首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
Pseudomonas sp. strain PG2982 has the ability to use the phosphonate herbicide, glyphosate, as a sole phosphorus source (J. K. Moore, H. D. Braymer, and A. D. Larson, Appl. Environ. Microbiol. 46:316-320, 1983). Glyphosate uptake is maximal in the late log phase of growth and is induced by phosphate starvation. Uptake is inhibited by phosphate and arsenate, but not by the amino acids glycine and sarcosine. The Km and Vmax for glyphosate uptake were calculated to be 23 microM and 0.97 nmol/mg (dry weight) per min, respectively. A phosphate transport system with a broad substrate specificity may be responsible for glyphosate uptake.  相似文献   

2.
Glyphosate catabolism by Pseudomonas sp. strain PG2982.   总被引:7,自引:0,他引:7       下载免费PDF全文
The pathway for the degradation of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. PG2982 has been determined by using metabolic radiolabeling experiments. Radiorespirometry experiments utilizing [3-14C]glyphosate revealed that approximately 50 to 59% of the C-3 carbon was oxidized to CO2. Fractionation of stationary-phase cells labeled with [3-14C]glyphosate revealed that from 45 to 47% of the assimilated label is distributed to proteins and that the amino acids methionine and serine are highly labeled. Adenine and guanine received 90% of the C-3 label found in the nucleic acid fraction, and the only pyrimidine base labeled was thymine. These results indicated that C-3 of glyphosate was at some point metabolized to a C-1 compound whose ultimate fate could be both oxidation to CO2 and distribution to amino acids and nucleic acid bases that receive a C-1 group from the C-1-donating coenzyme tetrahydrofolate. Pulse-labeling of PG2982 cells with [3-14C]glyphosate resulted in the isolation of [3-14C]sarcosine as an intermediate in glyphosate degradation. Examination of crude extracts prepared from PG2982 cells revealed the presence of a sarcosine-oxidizing enzyme that oxidizes sarcosine to glycine and formaldehyde. These results indicate that the first step in glyphosate degradation by PG2982 is cleavage of the carbon-phosphorus bond, resulting in the release of sarcosine and a phosphate group. The phosphate group is utilized as a source of phosphorus, and the sarcosine is degraded to glycine and formaldehyde. This pathway is supported by the results of [1,2-14C]glyphosate metabolism studies, which show that radioactivity in the proteins of labeled cells is found only in the glycine and serine residues.  相似文献   

3.
A plasmid carrying a 2.4-kilobase-pair fragment of DNA from Pseudomonas sp. strain PG2982 has been isolated which was able to increase the glyphosate resistance of Escherichia coli cells. The increase in resistance was dependent on the presence of a plasmid-encoded protein with a molecular weight of approximately 33,000, the product of a translational fusion between a gene on the vector, pACYC184, and the insert DNA. An overlapping region of the PG2982 chromosome carrying the entire gene (designated igrA) was cloned, and a plasmid (pPG18) carrying the gene was also able to increase glyphosate resistance in E. coli. A protein with a molecular weight of approximately 40,000 was encoded by the PG2982 DNA contained in pPG18. This plasmid was not able to complement a mutation in the gene for 5-enolpyruvylshikimate-3-phosphate synthase (aroA) in E. coli, and modification of glyphosate by E. coli cells containing the plasmid could not be demonstrated. The nucleotide sequence of the PG2982 DNA contained an open reading frame able to encode a protein with a calculated molecular weight of 39,396.  相似文献   

4.
The bacterium Pseudomonas PG2982 metabolizes glyphosate (N-(phosphonomethyl)glycine) by converting it to glycine, a one-carbon unit, and phosphate. Here we show that this conversion involves the intermediate formation of sarcosine. When cells are incubated with [14C]glyphosate, the 14C can be entrapped in glycine or sarcosine. With added sarcosine, 14C from all three carbons of glyphosate is recovered solely in sarcosine. In experiments with glycine, radioactivity from the carboxymethyl moiety of glyphosate is trapped in glycine as well as serine, whereas radioactivity from the phosphonomethyl carbon is only incorporated into serine. These results are consistent with a pathway involving the conversion of glyphosate to sarcosine by cleavage of its carbon-phosphorus (C-P) bond, followed by the oxidation of sarcosine to glycine and formaldehyde.  相似文献   

