献   

5.
As the depth of soil petroleum contamination can vary substantially under field conditions, a rhizotron experiment was performed to investigate the influence of endophyte, P. indica, on maize growth and degradation of petroleum components in a shallow and a deep-reaching subsurface layer of a soil. For control, a treatment without soil contamination was also included. The degree in contamination and the depth to which it extended had a strong effect on the growth of the plant roots. Contaminated soil layers severely inhibited root growth thus many roots preferred to bypass the shallow contaminated layer and grow in the uncontaminated soil. While the length and branching pattern of these roots were similar to those of uncontaminated treatment. Inoculation of maize with P. indica could improve root distribution and root and shoot growth in all three contamination treatments. This inoculation also enhanced petroleum degradation in soil, especially in the treatment with deep-reaching contamination, consequently the accumulation of petroleum hydrocarbons (PAHs) in the plant tissues were increased.  相似文献   

6.
Increased below-ground carbon allocation in forest ecosystems is a likely consequence of rising atmospheric CO2 concentration. If this results in changes to fine root growth, turnover and distribution long-term soil carbon cycling and storage could be altered. Bi-weekly measurements were made to determine the dynamics and distribution of fine roots (< 1 mm diameter) for Pinus radiata trees growing at ambient (350 μmol mol–1) and elevated (650 μmol mol–1) CO2 concentration in large open-top chambers. Measurements were made using minirhizotrons installed horizontally at depths of 0.1, 0.3, 0.5 and 0.9 m. During the first year, at a depth of 0.3 m, the increase in relative growth rate of roots occurred 6 weeks earlier in the elevated CO2 treatment and the maximum rate was reached 10 weeks earlier than for trees in the ambient treatment. After 2 years, cumulative fine root growth (Pt) was 36% greater for trees growing at elevated CO2 than at ambient CO2 concentration, although this difference was not significant. A model of root growth driven by daily soil temperature accounted for between 43 and 99% of root growth variability. Total root loss (Lt) was 9% in the ambient and 14% in the elevated CO2 treatment, although this difference was not significant. Root loss was greatest at 0.3 m. In the first year, 62% of fine roots grown between mid-summer and late-autumn disappeared within a year in the elevated CO2 treatment, but only 18% in the ambient CO2 treatment (P < 0.01). An exponential model relating Lt to time accounted for between 74 and 99% of the variability. Root cohort half-lives were 951 d for the ambient and 333 d for the elevated treatment. Root length density decreased exponentially with depth in both treatments, but relatively more fine roots grown in the elevated CO2 treatment tended to occur deeper in the soil profile.  相似文献   

7.
应用微根管法测定细根指标方法评述   总被引:7,自引:0,他引:7  
李俊英  王孟本  史建伟 《生态学杂志》2007,26(11):1842-1848
树木细根(直径<2mm)在森林生态系统能量流动和物质循环中起着重要的作用。原有的细根生产周转研究中常采用的土钻法、内生长法、挖掘法、根室法和土柱法等,均不能直接观察到细根的动态变化。微根管法是一种非破坏性、可定点直接观察和研究植物根系的方法,为研究细根的生长、衰老、死亡、分解和再生长的过程提供了有效的工具,尤其适用于细根周转、寿命和分解等方面的研究。但该技术不能直接测定单位面积的细根生物量、细根化学组成及细根周转对土壤碳和养分循环的影响,需要与土钻法结合。本文就运用微根管法对细根生物量、生产、周转和寿命等指标的研究方法进行了评述。  相似文献   

8.
The survival ofHerbaspirillum spp. cells added directly or encapsulated in alginate beads and colonization of wheat roots was evaluated in soil microcosms. Cells entrapped in alginate in the presence of JNFb-broth and introduced into unplanted non-sterile clay loamy and sandy soils survived better than cells added directly to the same soils after 50 d incubation. On amendment by JNFb broth and/or skim milk the entrapped cells survived better than those prepared in water. Encapsulated cells survived better in a heavier textured soil (clay-loamy) than in a lighter (sandy) soil. Wheat plants growing in microcosms inoculated with various bead types from day 0 to day 30 exhibited high levels of histosphere colonization, nitrogenase activity (in situ) measured by acetylene reduction assay, plant dry mass and total N content but no symptoms of mottled stripe disease were observed. Comparable results of growth criteria and nitrogenase activity, but relatively lower bacterial populations, were obtained with wheat grown for 45 d after the inoculant had been introduced into the soil with different bead types.  相似文献   

