首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The molecular mechanism of human immunodeficiency virus type 1 (HIV-1) entry into cells involves specific interactions between the viral envelope glycoprotein gp120 and two target cell proteins, CD4 and either CCR5 or CXCR4 chemokine receptors. In order to delineate the functional role of HIV-1 gp120 subdomains of dualtropic strains in CCR5 coreceptor usage, we used a panel of chimeric viruses in which the V1/V2 and V3 domains of gp120 from the dualtropic HIV-1(KMT) isolate were introduced either alone or in combination into the T-tropic HIV-1(NL4-3) background. These chimeric constructs were employed in cell-cell fusion and cell-free virus infectivity assays using cell lines expressing CD4 and the CCR5 chemokine receptor. In both assays, the V3 domain of HIV-1(KMT) but not the V1/V2 domain proved to be the principal determinant of CCR5 coreceptor usage. However, in the cell-free viral infectivity assay although a chimeric virus with a combined V1/V2 and V3 domains of HIV-1(KMT) efficiently fused with coreceptor expressing cells, yet its infectivity was markedly diminished in CCR5 as well as CXCR4 expressing cells. Restoring a comparable level of infection of such chimeric virus required the C3-V5 domain from HIV-1(KMT) to be introduced. Our present findings confirmed that the V3 domain is the major determinant of fusion activity and cellular tropism, and demonstrated a dispensable role for the V1/V2 domain. In addition the C3-V5 domain appeared to play an important role in viral infectivity when the corresponding V1/V2 and V3 domains are present.  相似文献   

2.
To identify sites in gp120 that interact with the CCR5 coreceptor and to analyze the mechanisms of infection, we selected variants of the CCR5-dependent JRCSF molecular clone of human immunodeficiency virus type 1 (HIV-1) that adapted to replicate in HeLa-CD4 cells that express the mutant coreceptor CCR5(Y14N) or CCR5(G163R), which were previously shown to bind purified gp120-CD4 complexes only weakly. Correspondingly, these mutant CCR5s mediate infections of wild-type virus only at relatively high cell surface concentrations, demonstrating a concentration-dependent assembly requirement for infection. The plots of viral infectivity versus concentration of coreceptors had sigmoidal shapes, implying involvement of multiple coreceptors, with an estimated stoichiometry of four to six CCR5s in the active complexes. All of the adapted viruses had mutations in the V3 loops of their gp120s. The titers of recombinant HIV-1 virions with these V3 mutations were determined in previously described panels of HeLa-CD4 cell clones that express discrete amounts of CCR5(Y14N) or CCR5(G163R). The V3 loop mutations did not alter viral utilization of wild-type CCR5, but they specifically enhanced utilization of the mutant CCR5s by two distinct mechanisms. Several mutant envelope glycoproteins were highly fusogenic in syncytium assays, and these all increased the efficiency of infection of the CCR5(Y14N) or CCR5(G163R) clonal panels without enhancing virus adsorption onto the cells or viral affinity for the coreceptor. In contrast, V3 loop mutation N300Y was selected during virus replication in cells that contained only a trace of CCR5(Y14N) and this mutation increased the apparent affinity of the virus for this coreceptor, as indicated by a shift in the sigmoid-shaped infectivity curve toward lower concentrations. Surprisingly, N300Y increased viral affinity for the second extracellular loop of CCR5(Y14N) rather than for the mutated amino terminus. Indeed, the resulting virus was able to use a mutant CCR5 that lacks 16 amino acids at its amino terminus, a region previously considered essential for CCR5 coreceptor function. Our results demonstrate that the role of CCR5 in infection involves at least two steps that can be strongly and differentially altered by mutations in either CCR5 or the V3 loop of gp120: a concentration-dependent binding step that assembles a critical multivalent virus-coreceptor complex and a postassembly step that likely involves a structural rearrangement of the complex. The postassembly step can severely limit HIV-1 infections and is not an automatic consequence of virus-coreceptor binding, as was previously assumed. These results have important implications for our understanding of the mechanism of HIV-1 infection and the factors that may select for fusogenic gp120 variants during AIDS progression.  相似文献   

