首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binary mixtures of taste stimuli were applied to the tongue of the hamster and the reaction of the whole corda tympani was recorded. Some of the chemicals that were paired in mixtures (HCl, NH4Cl, NaCl, CaCl2, sucrose, and D-phenylalanine) have similar tastes to human and/or hamster, and/or common stimulatory effects on individual fibers of the hamster chorda tympani; other pairs of these chemicals have dissimilar tastes and/or distinct neural stimulatory effects. The molarity of each chemical with approximately the same effect on the activity of the nerve as 0.01 M NaCl was selected, and an established relation between stimulus concentration and response allowed estimation of the effect of a "mixture" of two concentrations of one chemical. Each mixture elicited a response that was smaller than the sum of the responses to its components. However, responses to some mixtures approached this sum, and responses to other mixtures closely approached the response to a "mixture" of two concentrations of one chemical. Responses of the former variety were generated by mixtures of an electrolyte and a nonelectrolyte and the latter by mixtures of two electrolytes or two nonelectrolytes. But, beyond the distinction between electrolytes and nonelectrolytes, the whole-nerve response to a mixture could not be predicted from the known neural or psychophysical effects of its components.  相似文献   

2.
Monosodium glutamate (MSG) elicits a taste called umami and interacts synergistically with nucleotide monophosphates such as 5'-inosine monophosphate (IMP) to potentiate this taste intensity. Indeed, the synergistic interaction of nucleotide monophosphates and MSG is a hallmark of umami. We examined interactions between MSG and other taste stimuli, including IMP, by measuring the lick rates of non-deprived rats during 30 s trials. To control for non-linear psychophysical functions, the concentration of one taste stimulus in a binary mixture was systematically increased while the concentration of the second taste stimulus was decreased (stimulus substitution method). Synergy between two stimuli was detected if the lick rate for a binary mixture exceeded that expected from the sum of the lick rates for each stimulus alone. In initial experiments, taste synergy was observed when rats were presented with mixtures of MSG and IMP but not with mixtures of MSG and sucrose. In subsequent experiments, glutamate receptor agonists other than MSG were presented with IMP to test for taste synergy. No evidence of synergy was seen when rats were presented with mixtures of IMP and kainic acid or IMP and N:-methyl-D-aspartate. However, taste synergy between IMP and L-AP4, a potent agonist at mGluR4 receptors, was observed. These results suggest that a metabotropic glutamate receptor similar to mGluR4 may be involved in the taste synergy that characterizes umami.  相似文献   

3.
In vivo electrophysiological recordings from populations of olfactory receptor neurons in the channel catfish, Ictalurus punctatus, clearly showed that responses to binary and trinary mixtures of amino acids were predictable with knowledge obtained from previous cross-adaptation studies of the relative independence of the respective binding sites of the component stimuli. All component stimuli, from which equal aliquots were drawn to form the mixtures, were adjusted in concentration to provide for approximately equal response magnitudes. The magnitude of the response to a mixture whose component amino acids showed significant cross-reactivity was equivalent to the response to any single component used to form that mixture. A mixture whose component amino acids showed minimal cross-adaptation produced a significantly larger relative response than a mixture whose components exhibited considerable cross-reactivity. This larger response approached the sum of the responses to the individual component amino acids tested at the resulting concentrations in the mixture, even though olfactory receptor dose-response functions for amino acids in this species are characterized by extreme sensory compression (i.e., successive concentration increments produce progressively smaller physiological responses). Thus, the present study indicates that the response to sensory stimulation of olfactory receptor sites is more enhanced by the activation of different receptor site types than by stimulus interaction at a single site type.  相似文献   