9.
Purbopuspito  J.  Van Rees  K.C.J. 《Plant and Soil》2002,239(2):313-320
Efficient fertilizer application requires an understanding of the distribution of roots and soil nutrients in the soil profile. Cultural practices for clove trees in Indonesia has resulted in phosphorus (P) fertilizer being applied at the canopy edge; however, in these high P fixing soils efficient P fertilizer application should occur with the highest root densities. The objective of this study, therefore, was to determine the rooting distribution at various distances from the tree and soil depths for clove (Eugenia aromatica OK; variety Zanzibar) trees growing on an Andosol soil at Modoinding, Indonesia. Root distributions were determined to a 100-cm soil depth using soil cores at 0.5, 1.0 and 1.5 times the canopy radius for five 10-year-old clove trees grown on either level terrain or 23% slopes. Clove root length and weight densities decreased with soil depth and distance from the tree base. Fine clove roots (1 mm dia) comprised 72% of the total root length and was three to five times higher underneath the canopy than that outside the canopy. Roots were concentrated in the upper soil horizons; however, up to 36% of the total root length was found at a depth of 50–100 cm. Clove roots for trees growing at the level landscape position had the highest root length densities. Intercropped species root length densities were higher than clove root length densities at 1.5 times the canopy radius whereas intercropped root weight densities were higher than that for clove roots at both 1.5 and 1 times the canopy radius. Results suggest that fertilizer applications should be placed closer to the tree trunk rather than at the canopy edge to maximize P uptake by clove roots.  相似文献   

10.
Seedlings of Lotus glaberMill., were grown in a native saline-sodic soil in a greenhouse for 50 days and then subjected to waterlogging for an additional period of 40 days. The effect of soil waterlogging was evaluated by measuring plant growth allocation, mineral nutrition and soil chemical properties. Rhizobiumnodules and mycorrhizal colonisation in L. glaberroots were measured before and after waterlogging. Compared to control plants, waterlogged plants had decreased root/shoot ratio, lower number of stems per plant, lower specific root length and less allocation of P and N to roots. Waterlogged plants showed increased N and P concentrations in plant tissues, larger root crown diameter and longer internodes. Available N and P and organic P, pH and amorphous iron increased in waterlogged soil, but total N, EC and exchangeable sodium were not changed. Soil waterlogging decreased root length colonised by arbuscular mycorrhizal (AM) fungi, arbuscular colonisation and number of entry points per unit of root length colonised. Waterlogging also increased vesicle colonisation and Rhizobium nodules on roots. AM fungal spore density was lower at the end of the experiment in non-waterlogged soil but was not reduced under waterlogging. The results indicate that L. glaber can grow, become nodulated by Rhizobium and colonised by mycorrhizas under waterlogged condition. The responses of L. glaber may be related its ability to form aerenchyma.  相似文献   

11.
A field experiment was conducted to investigate root distribution, biomass, and seasonal dynamics in a revegetated stand of Caragana korshinskii Kom. in the Tengger Desert. We used soil profile trenches, soil core sampling, and minirhizotron measurements to measure root dynamics. Results showed that the roots of C. korshinskii were distributed vertically in the uppermost portion of the soil profile, especially the coarse roots, which were concentrated in the upper 0.4 m. The horizontal distribution of the root length and weight of C. korshinskii coarse roots was concentrated within 0.6 and 0.4 m of the trunk, respectively. The lateral distribution of fine roots was more uniform than coarse roots. Total-root and fine-root biomasses were 662.4 ± 45.8 and 361.1 ± 10.3 g m−2, accounting for about two-thirds and one-third of the total plant biomass, respectively. Fine-root turnover is closely affected by soil water, and both of these parameters showed synchronously seasonal trends during the growing season in 2004 and 2005. The interaction between fine-root turnover and soil water resulted in the fine-root length densities and soil water content in the 0- to 1.0-m soil layer having similar trends, but the soil water peaks occurred before those of the fine-root length densities.  相似文献   

