首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucose requirement for postischemic recovery of perfused working heart   总被引:5,自引:0,他引:5  
The quantitative importance of glycolysis in cardiomyocyte reenergization and contractile recovery was examined in postischemic, preload-controlled, isolated working guinea pig hearts. A 25-min global but low-flow ischemia with concurrent norepinephrine infusion to exhaust cellular glycogen stores was followed by a 15-min reperfusion. With 5 mM pyruvate as sole reperfusion substrate, severe contractile failure developed despite normal sarcolemmal pyruvate transport rate and high intracellular pyruvate concentrations near 2 mM. Reperfusion dysfunction was characterized by a low cytosolic phosphorylation potential [( ATP]/[( ADP][Pi]) due to accumulations of inorganic phosphate (Pi) and lactate. In contrast, with 5 mM glucose plus pyruvate as substrates, but not with glucose as sole substrate, reperfusion phosphorylation potential and function recovered to near normal. During the critical ischemia-reperfusion transition at 30 s reperfusion the cytosolic creatine kinase appeared displaced from equilibrium, regardless of the substrate supply. When under these conditions glucose and pyruvate were coinfused, glycolytic flux was near maximum, the glyceraldehyde-3-phosphate dehydrogenase/3-phosphoglycerate kinase reaction was enhanced, accumulation of Pi was attenuated, ATP content was slightly increased, and adenosine release was low. Thus, glucose prevented deterioration of the phosphorylation potential to levels incompatible with reperfusion recovery. Immediate energetic support due to maximum glycolytic ATP production and enhancement of the glyceraldehyde-3-phosphate dehydrogenase/3-phosphoglycerate kinase reaction appeared to act in concert to prevent detrimental collapse of [ATP]/[( ADP][Pi]) during creatine kinase dysfunction in the ischemia-reperfusion transition. Dichloroacetate (2 mM) plus glucose stimulated glycolysis but failed fully to reenergize the reperfused heart; conversely, 10 mM 2-deoxyglucose plus pyruvate inhibited glycolysis and produced virtually instantaneous de-energization during reperfusion. The following conclusions were reached. (1) A functional glycolysis is required to prevent energetic and contractile collapse of the low-flow ischemic or reperfused heart (2). Glucose stabilization of energetics in pyruvate-perfused hearts is due in part to intensification of glyceraldehyde-3-phosphate dehydrogenase/3-phosphoglycerate kinase activity. (3) 2-Deoxyglucose depletes the glyceraldehyde-3-phosphate pool and effects intracellular phosphate fixation in the form of 2-deoxyglucose 6-phosphate, but the cytosolic phosphorylation potential is not increased and reperfusion failure occurs instantly. (4) Consistent correlations exist between cytosolic ATP phosphorylation potential and reperfusion contractile function. The findings depict glycolysis as a highly adaptive emergency mechanism which can prevent deleterious myocyte deenergization during forced ischemia-reperfusion transitions in presence of excess oxidative substrate.  相似文献   

2.
Anaerobic and aerobic chemostat cultures of Saccharomyces cerevisiae were performed at a constant dilution rate of 0.10 h(-1). The glucose concentration was kept constant, whereas the nitrogen concentration was gradually decreasing; i.e., the conditions were changed from glucose and energy limitation to nitrogen limitation and energy excess. This experimental setup enabled the glycolytic rate to be separated from the growth rate. There was an extensive uncoupling between anabolic energy requirements and catabolic energy production when the energy source was present in excess both aerobically and anaerobically. To increase the catabolic activity even further, experiments were carried out in the presence of 5 mM acetic acid or benzoic acid. However, there was almost no effect with acetate addition, whereas both respiratory (aerobically) and fermentative activities were elevated in the presence of benzoic acid. There was a strong negative correlation between glycolytic flux and intracellular ATP content; i.e., the higher the ATP content, the lower the rate of glycolysis. No correlation could be found with the other nucleotides tested (ADP, GTP, and UTP) or with the ATP/ADP ratio. Furthermore, a higher rate of glycolysis was not accompanied by an increasing level of glycolytic enzymes. On the contrary, the glycolytic enzymes decreased with increasing flux. The most pronounced reduction was obtained for HXK2 and ENO1. There was also a correlation between the extent of carbohydrate accumulation and glycolytic flux. A high accumulation was obtained at low glycolytic rates under glucose limitation, whereas nitrogen limitation during conditions of excess carbon and energy resulted in more or less complete depletion of intracellular storage carbohydrates irrespective of anaerobic or aerobic conditions. However, there was one difference in that glycogen dominated anaerobically whereas under aerobic conditions, trehalose was the major carbohydrate accumulated. Possible mechanisms which may explain the strong correlation between glycolytic flux, storage carbohydrate accumulation, and ATP concentrations are discussed.  相似文献   