5.
A plasmid carrying a 2.4-kilobase-pair fragment of DNA from Pseudomonas sp. strain PG2982 has been isolated which was able to increase the glyphosate resistance of Escherichia coli cells. The increase in resistance was dependent on the presence of a plasmid-encoded protein with a molecular weight of approximately 33,000, the product of a translational fusion between a gene on the vector, pACYC184, and the insert DNA. An overlapping region of the PG2982 chromosome carrying the entire gene (designated igrA) was cloned, and a plasmid (pPG18) carrying the gene was also able to increase glyphosate resistance in E. coli. A protein with a molecular weight of approximately 40,000 was encoded by the PG2982 DNA contained in pPG18. This plasmid was not able to complement a mutation in the gene for 5-enolpyruvylshikimate-3-phosphate synthase (aroA) in E. coli, and modification of glyphosate by E. coli cells containing the plasmid could not be demonstrated. The nucleotide sequence of the PG2982 DNA contained an open reading frame able to encode a protein with a calculated molecular weight of 39,396.  相似文献   

6.
The glyphosate-degrading Pseudomonas sp. strain PG2982 was found to utilize each of 10 organophosphonate compounds as a sole phosphorus source. Representative compounds tested included alkylphosphonates, 1-amino-substituted alkylphosphonates, amino-terminal phosphonates, and an arylphosphonate. This report demonstrates that PG2982 is capable of utilizing a wider range of structurally different organophosphonate compounds than any organism described to date.  相似文献   

7.
Metabolism of glyphosate in Pseudomonas sp. strain LBr   总被引:1,自引:0,他引:1  
Metabolism of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. strain LBr, a bacterium isolated from a glyphosate process waste stream, was examined by a combination of solid-state 13C nuclear magnetic resonance experiments and analysis of the phosphonate composition of the growth medium. Pseudomonas sp. strain LBr was capable of eliminating 20 mM glyphosate from the growth medium, an amount approximately 20-fold greater than that reported for any other microorganism to date. The bacterium degraded high levels of glyphosate, primarily by converting it to aminomethylphosphonate, followed by release into the growth medium. Only a small amount of aminomethylphosphonate (about 0.5 to 0.7 mM), which is needed to supply phosphorus for growth, could be metabolized by the microorganism. Solid-state 13C nuclear magnetic resonance analysis of strain LBr grown on 1 mM [2-13C,15N]glyphosate showed that about 5% of the glyphosate was degraded by a separate pathway involving breakdown of glyphosate to glycine, a pathway first observed in Pseudomonas sp. strain PG2982. Thus, Pseudomonas sp. strain LBr appears to possess two distinct routes for glyphosate detoxification.  相似文献   

8.
Lyophilized samples of Pseudomonas sp. PG2982 grown on 13C- and 15N-labeled glyphosate have been analyzed by single and double cross-polarization 13C NMR. Both the carbon and nitrogen metabolism of glyphosate are significantly influenced by the nitrogen source used for the growth of the organism. When ammonium sulfate is the source of nitrogen, the glycyl moiety of glyphosate is utilized intact for the biosynthesis of purines and proteins. But when the organism is grown on glycine as the source of nitrogen, the carbons and nitrogen of glyphosate are scrambled, consistent with incorporation into serine and pyruvate, and hence participation in general metabolism. When both ammonium and glycine are present in the growth medium, regulation of the metabolic fluxes along each of the two major pathways appears to be determined by the intracellular glycine concentration.  相似文献   

9.
Metabolism of glyphosate in Pseudomonas sp. strain LBr.   总被引:2,自引:2,他引:0       下载免费PDF全文
Metabolism of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. strain LBr, a bacterium isolated from a glyphosate process waste stream, was examined by a combination of solid-state 13C nuclear magnetic resonance experiments and analysis of the phosphonate composition of the growth medium. Pseudomonas sp. strain LBr was capable of eliminating 20 mM glyphosate from the growth medium, an amount approximately 20-fold greater than that reported for any other microorganism to date. The bacterium degraded high levels of glyphosate, primarily by converting it to aminomethylphosphonate, followed by release into the growth medium. Only a small amount of aminomethylphosphonate (about 0.5 to 0.7 mM), which is needed to supply phosphorus for growth, could be metabolized by the microorganism. Solid-state 13C nuclear magnetic resonance analysis of strain LBr grown on 1 mM [2-13C,15N]glyphosate showed that about 5% of the glyphosate was degraded by a separate pathway involving breakdown of glyphosate to glycine, a pathway first observed in Pseudomonas sp. strain PG2982. Thus, Pseudomonas sp. strain LBr appears to possess two distinct routes for glyphosate detoxification.  相似文献   