12.
Nine species from the tribe Triticeae – three crop, three pasture and three ‘wild’ wetland species – were evaluated for tolerance to growth in stagnant deoxygenated nutrient solution and also for traits that enhance longitudinal O2 movement within the roots. Critesion marinum (syn. Hordeum marinum) was the only species evaluated that had a strong barrier to radial O2 loss (ROL) in the basal regions of its adventitious roots. Barriers to ROL have previously been documented in roots of several wetland species, although not in any close relatives of dryland crop species. Moreover, the porosity in adventitious roots of C. marinum was relatively high: 14% and 25% in plants grown in aerated and stagnant solutions, respectively. The porosity of C. marinum roots in the aerated solution was 1·8–5·4‐fold greater, and in the stagnant solution 1·2–2·8‐fold greater, than in the eight other species when grown under the same conditions. These traits presumably contributed to C. marinum having a 1·4–3 times greater adventitious root length than the other species when grown in deoxygenated stagnant nutrient solution or in waterlogged soil. The length of the adventitious roots and ROL profiles of C. marinum grown in waterlogged soil were comparable to those of the extremely waterlogging‐tolerant species Echinochloa crus‐galli L. (P. Beauv.). The superior tolerance of C. marinum, as compared to Hordeum vulgare (the closest cultivated relative), was confirmed in pots of soil waterlogged for 21 d; H. vulgare suffered severe reductions in shoot and adventitious root dry mass (81% and 67%, respectively), whereas C. marinum shoot mass was only reduced by 38% and adventitious root mass was not affected.  相似文献   

13.
Kerley  S. J.  Leach  J. E.  Swain  J. L.  Huyghe  C. 《Plant and Soil》2000,222(1-2):241-253
In calcareous soils, genotypes of Lupinus albus L. generally grow poorly, resulting in stunted plants that often develop lime-induced chlorosis. In contrast, some genotypes of L. pilosus Murr. occur naturally in calcareous soils without developing any visible symptoms of stress. Some genotypic variation for tolerance to calcareous soil does exist in L. albus and the tolerance mechanisms need to be determined. The adaptation through root system morphological plasticity of L. albus and L. pilosus, to heterogeneous limed soil profiles (pH 7.8) containing either patches of acid (non-limed) soil, or vertically split between acid and limed soil, was investigated. When grown in the presence of patches of acid soil, L. albus had a 52% greater shoot dry weight and visibly greener leaves compared with plants grown in the homogeneous limed soil. Total root dry matter in the acid-soil patches was greater than in the control limed-soil patches. This was due to a four-fold increase in the cluster root mass, accounting for 95% of the root dry matter in the acid-soil patch. Although these cluster roots secreted no more citric acid per unit mass than those in the limed soil did, their greater mass resulted in a higher citrate concentration in the surrounding soil. L. pilosus responded to the patches of acid soil in a manner comparable with L. albus. When grown in the homogeneous limed soil, L. pilosus had a greater maximum net CO2 assimilation rate (Pmax) than L. albus, however, the Pmax of both species increased after they had accessed a patch of acid soil. Differences were apparent between the L. albus genotypes grown in soil profiles split vertically into limed and acid soil. A genotype by soil interaction occurred in the partitioning between soils of the cluster roots. The genotype La 674 was comparable with L. pilosus and produced over 11% of its cluster roots in the limed soil, whereas the other genotypes produced only 1–3% of their cluster roots in the limed soil. These results indicate L. pilosus is better adapted to the limed soil than L. albus, but that both species respond to a heterogeneous soil by producing mainly cluster roots in an acid-soil patch. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Removal and storage of the surface layers of soil is known to decrease the infectivity of vesicular-arbuscular mycorrhizal (VAM) fungi. Previous studies have mostly examined the effects of profound soil disturbance on the infectivity of VAM fungi. This study examined the effects of increasing degrees of topsoil disturbance on the infectivity of VAM fungi in two sites on sandstone soils in southeastern Australia. Intact soil blocks (20×20×15 cm) were taken from each of the two sites. Increasing degrees of topsoil disturbance were achieved by cutting the blocks longitudinally into four (dist. 1), nine (dist. 2), and 25 (dist. 3) equal portions. Seeds of Trifolium repens L. were sown into the blocks and harvested 14, 21, 28, 35 and 42 days after sowing. At each sampling date, total root length, root length colonised by VAM fungi and shoot dry mass were measured. VAM colonisation had commenced by 14 days in the roots of seedlings grown in intact, dist. 1, and dist. 2 soil blocks. The initiation of VAM colonisation was delayed by up to 6 weeks for seedlings grown in the dist. 3 soil blocks. The low (i.e. dist. 1) and intermediate (i.e. dist. 2) degrees of soil disturbance did not cause a delay in the initiation of VAM, bud did significantly reduce the proportion of root length colonised by VAM fungi after 21 days. After 21 days, shoot dry mass was significantly less in the seedlings grown in the dist. 3 soil blocks though not in the low and intermediate disturbance treatments. It is concluded that the most severe experimental disturbance probably disturbed the external hyphal network and root fragments (containing hyphae and vesicles), which in turn temporarily reduced the infective potential of the fungus to zero. The observed delay in the initiation of VAM in the most disturbed blocks can, therefore, be explained by the time required for hyphae to grow from other propagules in the soil which survived the disturbance event.  相似文献   