3.
Functional glycolytic capacity and its regulation have been studied in the fetal guinea-pig heart during O2 deprivation in situ and in the Langendorff perfused heart. Anaerobic glycolytic flux, at 2 mumol/min per g wet wt. was similar in the 48-50 and 60-65 days fetal and adult guinea-pig heart, despite lower fetal phosphofructokinase activity. During O2 deprivation in situ and in the perfused heart glucose was the major substrate, with glycogen making a smaller contribution. Glycolytic capacity became more tightly regulated during fetal heart development. Thus at 48-50 days glycolysis was increased during O2 deprivation by substrate supply, but at 60-65 days activation of phosphofructokinase was required also. Low malate/aspartate cycle activity in the fetal heart was suggested by the absence of an increase in malate and alanine at the expense of aspartate. The large proportion of aerobic glycolytic flux converted to lactate concurred with this. Because of the low O2 consumption and relatively high aerobic glycolytic flux, the proportion of glycolytically-derived ATP was 3-4 fold higher in the fetal than adult heart, and may explain its functional resistance to O2 deprivation.  相似文献   

4.
Primaquine, an 8-aminoquinoline, and chloroquine, a 4-aminoquinoline, both stimulate ATP hydrolysis in human red blood cells incubated in the absence of glucose. In the presence of glucose, ATP levels are partially maintained by increased flux of glucose through glycolysis. Glucose dependence of chloroquine uptake and the activity of primaquine as a redox reagent explain quantitative differences in ATP hydrolysis and accumulation of specific glycolytic products.  相似文献   

5.
We examined the regulation of glycogen phosphorylase (Phos) and pyruvate dehydrogenase (PDH) in white muscle of rainbow trout during a continuous bout of high-intensity exercise that led to exhaustion in 52 s. The first 10 s of exercise were supported by creatine phosphate hydrolysis and glycolytic flux from an elevated glycogenolytic flux and yielded a total ATP turnover of 3.7 micromol x g wet tissue(-1) x s(-1). The high glycolytic flux was achieved by a large transformation of Phos into its active form. Exercise performed from 10 s to exhaustion was at a lower ATP turnover rate (0.5 to 1.2 micromol x g wet tissue(-1) x s(-1)) and therefore at a lower power output. The lower ATP turnover was supported primarily by glycolysis and was reduced because of posttransformational inhibition of Phos by glucose 6-phosphate accumulation. During exercise, there was a gradual activation of PDH, which was fully transformed into its active form by 30 s of exercise. Oxidative phosphorylation, from PDH activation, only contributed 2% to the total ATP turnover, and there was no significant activation of lipid oxidation. The time course of PDH activation was closely associated with an increase in estimated mitochondrial redox (NAD(+)-to-NADH concentration ratio), suggesting that O2 was not limiting during high-intensity exercise. Thus anaerobiosis may not be responsible for lactate production in trout white muscle during high-intensity exercise.  相似文献   