3.
The gp120 envelope glycoprotein of primary human immunodeficiency virus type 1 (HIV-1) promotes virus entry by sequentially binding CD4 and the CCR5 chemokine receptor on the target cell. Previously, we adapted a primary HIV-1 isolate, ADA, to replicate in CD4-negative canine cells expressing human CCR5. The gp120 changes responsible for CD4-independent replication were limited to the V2 loop-V1/V2 stem. Here we show that elimination of a single glycosylation site at asparagine 197 in the V1/V2 stem is sufficient for CD4-independent gp120 binding to CCR5 and for HIV-1 entry into CD4-negative cells expressing CCR5. Deletion of the V1/V2 loops also allowed CD4-independent viral entry and gp120 binding to CCR5. The binding of the wild-type ADA gp120 to CCR5 was less dependent upon CD4 at 4 degrees C than at 37 degrees C. In the absence of the V1/V2 loops, neither removal of the N-linked carbohydrate at asparagine 197 nor lowering of the temperature increased the CD4-independent phenotypes. A CCR5-binding conformation of gp120, achieved by CD4 interaction or by modification of temperature, glycosylation, or variable loops, was preferentially recognized by the monoclonal antibody 48d. These results suggest that the CCR5-binding region of gp120 is occluded by the V1/V2 variable loops, the position of which can be modulated by temperature, CD4 binding, or an N-linked glycan in the V1/V2 stem.  相似文献   

4.
The gp120 envelope glycoprotein of the human immunodeficiency virus type 1 (HIV-1) promotes virus entry by sequentially binding CD4 and chemokine receptors on the target cell. Primary, clinical HIV-1 isolates require interaction with CD4 to allow gp120 to bind the CCR5 chemokine receptor efficiently. We adapted a primary HIV-1 isolate, ADA, to replicate in CD4-negative canine cells expressing human CCR5. The gp120 changes responsible for the adaptation were limited to alteration of glycosylation addition sites in the V2 loop-V1-V2 stem. The gp120 glycoproteins of the adapted viruses bound CCR5 directly, without prior interaction with CD4. Thus, a major function of CD4 binding in the entry of primary HIV-1 isolates can be bypassed by changes in the gp120 V1-V2 elements, which allow the envelope glycoproteins to assume a conformation competent for CCR5 binding.  相似文献   

5.
V3 loop peptides from three different human immunodeficiency virus type 1 (HIV-1) strains were synthesized. BH10, ADA, and 89.6 strains whose infections are dependent on CXCR4, CCR5, and both, respectively, were selected. Co-transfection of luciferase reporter gene and corresponding envelope genes (HXB2, ADA, and 89.6) generate pseudotype viruses (HXB2/Luc, ADA/Luc, and 89.6/Luc). The effects of each peptide on the infection of U87 cells expressing CD4 and one of the coreceptors with all pseudotype viruses were evaluated. V3 loop peptide from BH10 (V3-BH10) alone increased the HXB2/Luc infection by 93% at 10 microM. Both V3-ADA and V3-89.6 enhanced ADA/Luc infection by 38% and by 55% at 10 microM, respectively. For 89.6/Luc infection, only V3-89.6 enhanced the infections on both target cells. V3-BH10 modulated the epitopes of coreceptor binding site and V2 loop of gp120 on HIV-1 IIIB infected H9 cells, indicating that V3 loop peptide activates viral gp120 and enhances infectivity.  相似文献   

6.
The human immunodeficiency virus (HIV-1) envelope glycoprotein (GP) 120 interacts with CD4 and the CCR5 coreceptor for viral entry. The V3 loop in GP120 is a crucial region for determining coreceptor usage during viral entry, and a variety of amino acid substitutions has been observed in clinical isolates. To construct an HIV-1 V3 loop library, we chose 10 amino acid positions in the V3 loop and incorporated random combinations (27,648 possibilities) of the amino acid substitutions derived from 31 R5 viruses into the V3 loop of HIV-1(JR-FL) proviral DNA. The constructed HIV-1 library contained 6.6 x 10(6) independent clones containing a set of 0-10 amino acid substitutions in the V3 loop. To address whether restricted steric alteration in the V3 loop could confer resistance to an entry inhibitor, TAK-779, we selected entry inhibitor-resistant HIV-1 by increasing the concentration of TAK-779 from 0.10 to 0.30 microM in PM1-CCR5 cells with high expression of CCR5. The selected viruses at passage 8 contained five amino acid substitutions in the V3 loop without any other mutations in GP120 and showed 15-fold resistance compared with the parental virus. These results indicated that a certain structure of the V3 loop containing amino acid substitutions derived from 31 R5 viruses can contribute to the acquisition of resistance to entry inhibitors binding to CCR5. Taken together, this type of HIV-1 V3 loop library is useful for isolating and analyzing the specific biological features of HIV-1 with respect to alterations of the V3 loop structure.  相似文献   

