首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 358 毫秒
1.
Because of their relative resistance to viral cytopathic effects, APC can provide an alternative reservoir for latently integrated HIV. We used an HIV-transgenic mouse model in which APC serve as the major source of inducible HIV expression to study mechanisms by which integrated virus can be activated in these cells. When admixed with transgenic APC, activated T lymphocytes provided a major contact-dependent stimulus for viral protein expression in vitro. Using blocking anti-CD154 mAb as well as CD154-deficient T cells, the HIV response induced by activated T lymphocytes was demonstrated to require CD40-CD154 interaction. The role of this pathway in the induction of HIV expression from APC in vivo was further studied in an experimental model involving infection of the HIV-transgenic mice with PLASMODIUM: chabaudi parasites. Enhanced viral production by dendritic cells and macrophages in infected mice was associated with up-regulated CD40 expression. More importantly, in vivo treatment with blocking anti-CD154 mAb markedly reduced viral expression in P. chabaudi-infected animals. Together, these findings indicate that immune activation of integrated HIV can be driven by the costimulatory interaction of activated T cells with APC. Because chronic T cell activation driven by coinfections as well as HIV-1 itself is a characteristic of HIV disease, this pathway may be important in sustaining viral expression from APC reservoirs.  相似文献   

2.
CD4-mediated signals induce T cell dysfunction in vivo.   总被引:1,自引:0,他引:1  
Triggering of CD4 coreceptors on both human and murine T cells can suppress TCR/CD3-induced secretion of IL-2. We show here that pretreatment of murine CD4+ T cells with the CD4-specific mAb YTS177 inhibits the CD3-mediated activation of the IL-2 promoter factors NF-AT and AP-1. Ligation of CD4 molecules on T cells leads to a transient stimulation of extracellular signal-regulated kinase (Erk) 2, but not c-Jun N-terminal kinase (JNK) activity. Pretreatment with anti-CD4 mAb impaired anti-CD3-induced Erk2 activation. Costimulation with anti-CD28 overcame the inhibitory effect of anti-CD4 Abs, by induction of JNK activation. The in vivo relevance of these studies was demonstrated by the observation that CD4+ T cells from BALB/c mice injected with nondepleting anti-CD4 mAb were inhibited in their ability to respond to OVA Ag-induced proliferation and IL-2 secretion. Interestingly, in vivo stimulation with anti-CD28 mAb restored IL-2 secretion. Furthermore, animals pretreated with anti-CD4 elicited enhanced IL-4 secretion induced by OVA and CD28. These observations suggest that CD4-specific Abs can inhibit T cell activation by interfering with signal 1 transduced through the TCR, but potentiate those delivered through the costimulatory molecule CD28. These studies have relevance to understanding the mechanism of tolerance induced by nondepleting anti-CD4 mAb used in animal models for allograft studies, autoimmune pathologies, and for immunosuppressive therapies in humans.  相似文献   

3.
The interplay of CD4(+) and CD8(+) T cells targeting autoantigens is responsible for the progression of a number of autoimmune diseases, including type 1 diabetes mellitus (T1D). Understanding the molecular mechanisms that regulate T cell activation is crucial for designing effective therapies for autoimmune diseases. We probed a panel of Abs with T cell-modulating activity and identified a mAb specific for the H chain of CD98 (CD98hc) that was able to suppress T cell proliferation. The anti-CD98hc mAb also inhibited Ag-specific proliferation and the acquisition of effector function by CD4(+) and CD8(+) T cells in vitro and in vivo. Injection of the anti-CD98hc mAb completely prevented the onset of cyclophosphamide-induced diabetes in NOD mice. Treatment of diabetic NOD mice with anti-CD98hc reversed the diabetic state to normal levels, coincident with decreased proliferation of CD4(+) T cells. Furthermore, treatment of diabetic NOD mice with CD98hc small interfering RNA resolved T1D. These data indicate that strategies targeting CD98hc might have clinical application for treating T1D and other T cell-mediated autoimmune diseases.  相似文献   