6.
Glucose and fatty acid metabolism was assessed in isolated working hearts from control C57BL/KsJ-m+/+db mice and transgenic mice overexpressing the human GLUT-4 glucose transporter (db/+-hGLUT-4). Heart rate, coronary flow, cardiac output, and cardiac power did not differ between control hearts and hearts overexpressing GLUT-4. Hearts overexpressing GLUT-4 had significantly higher rates of glucose uptake and glycolysis and higher levels of glycogen after perfusion than control hearts, but rates of glucose and palmitate oxidation were not different. Insulin (1 mU/ml) significantly increased glycogen levels in both groups. Insulin increased glycolysis in control hearts but not in GLUT-4 hearts, whereas glucose oxidation was increased by insulin in both groups. Therefore, GLUT-4 overexpression increases glycolysis, but not glucose oxidation, in the heart. Although control hearts responded to insulin with increased rates of glycolysis, the enhanced entry of glucose in the GLUT-4 hearts was already sufficient to maximally activate glycolysis under basal conditions such that insulin could not further stimulate the glycolytic rate.  相似文献   

7.
Ehrlich ascites carcinoma cells depleted of K+ and provided with 5.5 mM K+ in isosmotic 50 mM tris(hydroxymethyl)methylglycine buffer at pH 7.4 and 38 °C take up K+ from the medium at a rate of 6 μmoles/ml intracellular fluid per min. Depleted cells exposed to K+ for 2 min prior to glucose addition exhibit a higher initial rate of glycolysis, a lower glycose-6-P accumulation, and a higher fructose-1,6-P2 accumulation than depleted cells incubated in a K+-free medium. Both the K+ transport and the effect of K+ on glycolysis are blocked by 2 mM oubain.Calculation of thein vitro velocities of glycolytic enzymes from the rates of accumulation of lactate and glycolytic intermediates shows that the presence of K+ accelerates the velocities of fructose-6-phosphate kinase and lactate dehydrogenase about 2-fold and the velocity of hexokinase about 1.5-fold during the first 15 s. In either the presence or absence of K+, the hexokinase velocity is highest immediately after glucose addition and declines sharply with time; this decline is greater than would be predicted by product inhibition by the accumulated glucose-6-P. The maximal stimulation of fructose-6-phosphate kinase attibutable to the increasing intarcellular K+ concentration is only 1.25-fold. These observations indicate that the initial acceleration in glycolysis is not simply mediated through a direct K+ activation of fructose-6-phosphate kinase.The calculated theoretical rate of ATP generation by glycolysis shows that glycolysis is an ATP-utilizing system for the first 5–10 s both in the presence and in the absence of K+. Hence, the initial stimulation of glycolysis by K+ is not a consequence of an increased rate of ATP hydrolysis associated with K+ transport, although this mechanism may be responsible for the stimulation of steady-state glycolysis.The initial rate of phosphate ester (hexose and triose phosphates) accumulation corresponds to be rate of ATP generation by the “tail-end” of glycolysis, or twice the rate of lactate accumulation, in either the absence or presence of K+, but both the rate and the maximal level of ester accumulated are higher in the presence of K+. This implies that the oxidatively generated pool of ATP which is diverted from endogenous reactions to hexokinase and fructose-6-phosphate kinase on the introduction of glucose is larger in the presence of K+.Valinomycin (0.27 μM) under certain conditions can produce effects on the glycolysis of non-depleted cells which superficially resemble the effects of K+ on depleted cells. However, unlike K+, valinomycin stimulates the initial rate of glycolytic ATP generation, and abolishes the initial correspondence between the ATP generation by the “tail-end” of glycolysis and phosphate ester accumulation. These observations are interpreted to mean that valinomycin introduces an ATPase activity effective on glycolytically generated ATP.Comparison of the theoretical ATP generation in the presence and absence of K+ indicates that approximately one ATP is hydrolyzed for each K+ transported.  相似文献   