4.
Little is known about coding of taste mixtures in complex dynamic stimulus environments. A protocol developed for odor stimuli was used to test whether rapid selective adaptation extracted sugar and salt component tastes from mixtures as it did component odors. Seventeen human subjects identified taste components of "salt + sugar" mixtures. In 4 sessions, 16 adapt-test stimulus pairs were presented as atomized, 150-μL "taste puffs" to the tongue tip to simulate odor sniffs. Stimuli were NaCl, sucrose, "NaCl + sucrose," and water. The sugar was 98% identified but the suppressed salt 65% identified in unadapted mixtures of 2 concentrations of NaCl, 0.1 or 0.05 M, and sucrose at 3 times those concentrations, 0.3 or 0.15 M. Rapid selective adaptation decreased identification of sugar and salt preadapted ambient components to 35%, well below the 74% self-adapted level, despite variation in stimulus concentration and adapting time (<5 or >10 s). The 96% identification of sugar and salt extra mixture components was as certain as identification of single compounds. The results revealed that salt-sugar mixture suppression, dependent on relative mixture-component concentration, was mutual. Furthermore, like odors, stronger and recent tastes are emphasized in dynamic experimental conditions replicating natural situations.  相似文献   

5.
6.
Kohbara  J.; Caprio  J. 《Chemical senses》1996,21(1):45-53
In vivo electrophysiological recordings in the sea catfish,Arius felis, showed that the magnitude of the integrated facialtaste responses to binary mixtures of amino acids was predictablewith knowledge obtained from previous cross-adaptation studiesof the relative independence of the respective binding sitesof the component stimuli. Each component from which equal aliquotswere drawn to form the mixtures was adjusted in concentrationto provide for approximately equal reponse magnitudes. The magnitudeof the taste responses to binary mixtures whose component aminoacids showed minimal cross-adaptation was significantly greaterthan that to binary mixtures whose components exhibited considerablecross-reactivity. There was no evidence for mixture suppression.The relative magnitude of the taste responses in the sea catfishto stimulus mixtures is similar to that previously reportedfor olfactory receptor responses in the freshwater channel catfishand chorda tympani taste responses in the hamster. Chem. Senses21: 45–53, 1996.  相似文献   

7.
Electrophysiological measurements of nerve impulse frequencies were used to explore the organization of taste sensibilities in single fibers of the hamster chorda tympani nerve. Moderately intense taste solutions that are either very similar or easily discriminated were applied to the anterior lingual surface. 40 response profiles or 13 stimulus activation patterns were considered variables and examined with multivariate statistical techniques. Three kinds of response profiles were seen in fibers that varied in their overall sensitivity to taste solutions. One profile (S) showed selectivity for sweeteners, a second (N) showed selectivity for sodium salts, and a third (H) showed sensitivity to salts, acids, and other compounds. Hierarchical cluster analysis indicated that profiles fell into discrete classes. Responses to many pairs of effective stimuli were covariant across profiles within a class, but some acidic stimuli had more idiosyncratic effects. Factor analysis of profiles identified two common factors, accounting for 77% of the variance. A unipolar factor was identified with the N profile, and a bipolar factor was identified with the S profile and its opposite, the H profile. Three stimulus activation patterns were elicited by taste solutions that varied in intensity of effect. Hierarchical cluster analysis indicated that the patterns fell into discrete classes. Factor analysis of patterns identified three common unipolar factors accounting for 82% of the variance. Eight stimuli (MgSO4, NH4Cl, KCl, citric acid, acetic acid, urea, quinine HCl, HCl) selectively activated fibers with H profiles, three stimuli (fructose, Na saccharin, sucrose) selectively activated fibers with S profiles, and two stimuli (NaNO3, NaCl) activated fibers with N profiles more strongly than fibers with H profiles. Stimuli that evoke different patterns taste distinct to hamsters. Stimuli that evoke the same pattern taste more similar. It was concluded that the hundreds of peripheral taste neurons that innervate the anterior tongue play one of three functional roles, providing information about one of three features that are shared by different chemical solutions.  相似文献   