4.
Recent studies have demonstrated that sulfated polyanions (SP) are potent inhibitors of HIV infection in vitro, appearing to inhibit virus attachment. To understand the mode of action of these compounds a large panel of SP were examined for their ability to inhibit HIV infection, block anti-CD4 mAb binding and, when immobilized, bind soluble CD4 and virion gp120. Based on anti-CD4 mAb binding-inhibition studies a SP binding site was identified on the CD4 molecule. Dextran sulfate (DXS)-500 kDa, polyvinylsulfate (PVS), and polyanethole sulfonate were particularly potent SP inhibitors, blocking the binding of 11 of the 12 anti-CD4 mAb tested. These 11 mAb are known to interact with the two amino-terminal Ig-like domains of CD4. In fact, DXS-500 kDa exhibited an hierarchy of inhibition of anti-CD4 mAb which suggests that SP bind to a conformational site incorporating the first two Ig-like domains of CD4. This SP binding site is clearly distinct but closely associated with the gp120 binding region of CD4. In terms of anti-HIV activity there was no evidence that SP act at the virion level as rgp120 did not bind to immobilized SP and preincubation of virions with SP did not affect infectivity. In contrast, many of the SP tested showed some affinity for CD4 based on anti-CD4 mAb blocking studies and binding of soluble CD4 to immobilized SP. The most active in this regard were DXS-500 kDa and PVS, whose anti-HIV activity could be entirely due to disruption of the CD4-gp120 interaction. However, with SP such as heparin, fucoidan, the carrageenans, and polyanethole sulfonate, although CD4 blocking may contribute to anti-HIV activity, some other anti-viral mechanism is also operating. Finally, pentosan sulfate, a SP with anti-HIV activity comparable to DXS-500 kDa and PVS, showed little or no reactivity with CD4 and must inhibit HIV infection by a totally CD4-independent mechanism.  相似文献   

5.
Extracellular cyclophilins have been well described as chemotactic factors for various leukocyte subsets. This chemotactic capacity is dependent upon interaction of cyclophilins with the cell surface signaling receptor CD147. Elevated levels of extracellular cyclophilins have been documented in several inflammatory diseases. We propose that extracellular cyclophilins, via interaction with CD147, may contribute to the recruitment of leukocytes from the periphery into tissues during inflammatory responses. In this study, we examined whether extracellular cyclophilin-CD147 interactions might influence leukocyte recruitment in the inflammatory disease allergic asthma. Using a mouse model of asthmatic inflammation, we show that 1) extracellular cyclophilins are elevated in the airways of asthmatic mice; 2) mouse eosinophils and CD4+ T cells express CD147, which is up-regulated on CD4+ T cells upon activation; 3) cyclophilins induce CD147-dependent chemotaxis of activated CD4+ T cells in vitro; 4) in vivo treatment with anti-CD147 mAb significantly reduces (by up to 50%) the accumulation of eosinophils and effector/memory CD4+ T lymphocytes, as well as Ag-specific Th2 cytokine secretion, in lung tissues; and 5) anti-CD147 treatment significantly reduces airway epithelial mucin production and bronchial hyperreactivity to methacholine challenge. These findings provide a novel mechanism whereby asthmatic lung inflammation may be reduced by targeting cyclophilin-CD147 interactions.  相似文献   

6.
The systemic adoptive transfer of activated T cells, derived from tumor-draining lymph nodes (LNs), mediates the regression of established tumors. In this study, the requirement of cell adhesion molecules, CD11a/CD18 (LFA-1), CD54 (ICAM-1), CD49d/CD29 (VLA-4), and CD106 (VCAM-1), for T cell infiltration into tumors and antitumor function was investigated. Administration of anti-CD11a mAb completely abrogated the efficacy of adoptive immunotherapy for both intracranial and pulmonary metastatic MCA 205 fibrosarcomas. In contrast, adoptive immunotherapy was effective in animals treated with anti-CD49d mAb, anti-CD106 mAb, anti-CD54 mAb, or in CD54 knockout recipients. Trafficking of transferred cells to the intracranial tumor was not affected by any of the mAb. However, the tumor-specific secretion of IFN-gamma by activated LN T cells was suppressed by anti-CD11a mAb or anti-CD54 mAb. To account for the different effects of CD11a and CD54 blockade in vivo, an additional CD11a/CD18 ligand, CD102 (ICAM-2), was demonstrated on tumor-associated macrophages but not on tumor cells. These results show that CD11a mediates a critical function in interactions between effector T cells, tumor cells, and host accessory cells in situ leading to tumor regression.  相似文献   