7.
Human immunodeficiency virus type 1 (HIV-1) infection in vivo is dependent upon the interaction of the viral envelope glycoprotein gp120 with CC chemokine receptor 5 (CCR5) or CXC chemokine receptor 4 (CXCR4). To study the determinants of the gp120-coreceptor association, we generated a set of chimeric HIV-1 coreceptors which express all possible combinations of the four extracellular domains of CCR5 and CXCR4. Stable U87 astroglioma cell lines expressing CD4 and individual chimeric coreceptor proteins were tested against a variety of R5, X4, and R5X4 envelope glycoproteins and virus strains for their ability to support HIV-1-mediated cell fusion and infection, respectively. Each of the cell lines promoted fusion with cells expressing an HIV envelope glycoprotein, except for U87.CD4.5455, which presents the first extracellular loop (ECL1) and flanking sequences of CXCR4 in the context of CCR5. However, all of the chimeric coreceptors allowed productive infection by one or more of the viral strains tested. Viral phenotype was a predictive factor for the observed activity of the chimeric molecules; X4 and R5X4 HIV strains utilized a majority of the chimeras, while R5 strains were limited in their ability to infect cells expressing these chimeric molecules. The expression of CCR5 ECL2 within the CXCR4 backbone supported infection by an R5 primary isolate, but no chimeras bearing the N terminus of CCR5 exhibited activity with R5 strains. Remarkably, the introduction of any CXCR4 domain into the CCR5 backbone was sufficient to allow utilization by multiple X4 strains. However, critical determinants within ECL2 and/or ECL3 of CXCR4 were apparent for all X4 viruses upon replacement of these domains in CXCR4 with CCR5 sequences. Unexpectedly, chimeric coreceptor-facilitated entry was blocked in all cases by the presence of the CXCR4-specific inhibitor AMD3100. Our data provide proof that CCR5 contains elements that support usage by X4 viral strains and demonstrate that the gp120 interaction sites of CCR5 and CXCR4 are structurally related.  相似文献   

8.
The variable V1V2 and V3 regions of the human immunodeficiency virus type-1 (HIV-1) envelope glycoprotein (gp120) can influence viral coreceptor usage. To substantiate this we generated isogenic HIV-1 molecularly cloned viruses that were composed of the HxB2 envelope backbone containing the V1V2 and V3 regions from viruses isolated from a patient progressing to disease. We show that the V3 amino acid charge per se had little influence on altering the virus coreceptor phenotype. The V1V2 region and its N-linked glycosylation degree were shown to confer CXCR4 usage and provide the virus with rapid replication kinetics. Loss of an N-linked glycosylation site within the V3 region had a major influence on the virus switching from the R5 to X4 phenotype in a V3 charge-dependent manner. The loss of this V3 N-linked glycosylation site was also linked with the broadening of the coreceptor repertoire to incorporate CCR3. By comparing the amino acid sequences of primary HIV-1 isolates, we identified a strong association between high V3 charge and the loss of this V3 N-linked glycosylation site. These results demonstrate that the N-linked glycosylation pattern of the HIV-1 envelope can strongly influence viral coreceptor utilization and the R5 to X4 switch.  相似文献   

9.
Dendritic cells can enhance the replication of HIV-1 in CD4(+) lymphocytes through the interaction of the gp120 envelope protein with such molecules as dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin. The variable loops of gp120 have previously been shown to modulate the interaction of HIV-1 with its principal receptor CD4 and its various coreceptors, namely CCR5 and CXCR4. Here, we utilized a panel of molecular cloned viruses to identify whether gp120 modifications can influence the virus interaction with immature dendritic cells or a cell line expressing dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (Raji-DC-SIGN). The viruses encompass the R5, R5X4 and X4 phenotypes, and are based upon V1V2 and V3 sequences from a patient with disease progression. We found that dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin enhancement of virus replication can be modulated by the V1V2 length, the overall V3 charge and N-linked glycosylation patterns; similar results were observed with immature dendritic cells. Viruses with higher V3 charges are more readily transferred to CD4(+) lymphocytes when the V1V2 region is longer and contains an additional N-linked glycosylation site, whereas transfer of viruses with lower V3 charges is greater when the V1V2 region is shorter. Viruses differing in the V1V2 and V3 regions also demonstrated differential capture by Raji-DC-SIGN cells in the presence of mannan. These results indicate that the interaction between HIV-1 and immature dendritic cells via such molecules as dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin may have a role in selecting viruses undergoing transmission and evolution during disease progression.  相似文献   