8.
It has been proposed that the glycolytic stoichiometry of 2 ATP per glucose is the result of an optimization that maximizes the rate of ATP production. However, using a nonequilibrium thermodynamic approach, we show here that glycolysis operates under optimal output power and not at optimal flow of ATP production. Furthermore, it can be proved that the same maximal output power can be achieved with different stoichiometries. However, changes in the glycolytic stoichiometry would dramatically affect the efficiency of all those cellular processes powered by ATP. Our results suggest that the stoichiometric coefficient, as found in most contemporary cells, may be the outcome of an evolutionary process leading to yield an operative quantum energy for the hydrolysis of ATP. [Reviewing Editor: Dr. Antony Dean]  相似文献   

9.
1. In the isolated perfused rat heart, the contractile activity and the oxygen uptake were varied by altering the aortic perfusion pressure, or by the atrial perfusion technique (;working heart'). 2. The maximum increase in the contractile activity brought about an eightfold increase in the oxygen uptake. The rate of glycolytic flux rose, while tissue contents of hexose monophosphates, citrate, ATP and creatine phosphate decreased, and contents of ADP and AMP rose. 3. The changes in tissue contents of adenine nucleotides during increased heart work were time-dependent. The ATP content fell temporarily (30s and 2min) after the start of left-atrial perfusion; at 5 and 10min values were normal; and at 30 and 60min values were decreased. ADP and AMP values were increased in the first 15min, but were at control values 30 or 60min after the onset of increased heart work. 4. During increased heart work changes in the tissue contents of adenine nucleotide and of citrate appeared to play a role in altered regulation of glycolysis at the level of phosphofructokinase activity. 5. In recirculation experiments increased heart work for 30min was associated with increased entry of [(14)C]glucose (11.1mm) and glycogen into glycolysis and a comparable increase in formation of products of glycolysis (lactate, pyruvate and (14)CO(2)). There was no major accumulation of intermediates. Glycogen was not a major fuel for respiration. 6. Increased glycolytic flux in Langendorff perfused and working hearts was obtained by the addition of insulin to the perfusion medium. The concomitant increases in the tissue values of hexose phosphates and of citrate contrasted with the decreased values of hexose monophosphates and of citrate during increased glycolytic flux obtained by increased heart work. 7. Decreased glycolytic flux in Langendorff perfused hearts was obtained by using acute alloxan-diabetic and chronic streptozotocin-diabetic rats; in the latter condition there were decreased tissue contents of hexose phosphates and of citrate. There were similar findings when working hearts from streptozotocin-diabetic rats with insulin added to the medium were compared with normal hearts. 8. The effects of insulin addition or of the chronic diabetic state could be explained in terms of an action of insulin on glucose transport. Increased heart work also acted at this site, but in addition there was evidence for altered regulation of glycolysis mediated by changes in tissue contents of adenine nucleotides or of citrate.  相似文献   

10.
This study examined glucose and lactate metabolism in an iguanid lizard, Dipsosaurus dorsalis, during rest and after activity patterned on field behavior (15 s of running at 1 m/s). Metabolite oxidation and incorporation into glycogen by the whole animal, the liver, and oxidative and glycolytic muscle fibers were measured using (14)C- and (13)C-labeled compounds. Results showed that lactate metabolism is more responsive to changes that occurred between rest and recovery, whereas glucose appears to play a more steady state role. After activity, lactate oxidation produced 57 times as much ATP during 1 h of recovery than did glucose oxidation. However, lactate oxidation rates were elevated for only 30 min after activity, while glucose oxidation remained elevated beyond 1 h. Lactate was the primary source for glycogen synthesis during recovery, and glucose was the main glycogenic substrate during rest. This study supports previous research showing that brief activity in D. dorsalis is primarily supported by glycolysis and phosphocreatine breakdown, but it also suggests that there may be less of a reliance on glycolysis and a greater reliance on phosphocreatine than previously shown. The findings presented here indicate that the metabolic consequences of the behaviorally relevant activity studied are less severe than has been suggested by studies using more extreme activity patterns.  相似文献   