8.
Responses of olfactory receptor neurons of spiny lobsters Panulirus argus to two-component mixtures can be shaped by inhibitory events such as odor-activated hyperpolarizations and inhibition of odor-receptor binding (Daniel et al. 1996). In the current study, we extend this analysis to complex mixtures by examining responses of spiny lobster olfactory receptor neurons to mixtures containing up to seven odorants, consisting of adenosine-5′-monophosphate, ammonium, betaine, l-cysteine, l-glutamate, dl-succinate, and taurine. The response to a mixture was often less than the response to its most excitatory component. The effect of adding an excitatory odorant to a mixture depended on olfactory receptor neuron type, composition of the mixture, and which compound was added. In some cases the added excitatory compound had no effect or even decreased the mixture's response intensity, thus demonstrating nonlinear contributions of the components. Response intensities predicted by a noncompetitive model, which is most representative of these olfactory receptor neurons, were improved when the model included a term for empirical measurements of inhibitory binding interactions, suggesting that inhibitory binding interactions are one mechanism contributing to mixture suppression. This model's predictions were accurate for binary mixtures but not for larger mixtures, suggesting that additional inhibitory mechanisms are needed to account for mixture interactions in complex mixtures. Accepted: 24 July 1998  相似文献   

9.
The aim of this study was to investigate quality coding of blend ratios of binary mixtures by olfactory receptor cells in the spiny lobster. Three odorants (adenosine-5′-monophosphate, l-glutamate, and taurine) at 0.1–100 μmol · l−1 and seven blend ratios of each of their binary mixtures at a total concentration of 100 μmol · l−1 were used. The olfactory cells recorded (n = 48) evoked across-neuron patterns for single odorants that were well separated from each other. Across-neuron patterns varied with stimulus concentration but less than with stimulus type. Blend ratios of the three mixtures evoked across-neuron patterns that were orderly placed within a continuum between those elicited by the components. Mixture interactions, defined as a lack of independent effects by a mixture's components, occurred in 25, 24 and 37% of responses to blend ratios of glutamate/taurine, adenosine-5′-monophosphate/taurine, and glutamate/adenosine-5′-monophosphate, respectively. These mixture interactions did not have a large enough effect on the across-neuron patterns for the mixtures such they would be novel relative to those of the single components. These results suggest that despite mixture interactions the quality of individual compounds is not lost when mixed. This corroborates behavioral studies showing that spiny lobsters have the ability to elementally process odor mixtures. Accepted: 23 August 1996  相似文献   

10.
Male Manduca sexta moths are attracted to a mixture of two components of the female’s sex pheromone at the natural concentration ratio. Deviation from this ratio results in reduced attraction. Projection neurons innervating prominent male-specific glomeruli in the male’s antennal lobe produce maximal synchronized spiking activity in response to synthetic mixtures of the two components centering around the natural ratio, suggesting that behaviorally effective mixture ratios are encoded by synchronous neuronal activity. We investigated the physiological activity and morphology of downstream protocerebral neurons that responded to antennal stimulation with single pheromone components and their mixtures at various concentration ratios. Among the tested neurons, only a few gave stronger responses to the mixture at the natural ratio whereas most did not distinguish among the mixtures that were tested. We also found that the population response distinguished among the two pheromone components and their mixtures, prior to the peak population response. This observation is consistent with our previous finding that synchronous firing of antennal-lobe projection neurons reaches its maximum before the firing rate reaches its peak. Moreover, the response patterns of protocerebral neurons are diverse, suggesting that the representation of olfactory stimuli at the level of protocerebrum is complex.  相似文献   