10.
Maraviroc, an (HIV-1) entry inhibitor, binds to CCR5 and efficiently prevents R5 human immunodeficiency virus type 1 (HIV-1) from using CCR5 as a coreceptor for entry into CD4+ cells. However, HIV-1 can elude maraviroc by using the drug-bound form of CCR5 as a coreceptor. This property is known as noncompetitive resistance. HIV-1V3-M5 derived from HIV-1JR-FLan is a noncompetitive-resistant virus that contains five mutations (I304V/F312W/T314A/E317D/I318V) in the gp120 V3 loop alone. To obtain genetic and structural insights into maraviroc resistance in HIV-1, we performed here mutagenesis and computer-assisted structural study. A series of site-directed mutagenesis experiments demonstrated that combinations of V3 mutations are required for HIV-1JR-FLan to replicate in the presence of 1 µM maraviroc, and that a T199K mutation in the C2 region increases viral fitness in combination with V3 mutations. Molecular dynamic (MD) simulations of the gp120 outer domain V3 loop with or without the five mutations showed that the V3 mutations induced (i) changes in V3 configuration on the gp120 outer domain, (ii) reduction of an anti-parallel β-sheet in the V3 stem region, (iii) reduction in fluctuations of the V3 tip and stem regions, and (iv) a shift of the fluctuation site at the V3 base region. These results suggest that the HIV-1 gp120 V3 mutations that confer maraviroc resistance alter structure and dynamics of the V3 loop on the gp120 outer domain, and enable interactions between gp120 and the drug-bound form of CCR5.  相似文献   

11.
To assess the role of naturally occurring basic amino acid substitutions in the V3 loop of human immunodeficiency virus type 1 (HIV-1) subtype E on viral coreceptor usage and cell tropism, we have constructed a panel of chimeric viruses with mutant V3 loops of HIV-1 subtype E in the genetic background of HIV-1LAI. The arginine substitutions naturally occurring at positions 8, 11, and 18 of the V3 loop in an HIV-1 subtype E X4 strain were systematically introduced into that of an R5 strain to generate a series of V3 loop mutant chimera. These chimeric viruses were employed in virus infectivity assays using HOS-CD4 cells expressing either CCR5 or CXCR4, peripheral blood mononuclear cells, T-cell lines, or macrophages. The arginine substitution at position 11 of the V3 loop uniformly caused the loss of infectivity in HOS-CD4-CCR5 cells, indicating that position 11 is critical for utilization of CCR5. CXCR4 usage was conferred by a minimum of two arginine substitutions, regardless of combination, whereas arginine substitutions at position 8 and 11 were required for T-cell line tropism. Nonetheless, macrophage tropism was not conferred by the V3 loop of subtype E R5 strain per se. We found that the specific combinations of amino acid changes in HIV-1 subtype E env V3 loop are critical for determining viral coreceptor usage and cell tropism. However, the ability to infect HOS-CD4 cells through either CXCR4 or CCR5 is not necessarily correlated with T-cell or macrophage tropism, suggesting that cellular tropism is not dictated solely by viral coreceptor utilization.  相似文献   

12.
By selecting the R5 human immunodeficiency virus type 1 (HIV-1) strain JR-CSF for efficient use of a CCR5 coreceptor with a badly damaged amino terminus [i.e., CCR5(Y14N)], we previously isolated variants that weakly utilize CCR5(Delta18), a low-affinity mutant lacking the normal tyrosine sulfate-containing amino-terminal region of the coreceptor. These previously isolated HIV-1(JR-CSF) variants contained adaptive mutations situated exclusively in the V3 loop of their gp120 envelope glycoproteins. We now have weaned the virus from all dependency on the CCR5 amino terminus by performing additional selections with HeLa-CD4 cells that express only a low concentration of CCR5(Delta18). The adapted variants had additional mutations in their V3 loops, as well as one in the V2 stem (S193N) and four alternative mutations in the V4 loop that eliminated the same N-linked oligosaccharide from position N403. Assays using pseudotyped viruses suggested that these new gp120 mutations all made strong contributions to use of CCR5(Delta18) by accelerating a rate-limiting CCR5-dependent conformational change in gp41 rather than by increasing viral affinity for this damaged coreceptor. Consistent with this interpretation, loss of the V4 N-glycan at position N403 also enhanced HIV-1 use of a different low-affinity CCR5 coreceptor with a mutation in extracellular loop 2 (ECL2) [i.e., CCR5(G163R)], whereas the double mutant CCR5(Delta18,G163R) was inactive. We conclude that loss of the N-glycan at position N403 helps to convert the HIV-1 envelope into a hair-trigger form that no longer requires strong interactions with both the CCR5 amino terminus and ECL2 but efficiently uses either site alone. These results demonstrate a novel functional role for a gp120 N-linked oligosaccharide and a high degree of adaptability in coreceptor usage by HIV-1.  相似文献   