11.
Glucose 1,6-bisphosphate, fructose 2,6-bisphosphate, glycogen, lactate and other glycolytic metabolites were measured in rat gastrocnemius muscle, which was electrically stimulated in situ via the sciatic nerve. Both the frequency and the duration of stimulation were varied to obtain different rates of glycolysis. There was no apparent relationship between fructose 2,6-bisphosphate content and lactate accumulation in contracting muscle. In contrast, glucose 1,6-bisphosphate content increased with lactate concentration during contraction. It is suggested that the increase in glucose 1,6-bisphosphate could play a role in phosphofructokinase stimulation and in the activation of the glycolytic flux during muscle contraction.  相似文献   

12.
The bioenergetic interaction between glycolysis and oxidative phosphorylation in isolated nerve terminals (synaptosomes) from guinea-pig cerebral cortex is characterized. Essentially all synaptosomes contain functioning mitochondria. There is a tight coupling between glycolytic rate and respiration: uncoupler causes a tenfold increase in glycolysis and a sixfold increase in respiration. Synaptosomes contain little endogenous glycolytic substrate and glycolysis is dependent on external glucose. In glucose-free media, or following addition of iodoacetate, synaptosomes continue to respire and to maintain high ATP/ADP ratios. In contrast to glucose, the endogenous substrate can neither maintain high respiration in the presence of uncoupler nor generate ATP in the presence of cyanide. Pyruvate, but not succinate, is an excellent substrate for intact synaptosomes. The in-situ mitochondrial membrane potential (delta psi m) is highly dependent upon the availability of glycolytic or exogenous pyruvate; glucose deprivation causes a 20-mV depolarization, while added pyruvate causes a 6-mV hyperpolarization even in the presence of glucose. Inhibition of pyruvate dehydrogenase by arsenite or pyruvate transport by alpha-cyano-4-hydroxycinnamate has little effect on ATP/ADP ratios; however respiratory capacity is severely restricted. It is concluded that synaptosomes are valuable models for studying the control of mitochondrial substrate supply in situ.  相似文献   

13.
1. The effect of insulin on the perfused rat heart during normoxia and total ischaemia was studied by 31P-NMR. 2. During normoxic perfusion, insulin increased the phosphocreatine to ATP ratio at the expense of Pi, when glucose was the substrate. No change was observed when acetate was used as the sole substrate. The intracellular pH (as measured from the position of the 2-deoxyglucose 6-phosphate resonance peak) was unaffected by insulin treatment. 3. Infusion of insulin prior to ischaemia caused an increase in the rate and extent of acidosis during the period of no flow while the rate of ATP depletion was decreased. 4. Freezeclamped studies showed an increase in glycogen levels upon insulin treatment of the glucose perfused rat heart. During ischaemia, a decrease in glycogen content concomitant with an increase in lactate was observed. The accessibility of glycogen to phosphorylase during ischaemia is increased as a result of insulin treatment. The control of glycolysis during ischaemia is discussed with respect to the content and structure of glycogen in heart tissue.  相似文献   

14.
Unlike other eukaryotic cells, trypanosomes possess a compartmentalized glycolytic pathway. The conversion of glucose into 3-phosphoglycerate takes place in specialized peroxisomes, called glycosomes. Further conversion of this intermediate into pyruvate occurs in the cytosol. Due to this compartmentation, many regulatory mechanisms operating in other cell types cannot work in trypanosomes. This is reflected by the insensitivity of the glycosomal enzymes to compounds that act as activity regulators in other cell types. Several speculations have been raised about the function of compartmentation of glycolysis in trypanosomes. We calculate that even in a noncompartmentalized trypanosome the flux through glycolysis should not be limited by diffusion. Therefore, the sequestration of glycolytic enzymes in an organelle may not serve to overcome a diffusion limitation. We also search the available data for a possible relation between compartmentation and the distribution of control of the glycolytic flux among the glycolytic enzymes. Under physiological conditions, the rate of glycolytic ATP production in the bloodstream form of the parasite is possibly controlled by the oxygen tension, but not by the glucose concentration. Within the framework of Metabolic Control Analysis, we discuss evidence that glucose transport, although it does not qualify as the sole rate-limiting step, does have a high flux control coefficient. This, however, does not distinguish trypanosomes from other eukaryotic cell types without glycosomes.  相似文献   