11.
The Local Field Potential (LFP) is the analog signal recorded from a microelectrode inserted into cortex, typically in the frequency band of approximately 1 to 200 Hz. Here visual stimuli were flashed on in the receptive fields of primary visual cortical neurons in awake behaving macaques, and both isolated single units (neurons) and the LFP signal were recorded from the same unipolar microelectrode. The fall-off of single unit activity as a visual stimulus was moved from near the center to near the edge of the receptive field paralleled the fall-off of the stimulus-locked (evoked) LFP response. This suggests that the evoked LFP strongly reflects local neuronal activity. However, the evoked LFP could be significant even when the visual stimulus was completely outside the receptive field and the single unit response had fallen to zero, although this phenomenon was variable. Some of the non-local components of the LFP may be related to the slow distributed, or non-retinotopic, LFP signal previously observed in anesthetized animals. The induced (not time-locked to stimulus onset) component of the LFP showed significant increases only for stimuli within the receptive field of the single units. While the LFP primarily reflects local neuronal activity, it can also reflect neuronal activity at more distant sites, although these non-local components are typically more variable, slower, and weaker than the local components.  相似文献   

12.
It is generally assumed that the mutual, but asymmetric, suppression of the components in binary taste mixtures is an invariant property of the human psychophysical response to such mixtures. However, taste intensities have been shown to vary as a function of individual differences in sensitivity, indexed by the perceived bitterness of 6-n-propylthiouracil (PROP). To determine if these variations in taste perception influence taste mixture interactions, groups of PROP super-, medium- and non-tasters assessed four binary taste mixtures: sweet-bitter [sucrose/quinine hydrochloride (QHCl)], sweet-sour (sucrose/citric acid), salty-bitter (NaCl/QHCl) and salty-sour (NaCl/citric acid). In each experiment, subjects received factorial combinations of four levels of each of two tastants and rated individual taste intensities and overall mixture intensity. For each taste quality, super-tasters typically gave higher ratings than either medium- or non-tasters, who tended not to differ. There were also group differences in the interactions of the mixtures' components. Super-tasters rated the overall intensity of the mixtures, most likely reflecting integration of the taste components, as greater than medium- and non-tasters, who again showed few differences. In sweet-bitter mixtures, non-tasters failed to show the suppression of sweetness intensity by the highest QHCl concentration that was evident in super- and medium-tasters. These data show that the perception of both tastes and binary taste mixture interactions varies as a function of PROP taster status, but that this may only be evident when three taster groups are clearly distinguished from one another.  相似文献   

13.
Pheromone mixture discrimination by male cabbage loopers, Trichoplusiani (Hübner), was assessed in a wind tunnel by responsedifferences to paired stimuli. They discriminate differencesbetween mixtures that contain three and all six of the pheromonecomponents that are emitted by virgin females. The ability todiscriminate between these two mixtures is perplexing becauseonly three antennal pheromone specialist neurons respond atnatural stimulus intensities. The cabbage looper also discriminatedbetween mixtures whose component ratios differed slightly fromthat of the female. There was some interaction between the stimulusintensity, the distance between the stimulus sources, and possiblythe extent of the perceptual difference. The mixtures of pheromonecomponents failed to enhance the amount of upwind flight responseover that of Z7–12:Ac alone. Other evidence argues thatthe instantaneous release of pheromone may exceed time-averagedmeasures.  相似文献   

14.
Althen H  Grimm S  Escera C 《PloS one》2011,6(12):e28522
The detection of deviant sounds is a crucial function of the auditory system and is reflected by the automatically elicited mismatch negativity (MMN), an auditory evoked potential at 100 to 250 ms from stimulus onset. It has recently been shown that rarely occurring frequency and location deviants in an oddball paradigm trigger a more negative response than standard sounds at very early latencies in the middle latency response of the human auditory evoked potential. This fast and early ability of the auditory system is corroborated by the finding of neurons in the animal auditory cortex and subcortical structures, which restore their adapted responsiveness to standard sounds, when a rare change in a sound feature occurs. In this study, we investigated whether the detection of intensity deviants is also reflected at shorter latencies than those of the MMN. Auditory evoked potentials in response to click sounds were analyzed regarding the auditory brain stem response, the middle latency response (MLR) and the MMN. Rare stimuli with a lower intensity level than standard stimuli elicited (in addition to an MMN) a more negative potential in the MLR at the transition from the Na to the Pa component at circa 24 ms from stimulus onset. This finding, together with the studies about frequency and location changes, suggests that the early automatic detection of deviant sounds in an oddball paradigm is a general property of the auditory system.  相似文献   