15.
The concept of root contact hypothesizes that the absorbing roots grown in sandy soil are only partially effective in water uptake. Co-ordination of water supply and demand in the plant requires that the capacity for water uptake from the soil should correspond to an operational rate of water loss from the leaves. To examine how the plant hydraulic system responds to variations in soil texture or evaporative demand through long-term acclimation, an experiment was carried on cotton plants (Gossypium herbaceum L.), where three grades of soil texture and three grades of evaporative demand were applied for the whole life cycle of the plants. Plants were harvested 50 and 90 d (fully grown) after sowing and root length and leaf area measured. At 90 d hydraulic conductance was measured as the ratio of sap flow (measured with sap flow sensors or gravimetrically) and water potential. Results showed that for plants grown at the same evaporative demand, those in sandy soil, where root-specific hydraulic conductance was low, developed more absorbing roots than those grown in heavy-textured soil, where root specific conductance was high. This resulted in the same leaf specific hydraulic conductance (1.8 × 10−4 kg s−1 Mpa−1 m−2) for all three soils. For plants grown in the same sandy soil, those subjected to strong evaporative demand developed more absorbing roots and higher leaf-specific hydraulic conductance than those grown under mild evaporative demand. It is concluded that when soil texture or atmospheric evaporative demand varies, plants co-ordinate their capacities for liquid phase and vapour phase water transport through long-term acclimation of the hydraulic system, or plastic morphological adaptation of the root/leaf ratio.  相似文献   

16.
Summary A study was made of the relationship between the number of roots (Nr) observed on unit area of the freshly exposed, horizontal faces of soil cores, and the amounts of roots (per unit volume) present in the same cores. Soil cores, 7 cm diameter, were extracted to depths of 1 m from cereal crops in 1976 at three field sites located on clay soils. Sampling was either at the start of stem elongation, or at anthesis. Estimates of root length per unit soil volume (L) were derived from Nr by assuming random orientation of roots in the soil.Values of L were found to be highly correlated with the measured lengths of both the main roots (root axes) and the total roots (axes and laterals) washed from the soil at a given growth stage, for each of the soils. On average, L was 3.3 times the length of root axes washed from the soil, and was 0.42 times the length of total roots, but there was appreciable variation between different growth stages and field sites. Possible factors giving rise to differences between L and the measured lengths of roots are discussed. Estimates of root length from observation of soil cores may nonetheless provide a suitable basis for rapidly comparing therelative distribution of roots down the soil profile under field conditions.  相似文献   

17.
Five groundnut cultivars were grown in transparent tubes of pasteurized loam compost in growth-chamber conditions. Weekly tracings were made of all the roots visible through the walls of the tubes. White roots were assessed as living, and brown or decayed roots as dead; this correlated with microscopical assessments of root viability based on cytoplasmic staining with neutral red followed by plasmolysis.For all five cultivars, root laterals began to die 3–4 weeks after plants were sown. Death of root laterals progressed down the soil profile with time, while new roots were produced successively deeper from the extending taproot. The half-life of individual roots was calculated as 3.7–4.4 weeks for all cultivars, based on assessments of the roots that died up to plant maturity (14–20 weeks, depending on cultivar). At maturity, 73–83% of the cumulative length of root systems had died. The onset and rate of root death were not related to onset of flowering or pod-filling; instead, the peak times of root death at different distances down the root system were related to earlier (3–5 week) peak times of root production in those regions. The net result of root turnover was that, despite continued new root production, the maximum length of living (white) roots of each cultivar was recorded at 2–4 weeks after sowing. Death of the earliest formed root laterals was also observed in the first five weeks after sowing of groundnut in an experimental field plot in Malawi. Progressive root turnover is considered to be a normal feature of groundnut, perhaps representing an energy-economy strategy.  相似文献   