15.
16.
The growth of Micromonospora echinospora was studied in high and low C/N ratio medium using both batch and continuous culture. Asparagine was consumed rapidly in batch cultures where it served as both a nitrogen and carbon source. Glucose consumption was low suggesting that asparagine functions as the major carbon source under these conditions. The effect of nutrient limitation on the accumulation of storage carbohydrate in batch culture revealed an intimate association between nitrogen limitation and the accumulation of carbonaceous reserves. This study revealed that glycogen constituted the major carbohydrate reserve associated with the onset of sporulation. Intracellular trehalose levels were found to be relatively low and may have been affected by the availability of carbon. Continuous culture studies revealed a correlation between glycogen accumulation and increasing growth rate. It was also found that elevated cellular ATP levels correlated with the increase in glycogen, and reduced glycolytic activity. At the higher growth rates cellular ATP levels were elevated and coincided with reduced activity of the key glycolytic enzyme, phosphofructokinase, suggesting that glycogen can act as a convenient energy reservoir when excess carbon flux dictates.  相似文献   

17.
The relation between ATP production and adenine nucleotide metabolism was investigated in human platelets which were starved by incubation in glucose-free, CN?-containing medium and subsequently incubated with different amounts of glucose. In the absence of mitochondrial energy production (blocked by CN?) and glycogen catabolism (glycogen almost completely consumed during starvation), lactate production increased proportionally with increasing amounts of glucose. The generated ATP was almost completely consumed in the various ATP-consuming processes in the cell except for a fixed portion (about 7%) that was reserved for restoration of the adenylate energy charge. During the first 10 min after glucose addition, the adenine nucleotide pool remained constant. Thereafter, when the glycolytic flux, measured as lactate formation, was more than 3.5 μmol · min?1 · 10?11 cells, the pool increased slightly by resynthesis from hypoxanthine-inosine and then stabilized; at a lower flux the pool decreased and metabolic ATP and energy charge declined to values found during starvation. Between moments of rising and falling adenylate energy charges, periods of about 10 min remained in which the charge was constant and ATP supply and demand had reached equilibrium. This enabled comparison between the adenylate energy charge and ATP regeneration velocity. A linear relation was obtained for charge values between 0.4 and 0.85 and ATP regeneration rates between 0.6 and 3.5 ATP equiv. · min?1 · 10?11 cells. These data indicate that in starved platelets ATP regeneration velocity and energy charge are independent and that each appears to be subject to the availability of extracellular substrate.  相似文献   

18.
In-Young Lee  Elmon L. Coe 《BBA》1967,131(3):441-452
Changes were measured in glycolytic and respiratory rates during the entire period of glycolysis and respiratory inhibition after addition of 0.08 or 0.15 mM glucose to Ehrlich ascites carcinoma cells in 54 mM phosphate buffer (pH 7.3) at 37°. Glycolytic products fully accounted for the glucose utilized.

Theoretical rates of glycolytic ATP synthesis were calculated from the rates of accumulation of glycolytic products, and rates of oxidative phosphorylation were calculated from respiratory rates, assuming a P:O ratio of 3.0. The maximum in the glycolytic phosphorylation rate curve preceded the minimum in the respiratory phosphorylation rate curve. As a consequence, the total phosphorylation rate curve was biphasic, first rising above, then falling below, and finally returning to the initial, pre-glucose rate. The area under the early rise approximately equalled the area above the later dip and corresponded to between 1 and 2 μmoles of ATP/ml cells. The low rate of change in the ATP content of the cells indicated that most of the change in phosphorylation rate represented changes in both ATP synthesis and ATP utilization.