7.
Selection in vivo of potent mAbs to human CD4 useful for immunotherapy, e.g., for the induction of immunological tolerance, is restricted for ethical reasons. We therefore used multiple transgenic mice that lack murine CD4, but express human CD4 specifically on Th cells, and HLA-DR3 as its natural counterligand (CD4/DR3 mice). The injection of CD4/DR3 mice with anti-human CD4 (mAb Max.16H5) before immunization with tetanus toxoid (TT, day 0) totally blocked the formation of specific Abs. This state of unresponsiveness persisted a subsequent boost again performed in the presence of anti-human CD4. When these mice were left untreated for at least 40 days, and were then re-exposed with TT, but in the absence of anti-human CD4, they consistently failed to induce specific Abs (long-term unresponsiveness). Exposure to second party Ags (hen egg lysozyme, human acetylcholine receptor) induced specific Abs comparable with control mice, demonstrating that the anti-CD4-induced unresponsiveness was Ag specific (immunological tolerance). Importantly, the concurrent injection of TT and anti-human CD4 at day 0, followed by another two anti-CD4 treatments, also led to tolerant animals, indicating that tolerance was inducible at the same day as the Ag exposure is provided. We finally demonstrate a limited ability of spleen cells to respond to TT in vitro, indicating that T cells are essentially involved in the maintenance of TT-specific tolerance. These data show for the first time that the human CD4 coreceptor mediates tolerance-inducing signals when triggered by an appropriate ligand in vivo.  相似文献   

8.
NKT cells are known to regulate effector T cell immunity during tolerance, autoimmunity, and antitumor immunity. Whether age-related changes in NKT cell number or function occur remains unclear. Here, we investigated whether young vs aged (3 vs 22 mo old) mice had different numbers of CD1d-restricted NKT cells and whether activation of NKT cells by CD1d in vivo contributed to age-related suppression of T cell immunity. Flow cytometric analyses of spleen and LN cells revealed a 2- to 3-fold increase in the number of CD1d tetramer-positive NKT cells in aged mice. To determine whether NKT cells from aged mice differentially regulated T cell immunity, we first examined whether depletion of NK/NKT cells affected the proliferative capacity of splenic T cells. Compared with those from young mice, intact T cell preparations from aged mice had impaired proliferative responses whereas NK/NKT-depleted preparations did not. To examine the specific contribution of NKT cells to age-related T cell dysfunction, Ag-specific delayed-type hypersensitivity and T cell proliferation were examined in young vs aged mice given anti-CD1d mAb systemically. Compared with young mice, aged mice given control IgG exhibited impaired Ag-specific delayed-type hypersensitivity and T cell proliferation, which could be significantly prevented by systemic anti-CD1d mAb treatment. The age-related impairments in T cell immunity correlated with an increase in the production of the immunosuppressive cytokine IL-10 by splenocytes that was likewise prevented by anti-CD1d mAb treatment. Together, our results suggest that CD1d activation of NKT cells contributes to suppression of effector T cell immunity in aged mice.  相似文献   

9.
10.
The present study was undertaken to determine whether mouse follicular dendritic cells (FDC) bear Fc epsilon RII (CD23) and whether IgE-immune complexes are retained by FDC. Mouse Fc epsilon RII was localized by both L and electron microscopy using the mAb B3B4. In lymph nodes of normal mice, Fc epsilon RII was low but detectable on FDC. By 14 days after Nippostrongylus brasiliensis infection, the level of Fc epsilon RII increased on B lymphocytes located in the cortex of draining mesenteric lymph nodes. However, the Fc epsilon RII level on FDC remained low. Although numerous IgE-producing plasma cells were seen at day 14, very little IgE was associated with FDC. By 26 days after infection, Fc epsilon RII was observed on FDC in increased levels and IgE binding was clearly associated with FDC. Unexpectedly, FDC of control mice immunized with albumin in CFA to elicit an IgG response showed intense labeling for Fc epsilon RII. In contrast, the B cells exhibited very little Fc epsilon RII. IgE immune complexes were observed in association with FDC in the CFA-immunized mice. When mice were given a hapten-specific monoclonal of the IgE isotype, hapten carrier complexes were trapped and retained on Fc epsilon RII-bearing FDC. In conclusion, FDC were clearly one of the major murine cell types bearing Fc epsilon RII. IgE immune complexes were found in association with FDC and Fc epsilon RII appeared to play a major role in trapping and retaining IgE immune complexes. FDC Fc epsilon RII was subject to regulatory control, but the Fc epsilon RII level on FDC was regulated very differently from the Fc epsilon RII level on B cells.  相似文献   