13.
Entry of human immunodeficiency virus type 1 (HIV-1) and HIV-2 requires interactions between the envelope glycoprotein (Env) on the virus and CD4 and a chemokine receptor, either CCR5 or CXCR4, on the cell surface. The V3 loop of the HIV gp120 glycoprotein plays a critical role in this process, determining tropism for CCR5- or CXCR4-expressing cells, but details of how V3 interacts with these receptors have not been defined. Using an iterative process of deletion mutagenesis and in vitro adaptation of infectious viruses, variants of HIV-2 were derived that could replicate without V3, either with or without a deletion of the V1/V2 variable loops. The generation of these functional but markedly minimized Envs required adaptive changes on the gp120 core and gp41 transmembrane glycoprotein. V3-deleted Envs exhibited tropism for both CCR5- and CXCR4-expressing cells, suggesting that domains on the gp120 core were mediating interactions with determinants shared by both coreceptors. Remarkably, HIV-2 Envs with V3 deletions became resistant to small-molecule inhibitors of CCR5 and CXCR4, suggesting that these drugs inhibit wild-type viruses by disrupting a specific V3 interaction with the coreceptor. This study represents a proof of concept that HIV Envs lacking V3 alone or in combination with V1/V2 that retain functional domains required for viral entry can be derived. Such minimized Envs may be useful in understanding Env function, screening for new inhibitors of gp120 core interactions with chemokine receptors, and designing novel immunogens for vaccines.  相似文献   

14.
The Nef protein enhances human immunodeficiency virus type 1 (HIV-1) replication through an unknown mechanism. We and others have previously reported that efficient HIV-1 replication in activated primary CD4(+) T cells depends on the ability of Nef to downregulate CD4 from the cell surface. Here we demonstrate that Nef greatly enhances the infectivity of HIV-1 particles produced in primary T cells. Nef-defective HIV-1 particles contained significantly reduced quantities of gp120 on their surface; however, Nef did not affect the levels of virion-associated gp41, indicating that Nef indirectly stabilizes the association of gp120 with gp41. Surprisingly, Nef was not required for efficient replication of viruses that use CCR5 for entry, nor did Nef influence the infectivity or gp120 content of these virions. Nef also inhibited the incorporation of CD4 into HIV-1 particles released from primary T cells. We propose that Nef, by downregulating cell surface CD4, enhances HIV-1 replication by inhibiting CD4-induced dissociation of gp120 from gp41. The preferential requirement for Nef in the replication of X4-tropic HIV-1 suggests that the ability of Nef to downregulate CD4 may be most important at later stages of disease when X4-tropic viruses emerge.  相似文献   

15.
16.
Human immunodeficiency virus type 1 (HIV-1) infects and induces syncytium formation in microglial cells from the central nervous system (CNS). A primary isolate (HIV-1(BORI)) was sequentially passaged in cultured microglia, and the isolate recovered (HIV-1(BORI-15)) showed high levels of fusion and replicated more efficiently in microglia (J. M. Strizki, A. V. Albright, H. Sheng, M. O'Connor, L. Perrin, and F. González-Scarano, J. Virol. 70:7654-7662, 1996). The parent and adapted viruses used CCR5 as coreceptor. Recombinant viruses demonstrated that the syncytium-inducing phenotype was associated with four amino acid differences in the V1/V2 region of the viral gp120 (J. T. C. Shieh, J. Martin, G. Baltuch, M. H. Malim, and F. González-Scarano, J. Virol. 74:693-701, 2000). We produced luciferase-reporter, env-pseudotyped viruses using plasmids containing env sequences from HIV-1(BORI), HIV-1(BORI-15), and the V1/V2 region of HIV-1(BORI-15) in the context of HIV-1(BORI) env (named rBORI, rB15, and rV1V2, respectively). The pseudotypes were used to infect cells expressing various amounts of CD4 and CCR5 on the surface. In contrast to the parent recombinant, the rB15 and rV1V2 pseudotypes retained their infectability in cells expressing low levels of CD4 independent of the levels of CCR5, and they infected cells expressing CD4 with a chimeric coreceptor containing the third extracellular loop of CCR2b in the context of CCR5 or a CCR5 Delta4 amino-terminal deletion mutant. The VH-rB15 and VH-rV1V2 recombinant viruses were more sensitive to neutralization by a panel of HIV-positive sera than was VH-rBORI. Interestingly, the CD4-induced 17b epitope on gp120 was more accessible in the rB15 and rV1V2 pseudotypes than in rBORI, even before CD4 binding, and concomitantly, the rB15 and rV1V2 pseudotypes were more sensitive to neutralization with the human 17b monoclonal antibody. Adaptation to growth in microglia--cells that have reduced expression of CD4 in comparison with other cell types--appears to be associated with changes in gp120 that modify its ability to utilize CD4 and CCR5. Changes in the availability of the 17b epitope indicate that these affect conformation. These results imply that the process of adaptation to certain tissue types such as the CNS directly affects the interaction of HIV-1 envelope glycoproteins with cell surface components and with humoral immune responses.  相似文献   