18.
We examined the effect of two levels of soil pH (5 and 6) on the ability (effectiveness) of ectomycorrhizal fungi to increase the growth of Eucalyptus globulus Labill. at a deficient supply of P. Plants were inoculated with one of six fungal isolates [Laccaria laccata (Scop. ex Fr.) Berk. and Br. (isolates A and B), Pisolithus tinctorius (Pers.) Coker and Couch (isolates A and B), Descolea maculata Bough. and Mal. and Setchelliogaster sp. nov.] and were grown in a P-deficient sand, in pots, in a temperature-controlled glasshouse. Seedlings were harvested 89 days after planting and were assessed for dry matter production, tissue P concentrations, ectomycorrhizal colonization of roots and hyphal development in soil.Uninoculated plants had less than 5% of their fine root length colonized by ectomycorrhizal fungi. In contrast, inoculated plants had 30% or greater of their fine root length ectomycorrhizal. Inoculation increased the uptake of P and growth of plants for all isolates and at both levels of soil pH, although growth responses to inoculation were greater at pH 6, particularly for the two L. laccata isolates. Isolates which colonized roots most extensively increased plant growth to the greatest extent. D. maculata was the most effective fungal isolate at pH 5, and both D. maculata and L. laccata A were most effective at pH 6. The effects of soil pH on plant growth were also related to some extent to the effects of soil pH on colonized root length. Growth responses to inoculation were related less well to hyphal development in soil. The L. laccata isolates formed more hyphae in soil (on a per pot, per m of fine root, and per m of colonized fine root basis) than other fungal isolates, but were not always more effective in increasing plant grown.  相似文献   

19.
Summary At a site in the Sonoran Desert, subterranean rocks and exposed boulders affected soil water potential as well as root morphology and distribution. For Agave deserti, the number of lateral roots per unit length of main root was 11 times higher under rocks and six times higher alongside rocks than in rock-free regions. Total root length per unit soil volume for Echinocereus engelmannii averaged 3-fold higher within 1 cm of boulders than 5 cm away, where the soil was drier. The total length of lateral roots per unit length of main root for Ferocactus acanthodes was 4.2 m m–1 under rocks but only 0.8 m m–1 in rock-free regions. The number of lateral roots per unit length of main root for Opuntia acanthocarpa was 7-fold higher alongside rocks than in rock-free regions and even higher under rocks. For transplanted and watered A. deserti, the number of new main roots produced per 1–2 month interval averaged 13 for five plants on the north side of boulders, 8 on the south side, 11 for five plants with half of their roots under rocks, 2 for those with half of their roots over rocks, and 3 for the control plants without rocks. Laboratory experiments showed that the soil water potential under rocks for 10 and 30 mm waterings stayed above –0.5 MPa for 13 and 19 d longer, respectively, than for regions away from rocks. The shortwave absorptance of granitic rocks from the field site was 0.82, the thermal conductivity coefficient was 1.50 W m–1 °C–1, and the volumetric heat capacity was 1.75 MJ m–3 °C–1. Field measurements indicated that 5-cm-thick buried rocks decreased the diel variation in soil temperatures on their undersurface by only 0.4° C compared with soil. Thus, the primary influence of rocks at the field site on root proliferation and branching for the four species was apparently caused by influences on soil water content.  相似文献   

20.
We tested the hypotheses that increased belowground allocation of carbon by hybrid poplar saplings grown under elevated atmospheric CO2 would increase mass or turnover of soil biota in bulk but not in rhizosphere soil. Hybrid poplar saplings (Populus×euramericana cv. Eugenei) were grown for 5 months in open-bottom root boxes at the University of Michigan Biological Station in northern, lower Michigan. The experimental design was a randomized-block design with factorial combinations of high or low soil N and ambient (34 Pa) or elevated (69 Pa) CO2 in five blocks. Rhizosphere microbial biomass carbon was 1.7 times greater in high-than in low-N soil, and did not respond to elevated CO2. The density of protozoa did not respond to soil N but increased marginally (P < 0.06) under elevated CO2. Only in high-N soil did arbuscular mycorrhizal fungi and microarthropods respond to CO2. In high-N soil, arbuscular mycorrhizal root mass was twice as great, and extramatrical hyphae were 11% longer in elevated than in ambient CO2 treatments. Microarthropod density and activity were determined in situ using minirhizotrons. Microarthropod density did not change in response to elevated CO2, but in high-N soil, microarthropods were more strongly associated with fine roots under elevated than ambient treatments. Overall, in contrast to the hypotheses, the strongest response to elevated atmospheric CO2 was in the rhizosphere where (1) unchanged microbial biomass and greater numbers of protozoa (P < 0.06) suggested faster bacterial turnover, (2) arbuscular mycorrhizal root length increased, and (3) the number of microarthropods observed on fine roots rose. Received: 18 March 1997 / Accepted: 5 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号