11.
Members of the T cell Ig and mucin (TIM) family have recently been implicated in the control of T cell-mediated immune responses. In this study, we found TIM-1 expression on anti-IgM- or anti-CD40-stimulated splenic B cells, which was further up-regulated by the combination of anti-IgM and anti-CD40 Abs. On the other hand, TIM-1 ligand was constitutively expressed on B cells and inducible on anti-CD3+ anti-CD28-stimulated CD4+ T cells. In vitro stimulation of activated B cells by anti-TIM-1 mAb enhanced proliferation and expression of a plasma cell marker syndecan-1 (CD138). We further examined the effect of TIM-1 signaling on antibody production in vitro and in vivo. Higher levels of IgG2b and IgG3 secretion were detected in the culture supernatants of the anti-TIM-1-stimulated B cells as compared with the control IgG-stimulated B cells. When immunized with T-independent antigen TNP-Ficoll, TNP-specific IgG1, IgG2b, and IgG3 Abs were slightly increased in the anti-TIM-1-treated mice. When immunized with T-dependent antigen OVA, serum levels of OVA-specific IgG2b, IgG3, and IgE Abs were significantly increased in the anti-TIM-1-treated mice as compared with the control IgG-treated mice. These results suggest that TIM-1 signaling in B cells augments antibody production by enhancing B cell proliferation and differentiation.  相似文献   

12.
Elimination of the immunogenicity of therapeutic antibodies   总被引:4,自引:0,他引:4  
The immunogenicity of therapeutic Abs limits their long-term use. The processes of complementarity-determining region grafting, resurfacing, and hyperchimerization diminish mAb immunogenicity by reducing the number of foreign residues. However, this does not prevent anti-idiotypic and anti-allotypic responses following repeated administration of cell-binding Abs. Classical studies have demonstrated that monomeric human IgG is profoundly tolerogenic in a number of species. If cell-binding Abs could be converted into monomeric non-cell-binding tolerogens, then it should be possible to pretolerize patients to the therapeutic cell-binding form. We demonstrate that non-cell-binding minimal mutants of the anti-CD52 Ab CAMPATH-1H lose immunogenicity and can tolerize to the "wild-type" Ab in CD52-expressing transgenic mice. This finding could have utility in the long-term administration of therapeutic proteins to humans.  相似文献   

13.
Prostate cancer is the most common noncutaneous malignancy in men. The prostate stem cell Ag (PSCA) is a promising target for immunotherapy of advanced disease. Based on a novel mAb directed to PSCA, we established and compared a series of murine and humanized anti-CD3-anti-PSCA single-chain bispecific Abs. Their capability to redirect T cells for killing of tumor cells was analyzed. During these studies, we identified a novel bispecific humanized Ab that efficiently retargets T cells to tumor cells in a strictly Ag-dependent manner and at femtomolar concentrations. T cell activation, cytokine release, and lysis of target cells depend on a cross-linkage of redirected T cells with tumor cells, whereas binding of the anti-CD3 domain alone does not lead to an activation or cytokine release. Interestingly, both CD8(+) and CD4(+) T cells are activated in parallel and can efficiently mediate the lysis of tumor cells. However, the onset of killing via CD4(+) T cells is delayed. Furthermore, redirecting T cells via the novel humanized bispecific Abs results in a delay of tumor growth in xenografted nude mice.  相似文献   