15.
Responses of three groups of neural fibers from the chorda tympani of the hamster to binary mixtures of taste stimuli applied to the tongue were analyzed. The groups displayed different sensitivities to six chemicals at concentrations that had approximately equal effects on the whole nerve. Sucrose-best fibers responded strongly only to sucrose and D-phenylalanine. NaCl-best and HCl-best fibers, responded to four electrolytes: equally to CaCl2 and nearly equally to HCl, but the former responded more to NaCl, and the latter responded more to NH4Cl. The groups of fibers dealt differently with binary mixtures. Sucrose- best fibers responded to a mixture of sucrose and D-phenylalanine as if one of the chemicals had been appropriately increased in concentration, but they responded to a mixture of either one and an electrolyte as if the concentration of sucrose or D-phenylalanine had been reduced. NaCl- best fibers responded to a mixture as if it were a "mixture" of two appropriate concentrations of one chemical, or somewhat less. But, responses of HCl-best fibers to mixtures were greater than that, approaching a sum of responses to components. These results explain effects on the whole nerve, suggest that the sensitivity of a mammalian taste receptor to one chemical can be affected by a second, which may or may not be a stimulus for that receptor, and suggest that some effects of taste mixtures in humans may be the result of peripheral processes.  相似文献   

16.
To investigate the differences between short-term intake testsand taste reactivity responses to tastes, rats received 1-minintraoral infusions of a variety of tastants delivered at therate of 1 ml/min. Oral responses were videotaped and analysedin terms of the sequence and number of ingestive and aversivetaste reactivity response components evoked. Intake was alsomeasured. The number of rats displaying ingestive taste reactivitycomponents and the mean number of ingestive components displayedper rat elicited by sucrose and NaCl increased with increasingconcentration. Intake was high across all concentrations. HClinfusions elicited alternation between ingestive and aversiveresponse components. The number of rats displaying aversivetaste reactivity response components and the mean number ofaversive response components displayed per rat, elicited byQHCl, increased with increasing concentration, while both intakeand the median latency to reject QHCl decreased (ExperimentI). To determine whether other tastes judged bitter by humanswould elicit a quinine-like taste reactivity response in therat, sucrose octa-acetate (SOA), quinine sulfate (QS) and caffeine(CAF) stimuli were examined. Both QS and CAF infusions elicitedan increased number of aversive response components with increasingconcentration, and intake decreased. SOA infusions elicitedalternation between ingestive and aversive response componentsfollowed by a display of solely aversive components, and bothintake and median latency to reject the infusions decreasedsignificantly with increased concentration (Experiment II).Experiment I demonstrated that hypertonic NaCl infusions elicitingestive response components, while short-term intake testsshow that hypertonic NaCl is rejected and is thus inferred tobe aversive. Rats received prolonged infusions of hypertonicNaCl solutions at the rate of 1 ml/min until fluid was seenon the surface of the chamber, indicating rejection. Prolongedinfusions of hypertonic NaCl solutions elicited an initial displayof solely ingestive response components followed by an abruptshift to solely aversive response components and active fluidrejection. Higher concentrations elicited this shift soonerthan lower ones (Experiment III). The results suggest that patternsof taste reactivity response components are good predictorsof intake duration.  相似文献   