10.
Control of glyphosate uptake and metabolism in Pseudomonas sp. 4ASW   总被引:1,自引:0,他引:1  
Abstract The tandem mini-exon gene repeat is an ideal diagnostic target for trypanosomatids because it includes sequences that are conserved absolutely coupled with regions of extreme variability. We have exploited these features and the polymerase chain reaction to differentiate Phytomonas strains isolated from phloem, fruit or latex of various host plants. While the transcribed regions are nearly identical, the intergenic sequences are variable in size and content (130–332 base pairs). The mini-exon genes of these phytomonads can therefore be distinguished from each other and from the corresponding genes in insect trypanosomes, with which they are oft confused.  相似文献   

11.
We investigated the uptake of biphenyl by the psychrotolerant, polychlorinated biphenyl (PCB)-degrader, Pseudomonas sp. strain Cam-1 and the mesophilic PCB-degrader, Burkholderia sp. strain LB400. The effects of growth substrates, metabolic inhibitors, and temperature on [14C]biphenyl uptake were studied. Biphenyl uptake by both strains was induced by growth on biphenyl, and was inhibited by dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP), which are metabolic uncouplers. The Vmax and Km for biphenyl uptake by Cam-1 at 22 degrees C were 5.4 +/- 1.7 nmol x min(-1) x (mg of cell protein)(-1) and 83.1 +/- 15.9 micromol x L(-1), respectively. The Vmax and Km for biphenyl uptake by LB400 at 22 degrees C were 3.2 +/- 0.3 nmol x min(-1) x (mg of cell protein(-1)) and 51.5 +/- 9.6 micromol x L(-1), respectively. At 15 degrees C, the maximum rate for biphenyl uptake by Cam-1 and LB400 was 3.1 +/- 0.3 nmol x min(-1) x (mg of cell protein)(-1) and 0.89 +/- 0.1 nmol x min(-1) x (mg of cell protein)(-1), respectively. Thus, the maximum rate for biphenyl uptake by Cam-1 at 15 degrees C was more than 3 times higher than that for LB400.  相似文献   

12.
Transport of mevalonate by Pseudomonas sp. strain M.   总被引:4,自引:4,他引:0       下载免费PDF全文
Pseudomonas sp. M, isolated from soil by elective culture on R,S-mevalonate as the sole source of carbon, possessed an inducible transport system for mevalonate. This high-affinity system had a pH optimum of 7.0, a temperature optimum of 30 degrees C, a Km for R,S-mevalonate of 88 microM, and a V max of 26 nmol of mevalonate transported per min/mg of cells (dry weight). Transport was energy dependent since azide, cyanide, or m-chlorophenylhydrazone caused complete cessation of transport activity. Transport of mevalonate was highly substrate specific. Of the 16 structural analogs of mevalonate tested, only acetoacetate, mevinolin, and mevaldehyde significantly inhibited transport. Growth of cells on mevalonate induced transport activity by 40- to 65-fold over that observed in cells grown on alternate carbon sources. A biphasic pattern for cell growth, as well as for induction of mevalonate transport activity, was observed when mevalonate was added to a culture actively growing on glucose. The induction of transport activity under these conditions began within 30 min after the addition of mevalonate and reached 60% of maximal activity during phase I. A further increase in mevalonate transport activity occurred during phase II of growth. Glucose was the preferred carbon source for growth during phase I, whereas mevalonate was preferred during phase II. Only one isomer of the R,S-mevalonate mixture appeared to be utilized, since growth ceased after 45 to 50% of the total mevalonate was depleted from the medium. However, nearly 30% of the preferred mevalonate isomer was depleted from the medium during phase I without significant metabolism to CO2. These results suggest that mevalonate or a mevalonate catabolite may accumulate in cells of Pseudomonas sp. M during phase I and that glucose metabolism may inhibit or repress the expression of enzymes further along the mevalonate catabolic pathway.  相似文献   