14.
The size of the latent HIV reservoir is associated with the timing of therapeutic interventions and overall health of the immune system. Here, we demonstrate that T cell phenotypic signatures associate with viral reservoir size in a cohort of HIV vertically infected children and young adults under durable viral control, and who initiated anti-retroviral therapy (ART) <2 years old. Flow cytometry was used to measure expression of immune activation (IA), immune checkpoint (ICP) markers, and intracellular cytokine production after stimulation with GAG peptides in CD4 and CD8 T cells from cross-sectional peripheral blood samples. We also evaluated the expression of 96 genes in sort-purified total CD4 and CD8 T cells along with HIV-specific CD4 and CD8 T cells using a multiplexed RT-PCR approach. As a measure of HIV reservoir, total HIV-DNA quantification by real-time PCR was performed. Poisson regression modeling for predicting reservoir size using phenotypic markers revealed a signature that featured frequencies of PD-1+CD4 T cells, TIGIT+CD4 T cells and HIV-specific (CD40L+) CD4 T cells as important predictors and it also shows that time of ART initiation strongly affects their association with HIV-DNA. Further, gene expression analysis showed that the frequencies of PD-1+CD4 T cells associated with a CD4 T cell molecular profile skewed toward an exhausted Th1 profile. Our data provide a link between immune checkpoint molecules and HIV persistence in a pediatric cohort as has been demonstrated in adults. Frequencies of PD-1+ and TIGIT+CD4 T cells along with the frequency of HIV-specific CD4 T cells could be associated with the mechanism of viral persistence and may provide insight into potential targets for therapeutic intervention.  相似文献   

15.
The use of anti-CD3 x antitumor bispecific Abs is an attractive and highly specific approach in cancer therapy. Recombinant Ab technology now provides powerful tools to enhance the potency of such immunotherapeutic constructs. We designed a heterodimeric diabody specific for human CD19 on B cells and CD3epsilon chain of the TCR complex. After production in Escherichia coli and purification, we analyzed its affinity, stability, and pharmacokinetics, and tested its capacity to stimulate T cell proliferation and mediate in vitro lysis of CD19+ tumor cells. The effect of the diabody on tumor growth was investigated in an in vivo model using immunodeficient mice bearing a human B cell lymphoma. The CD3 x CD19 diabody specifically interacted with both CD3- and CD19-positive cells, was able to stimulate T cell proliferation in the presence of tumor cells, and induced the lysis of CD19+ cells in the presence of activated human PBL. The lytic potential of the diabody was enhanced in the presence of an anti-CD28 mAb. In vivo experiments indicated a higher stability and longer blood retention of diabodies compared with single chain Fv fragments. Treatment of immunodeficient mice bearing B lymphoma xenografts with the diabody and preactivated human PBL efficiently inhibited tumor growth. The survival time was further prolonged by including the anti-CD28 mAb. The CD3 x CD19 diabody is a powerful tool that should facilitate the immunotherapy of minimal residual disease in patients with B cell leukemias and malignant lymphomas.  相似文献   

16.
Chronic administration of anti-CD4 mAb prevents autoimmune disease in NZB/NZW F1 (B/W) mice. This may be due either to CD4 cell depletion or to inhibition of CD4 cell function. To evaluate the relative importance of these mechanisms, we devised a system in which the consequences of cell depletion could be analyzed independent of the inhibitory effects of chronic mAb therapy. This was accomplished by performing adult thymectomy before mAb administration. Specifically, female B/W mice underwent thymectomy or sham thymectomy at age 6 wk, followed at age 3 mo by a short course of either anti-CD4 (2 mg/wk for 3 wk) or saline. Treatment with anti-CD4 depleted 90% of circulating CD4 cells, but a small subpopulation (10%) of CD4 cells was refractory to depletion. In non-thymectomized mice, the CD4 population gradually reconstituted after cessation of therapy. In contrast, in thymectomized mice, recovery of CD4 cells was prevented by the absence of the thymus. Despite the striking reduction in CD4 cells in thymectomized mice, severe autoimmune disease developed, with autoantibody levels, proteinuria, and mortality comparable with non-thymectomized, nondepleted controls. The unexpected development of lupus nephritis in thymectomized, CD4-depleted B/W mice suggested that the thymus might be required to achieve the benefits of therapy with anti-CD4. To exclude this possibility, we demonstrated that chronic therapy with anti-CD4 prevents autoimmunity in thymectomized B/W mice. These findings imply that: 1) substantial depletion of CD4 T cells is not sufficient to suppress autoimmunity; 2) suppression of autoimmunity requires sustained functional inhibition of CD4 T cells; and 3) a small subpopulation of CD4 cells that is refractory to depletion by anti-CD4 is sufficient to promote the full expression of murine lupus in B/W mice.  相似文献   