17.
Spatial visual attention modulates the first negative-going deflection in the human averaged event-related potential (ERP) in response to visual target and non-target stimuli (the N1 complex). Here we demonstrate a decomposition of N1 into functionally independent subcomponents with functionally distinct relations to task and stimulus conditions. ERPs were collected from 20 subjects in response to visual target and non-target stimuli presented at five attended and non-attended screen locations. Independent component analysis, a new method for blind source separation, was trained simultaneously on 500 ms grand average responses from all 25 stimulus-attention conditions and decomposed the non-target N1 complexes into five spatially fixed, temporally independent and physiologically plausible components. Activity of an early, laterally symmetrical component pair (N1aR and N1aL) was evoked by the left and right visual field stimuli, respectively. Component N1aR peaked ca. 9 ms earlier than N1aL. Central stimuli evoked both components with the same peak latency difference, producing a bilateral scalp distribution. The amplitudes of these components were no reliably augmented by spatial attention. Stimuli in the right visual field evoked activity in a spatio-temporally overlapping bilateral component (N1b) that peaked at ca. 180 ms and was strongly enhanced by attention. Stimuli presented at unattended locations evoked a fourth component (P2a) peaking near 240 ms. A fifth component (P3f) was evoked only by targets presented in either visual field. The distinct response patterns of these components across the array of stimulus and attention conditions suggest that they reflect activity in functionally independent brain systems involved in processing attended and unattended visuospatial events.  相似文献   

18.
Gentilcore  LR; Derby  CD 《Chemical senses》1998,23(3):269-281
Our study was designed to examine how components of complex mixtures can inhibit the binding of other components to receptor sites in the olfactory system of the spiny lobster Panulirus argus. Biochemical binding assays were used to study how two- to six-component mixtures inhibit binding of the radiolabeled odorants taurine, L-glutamate and adenosine-5'-monophosphate to a tissue fraction rich in dendritic membrane of olfactory receptor neurons. Our results indicate that binding inhibition by mixtures can be large and is dependent on the nature of the odorant ligand and on the concentration and composition of the mixture. The binding inhibition by mixtures of structurally related components was generally predicted using a competitive binding model and binding inhibition data for the individual components. This was not the case for binding inhibition by most mixtures of structurally unrelated odorants. The binding inhibition for these mixtures was generally smaller than that for one or more of their components, indicating that complex binding interactions between components can reduce their ability to inhibit binding. The magnitude of binding inhibition was influenced more by the mixture's precise composition than by the number of components in it, since mixtures with few components were sometimes more inhibitory than mixtures with more components. These findings raise the possibility that complex binding interactions between components of a mixture and their receptors may shape the output of olfactory receptor neurons to complex mixtures.   相似文献   

19.
The Receptor Potential of the Taste Cell of the Rat   总被引:3,自引:2,他引:1       下载免费PDF全文
The electrical responses of the taste cell of the rat to chemical stimuli were studied by means of microelectrode techniques. Although large positive potential changes in the taste cell were usually elicited by taste stimuli, the response was a small negative potential change with respect to surrounding tissues if the microelectrode was thrust deeply into the taste bud. Both FeCl3 and cocaine produced a positive change in the steady potential. If this new potential is larger than a certain equilibrium potential, reversal of the polarity of the potential change caused by a taste stimulus is observed. Gamma-aminobutyric acid and acetylcholine had no effect on the receptor steady potential nor on the receptor responses elicited by taste stimuli.  相似文献   

20.
Neural coding of gustatory information.   总被引:6,自引:0,他引:6  
The nervous system encodes information relating chemical stimuli to taste perception, beginning with transduction mechanisms at the receptor and ending in the representation of stimulus attributes by the activity of neurons in the brain. Recent studies have rekindled the long-standing debate about whether taste information is coded by the pattern of activity across afferent neurons or by specifically tuned 'labeled lines'. Taste neurons are broadly tuned to stimuli representing different qualities and are also responsive to stimulus intensity and often to touch and temperature. Their responsiveness is also modulated by a number of physiological factors. In addition to representing stimulus quality and intensity, activity in taste neurons must code information about the hedonic value of gustatory stimuli. These considerations suggest that individual gustatory neurons contribute to the coding of more than one stimulus parameter, making the response of any one cell meaningful only in the context of the activity of its neighbors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号