13.
Aims: To isolate and characterize a potent molybdenum‐reducing bacterium. Methods and Results: A minimal salt medium supplemented with 10 mmol l?1 molybdate, glucose (1·0%, w/v) as a carbon source and ammonium sulfate (0·3%, w/v) as a nitrogen source was used in the screening process. A molybdenum‐reducing bacterium was isolated and tentatively identified as Pseudomonas sp. strain DRY2 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. Strain DRY2 produced 2·4, 3·2 and 6·2 times more molybdenum blue compared to Serratia marcescens strain DRY6, Enterobacter cloacae strain 48 and Eschericia coli K12, respectively. Molybdate reduction was optimum at 5 mmol l?1 phosphate. The optimum molybdate concentration that supported molybdate reduction at 5 mmol l?1 phosphate was between 15 and 25 mmol l?1. Molybdate reduction was optimum at 40°C and at pH 6·0. Phosphate concentrations higher than 5 mmol l?1 strongly inhibited molybdate reduction. Inhibitors of electron transport system such as antimycin A, rotenone, sodium azide and cyanide did not inhibit the molybdenum‐reducing enzyme activity. Chromium, copper, mercury and lead inhibited the molybdenum‐reducing activity. Conclusions: A novel molybdenum‐reducing bacterium with high molybdenum reduction capacity has been isolated. Significance and Impact of the Study: Molybdenum is an emerging global pollutant that is very toxic to ruminants. The characteristics of this bacterium suggest that it would be useful in the bioremediation of molybdenum pollutant.  相似文献   

14.
Abstract A Pseudomonas sp. strain WR401 was isolated for growth on 3-, 4-, and 5-methylsalicylate. The organism was capable of growth on o -toluate. The data on enzyme activities in cell-free extracts, DHB dehydrogenase and catechol 2,3-dioxygenase, as well as the cooxidation of the substrate analog 2-chlorobenzoate yielding 3-chlorocatechol indicated a pathway for o -toluate degradation through 6-methyldihydrodihydroxybenzoate, 3-methylcatechol and further through the meta -pathway. In contrast to other toluate dioxygenating enzymes found in m - and p -toluate degrading organisms, strain WR401 was able to dioxygenate a wider range of chlorobenzoates including 2-chlorobenzoate.  相似文献   

15.
A bacterial isolate, tentatively identified as Pseudomonas sp. strain TR3, was found to utilize the diaryl ester phenylbenzoate as sole source of carbon and energy. This strain has the ability to productively degrade phenylbenzoate and some substituted derivatives by a catabolic sequence which was characterized biochemically. The biodegradation of phenylbenzoate is thus initiated by an inducible esterase, effectively hydrolyzing the diaryl esters to produce stoichiometric amounts of two monoaromatic metabolites, identified as benzoate and phenol in the case of phenylbenzoate. The diaryl ester p-tolylbenzoate was hydrolyzed to yield benzoate and 4-methylphenol while 4-chlorophenylbenzoate gave rise to the production of benzoate and 4-chlorophenol. These monoaromatic catabolites were further degraded via the oxoadipate pathway.  相似文献   

16.
Bacterial iodate (IO(3)(-)) reduction is poorly understood largely due to the limited number of available isolates as well as the paucity of information about key enzymes involved in the reaction. In this study, an iodate-reducing bacterium, designated strain SCT, was newly isolated from marine sediment slurry. SCT is phylogenetically closely related to the denitrifying bacterium Pseudomonas stutzeri and reduced 200 microM iodate to iodide (I(-)) within 12 h in an anaerobic culture containing 10 mM nitrate. The strain did not reduce iodate under the aerobic conditions. An anaerobic washed cell suspension of SCT reduced iodate when the cells were pregrown anaerobically with 10 mM nitrate and 200 microM iodate. However, cells pregrown without iodate did not reduce it. The cells in the former category showed methyl viologen-dependent iodate reductase activity (0.31 U mg(-1)), which was located predominantly in the periplasmic space. Furthermore, SCT was capable of anaerobic growth with 3 mM iodate as the sole electron acceptor, and the cells showed enhanced activity with respect to iodate reductase (2.46 U mg(-1)). These results suggest that SCT is a dissimilatory iodate-reducing bacterium and that its iodate reductase is induced by iodate under anaerobic growth conditions.  相似文献   

17.
Methylammonium uptake by Rhizobium sp. strain 32H1   总被引:15,自引:9,他引:6       下载免费PDF全文
We present evidence that methylammonium is transported into cowpea Rhizobium sp. strain 32H1 cells by a membrane carrier whose natural substrate is ammonium. After growth in low (0.2%) oxygen, which is necessary for nitrogen fixation by these cells, respiring rhizobial cells took up [14C]methylammonium to high intracellular levels. Cells grown in atmospheric (21%) oxygen did not take up methylammonium. Uptake (transport plus metabolism) was maximal in cells harvested in the early stationary phase of batch culture and had a distinct pH optimum of 6.5 to 7.0. Uptake was inhibited by metabolic poisons that dissipate the proton motive force or inhibit ATP synthesis. Inhibition of uptake by ammonium and the counterflow phenomenon indicated that ammonium and methylammonium share a transport carrier. Of the methylammonium taken up, about 15% was accumulated to intracellular levels 20 times higher than those in the medium; most of the methylammonium was metabolized to gamma-N-methylglutamine.  相似文献   