17.
18.
B cells have been implicated in the pathogenesis of rheumatoid arthritis (RA) since the discovery of RA as an autoimmune disease. There is renewed interest in B cells in RA based on the clinical efficacy of B cell depletion therapy in RA patients. Although, reduced titers of rheumatoid factor and anti-cyclic citrullinated peptide Abs are recorded, the mechanisms that convey clinical improvement are incompletely understood. In the proteoglycan-induced arthritis (PGIA) mouse model of RA, we reported that Ag-specific B cells have two important functions in the development of arthritis. PG-specific B cells are required as autoantibody-producing cells as well as Ag-specific APCs. Herein we report on the effects of anti-CD20 mAb B cell depletion therapy in PGIA. Mice were sensitized to PG and treated with anti-CD20 Ab at a time when PG-specific autoantibodies and T cell activation were evident but before acute arthritis. In mice treated with anti-CD20 mAb, development of arthritis was significantly reduced in comparison to control mAb-treated mice. B cell depletion reduced the PG-specific autoantibody response. Furthermore, there was a significant reduction in the PG-specific CD4(+) T cell recall response as well as significantly fewer PG-specific CD4(+) T cells producing IFN-gamma and IL-17, but not IL-4. The reduction in PG-specific T cells was confirmed by the inability of CD4(+) T cells from B cell-depleted mice to adoptively transfer disease into SCID mice. Overall, B cell depletion during PGIA significantly reduced disease and inhibited both autoreactive B cell and T cell function.  相似文献   

19.
The primary effector cells of contact hypersensitivity (CHS) responses to dintrofluorobenzene (DNFB) are IFN-gamma-producing CD8(+) T cells, whereas CD4(+) T cells regulate the magnitude and duration of the response. The requirement for CD40-CD154 engagement during CD8(+) and CD4(+) T cell priming by hapten-presenting Langerhans cells (hpLC) is undefined and was tested in the current study. Similar CHS responses to DNFB were elicited in wild-type and CD154(-/-) animals. DNFB sensitization of CD154(-/-) mice primed IFN-gamma-producing CD8(+) T cells and IL-4-producing CD4(+) T cells. However, anti-CD154 mAb MR1 given during hapten sensitization inhibited hapten-specific CD8(+), but not CD4(+), T cell development and the CHS response to challenge. F(ab')(2) of MR1 failed to inhibit CD8(+) T cell development and the CHS response suggesting that the mechanism of inhibition is distinct from that of CD40-CD154 blockade. Furthermore, anti-CD154 mAb did not inhibit CD8(+) T cell development and CHS responses in mice depleted of CD4(+) T cells or in CD4(-/-) mice. During in vitro proliferation assays, hpLC from mice treated with anti-CD154 mAb during DNFB sensitization were less stimulatory for hapten-primed T cells than hpLC from either control mice or mice depleted of CD4(+) T cells before anti-CD154 mAb administration. These results demonstrate that development of IFN-gamma-producing CD8(+) T cells and the CHS response are not dependent on CD40-CD154 interactions. This study proposes a novel mechanism of anti-CD154 mAb-mediated inhibition of CD8(+) T cell development where anti-CD154 mAb acts indirectly through CD4(+) T cells to impair the ability of hpLC to prime CD8(+) T cells.  相似文献   

20.
BACKGROUND: The aim of this study was to collect quantitative data on damage to follicular dendritic cells (FDC) and on the structure of germinal centers (GC) in the early phase of HIV infection. METHODS: Lymph node sections from 10 HIV(+) subjects and from 5 HIV(-) control subjects were stained by immunohistochemistry for CD21, an FDC marker; gp24, to assess the HIV load; and IgM, to measure antibodies within the GC. RESULTS: The volume fraction (V(area)) and the logarithm of the inverse gray value (ArLIGV) of CD21 areas showed a highly significant decrease in HIV(+) specimens. The mean ArLIGV values ranged between 0.0916 +/- 0.01 and 0.3826 +/- 0.11 versus 0.6856 +/- 0.19 on average in controls (P < 0.001 for both). Six of 10 HIV(+) specimens were positive for gp24. Staining was limited to GC and showed a distribution pattern similar to that of CD21. CONCLUSIONS: FDC already undergo considerable damage during the latency phase of HIV infection. The pattern of CD21 indicates that, although FDC decrease in number, the staining intensity of positive cells is basically preserved. Video densitometric analysis, an approach requiring a strict standardized protocol, may help monitor disease course and evaluate response to therapy by quantifying viral burden and lymph node damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号