It is hypothesized that ATP synthesized by glycolysis is more readily available to the ATP-utilizing systems. On addition of glucose, ATP is shifted from a respiratory to a glycolytic reservoir and a period of more rapid ATP utilization associated with a decrease in the level of endogenous substrates involved in the ATP-utilizing reactions ensues; after cessation of glycolysis, the process is reversed, and ATP utilization is slowed for a period while the endogenous substrates increase again.  相似文献   


19.
We studied the effect of exogenous adenosine in isolated perfused normoxic rat hearts on glycolytic flux through pyruvate kinase (PK). We compared its effect with that of myxothiazol, an inhibitor of mitochondrial ATP production. Moreover, we tested whether an increase of membrane ionic flux with monensin is linked to a stimulation of glycolytic flux through PK. After a 20-min stabilization period adenosine, myxothiazol or monensin were administrated to the perfusate continuously at various concentrations during 10 min. The contraction was monitored and the lactate production in coronary effluents evaluated. The amount of adenine nucleotides and phosphoenolpyruvate was measured in the frozen hearts. Myxothiazol induced a decrease of the left ventricular developed pressure (LVDP : −40%) together with a stimulation of glycolytic flux secondary to PK activation. In contrast, adenosine primarily reduced heart rate (HR: −30%) with only marginal effects on LVDP. This was associated with an inhibition of glycolysis at the level of PK. The Na+ ionophore monensin affected HR (+14%) and LVDP (+25%). This effect was associated with a stimulation of glycolysis secondary to the stimulation of PK. These results provide new information of action of adenosine in the heart and support the concept of a direct coupling between glycolysis and process regulating sarcolemmal ionic fluxes.  相似文献   

20.
Changes were measured in the rates of respiration and in the levels of glycolytic intermediates during the first 5 min after addition of 1.6 mM glucose to a suspension (5%, v/v) of respiring Ehrlich ascites carcinoma cells incubated in an isotonic 50 mM tris(hydroxymethyl)methylglycine buffer (pH 7.4) at 38 °C. The rates of accumulation of lactate and glycolytic intermediates were used to calculate the in vitro velocities of glycolytic enzymes.The initial velocities of hexokinase (EC 2.7.1.1), fructose-6-phosphate kinase (EC 2.7.1.11) and lactate dehydrogenase (EC 1.1.1.27) in μmoles glucose equivalents/ ml cells per min were 14, 11 and 4, respectively. The velocities of the two kinases fell sharply to less than 5 between 5 and 10 s, while the velocity of the dehydrogenase declined gradually over the first minute. The initial burst of activity in the kinases, which lasted for about 8 s, was associated with a rapid accumulation of phosphate ester and a negative net ATP generation by glycolysis. The accumulation of phosphate ester is almost exactly matched by the generation of ATP by the “tail end” of glycolysis (triose-P to lactate) in this period. After this time (10–25 s) the rate of oxidative phosphorylation calculated as six times the rate of O2 consumption, is nearly identical to the combined rate of ATP utilization by hexokinase and fructose-6-phosphate kinase. As observed previously, oxamate (42 mM) blocked lactate dehydrogenase but did not depress the rate of phosphate ester accumulation.These various observations and correlations can be interpreted in terms of a dual glycolytic system. The accumulation of phosphate ester during the first 8 s is attributed to the operation of a partial glycolytic system, System B, which includes only the first three or four enzymes of glycolysis, and which draws upon an ATP pool (Pool I) previously employed in assorted cytoplasmic phosphorylations. The ADP generated by System B is rephosphorylated by and regulates the rate of a complete glycolytic system A, which converts glucose to lactate with little intermediate accumulation. The tail end of System A generates a new pool of ATP (Pool II) and controls the rate of glucose input through its head end, which is supplied by ATP being produced by oxidative phosphorylation. This scheme of interlocking controls is transient and alters after 8 s, when System B slows to a stop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号