18.
Biodegradation of 4-nitrotoluene by Pseudomonas sp. strain 4NT.   总被引:7,自引:2,他引:5       下载免费PDF全文
A strain of Pseudomonas spp. was isolated from nitrobenzene-contaminated soil on 4-nitrotoluene as the sole source of carbon, nitrogen, and energy. The organism also grew on 4-nitrobenzaldehyde, and 4-nitrobenzoate. 4-Nitrobenzoate and ammonia were detected in the culture fluid of glucose-grown cells after induction with 4-nitrotoluene. Washed suspensions of 4-nitrotoluene- or 4-nitrobenzoate-grown cells oxidized 4-nitrotoluene, 4-nitrobenzaldehyde, 4-nitrobenzyl alcohol, and protocatechuate. Extracts from induced cells contained 4-nitrobenzaldehyde dehydrogenase, 4-nitrobenzyl alcohol dehydrogenase, and protocatechuate 4,5-dioxygenase activities. Under anaerobic conditions, cell extracts converted 4-nitrobenzoate or 4-hydroxylaminobenzoate to protocatechuate. Conversion of 4-nitrobenzoate to protocatechuate required NADPH. These results indicate that 4-nitrotoluene was degraded by an initial oxidation of the methyl group to form 4-nitrobenzyl alcohol, which was converted to 4-nitrobenzoate via 4-nitrobenzaldehyde. The 4-nitrobenzoate was reduced to 4-hydroxylaminobenzoate, which was converted to protocatechuate. A protocatechuate 4,5-dioxygenase catalyzed meta-ring fission of the protocatechuate. The detection of 4-nitrobenzaldehyde and 4-nitrobenzyl alcohol dehydrogenase and 4-nitrotoluene oxygenase activities in 4-nitrobenzoate-grown cells suggests that 4-nitrobenzoate is an inducer of the 4-nitrotoluene degradative pathway.  相似文献   

19.
H Maki  N Masuda  Y Fujiwara  M Ike    M Fujita 《Applied microbiology》1994,60(7):2265-2271
An alkylphenol ethoxylate-degrading bacterium was isolated from activated sludge of a municipal sewage treatment plant by enrichment culture. This organism was found to belong to the genus Pseudomonas; since no corresponding species was identified, we designated it as Pseudomonas sp. strain TR01. This strain had an optimal temperature and pH of 30 degrees C and 7, respectively, for both growth and the degradation of Triton N-101 (a nonylphenol ethoxylate in which the average number of ethylene oxide [EO] units is 9.5). The strain was unable to mineralize Triton N-101 but was able to degrade its EO chain exclusively. The resulting dominant intermediate was identified by normal-phase high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry as a nonylphenol ethoxylate with 2 mol of EO units. A carboxylated metabolite, [(nonylphenoxy)ethoxy]acetic acid, was detected by gas chromatography-mass spectrometry. This bacterium also metabolized alcohol ethoxylates with various numbers of EO units but not polyethylene glycols whatever their degree of polymerization. By oxygen consumption assay, the alkyl group or arene corresponding to the hydrophobic part of alcohol ethoxylates or alkylphenol ethoxylates was shown to contribute to the induction of the metabolic system of the EO chain of Triton N-101, instead of the EO chain itself, which corresponds to its hydrophilic part. Thus, the isolated pseudomonad bacterium has unique substrate assimilability: it metabolizes the EO chain only when the chain linked to bulky hydrophobic groups.  相似文献   

20.
Biodegradation of 2-nitrotoluene by Pseudomonas sp. strain JS42.   总被引:7,自引:2,他引:5       下载免费PDF全文
A strain of Pseudomonas sp. was isolated from nitrobenzene-contaminated soil and groundwater on 2-nitrotoluene as the sole source of carbon, energy, and nitrogen. Bacterial cells growing on 2-nitrotoluene released nitrite into the growth medium. The isolate also grew on 3-methylcatechol, 4-methylcatechol, and catechol. 2-Nitrotoluene, 3-methylcatechol, and catechol stimulated oxygen consumption by intact cells regardless of the growth substrate. Crude extracts from the isolate contained catechol 2,3-dioxygenase and 2-hydroxy-6-oxohepta-2,4-dienoate hydrolase activity. The results suggest that 2-nitrotoluene is subject to initial attack by a dioxygenase enzyme that forms 3-methylcatechol with concomitant release of nitrite. The 3-methylcatechol is subsequently degraded via the meta ring fission pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号