17.
Maraviroc (MVC) inhibits the entry of human immunodeficiency virus type 1 (HIV-1) by binding to and modifying the conformation of the CCR5 extracellular loops (ECLs). Resistance to MVC results from alterations in the HIV-1 gp120 envelope glycoproteins (Env) enabling recognition of the drug-bound conformation of CCR5. To better understand the mechanisms underlying MVC resistance, we characterized the virus-cell interactions of gp120 from in vitro-generated MVC-resistant HIV-1 (MVC-Res Env), comparing them with those of gp120 from the sensitive parental virus (MVC-Sens Env). In the absence of the drug, MVC-Res Env maintains a highly efficient interaction with CCR5, similar to that of MVC-Sens Env, and displays a relatively modest increase in dependence on the CCR5 N terminus. However, in the presence of the drug, MVC-Res Env interacts much less efficiently with CCR5 and becomes critically dependent on the CCR5 N terminus and on positively charged elements of the drug-modified CCR5 ECL1 and ECL2 regions (His88 and His181, respectively). Structural analysis suggests that the Val323 resistance mutation in the gp120 V3 loop alters the secondary structure of the V3 loop and the buried surface area of the V3 loop-CCR5 N terminus interface. This altered mechanism of gp120-CCR5 engagement dramatically attenuates the entry of HIV-1 into monocyte-derived macrophages (MDM), cell-cell fusion activity in MDM, and viral replication capacity in MDM. In addition to confirming that HIV-1 escapes MVC by becoming heavily dependent on the CCR5 N terminus, our results reveal novel interactions with the drug-modified ECLs that are critical for the utilization of CCR5 by MVC-Res Env and provide additional insights into virus-cell interactions that modulate macrophage tropism.  相似文献   

18.
The sequential association of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 with CD4 and a seven-transmembrane segment coreceptor such as CCR5 or CXCR4 initiates entry of the virus into its target cell. The N terminus of CCR5, which contains several sulfated tyrosines, plays a critical role in the CD4-dependent association of gp120 with CCR5 and in viral entry. Here we demonstrate that a tyrosine-sulfated peptide based on the N terminus of CCR5, but not its unsulfated analogue, inhibits infection of macrophages and peripheral blood mononuclear cells by CCR5-dependent, but not CXCR4-dependent, HIV-1 isolates. The sulfated peptide also inhibited the association of CCR5-expressing cells with gp120-soluble CD4 complexes and, less efficiently, with MIP-1alpha. Moreover, this peptide inhibited the precipitation of gp120 by 48d and 23e antibodies, which recognize CD4-inducible gp120 epitopes, but not by several other antibodies that recognize proximal epitopes. The ability of the sulfated peptide to block 48d association with gp120 was dependent in part on seven tropism-determining residues in the third variable (V3) and fourth conserved (C4) domains of gp120. These data underscore the important role of the N-terminal sulfate moieties of CCR5 in the entry of R5 HIV-1 isolates and localize a critical contact between gp120 and CCR5.  相似文献   

19.
Mulampaka SN  Dixit NM 《PloS one》2011,6(5):e19941
Reduced expression of CCR5 on target CD4(+) cells lowers their susceptibility to infection by R5-tropic HIV-1, potentially preventing transmission of infection and delaying disease progression. Binding of the HIV-1 envelope (Env) protein gp120 with CCR5 is essential for the entry of R5 viruses into target cells. The threshold surface density of gp120-CCR5 complexes that enables HIV-1 entry remains poorly estimated. We constructed a mathematical model that mimics Env-mediated cell-cell fusion assays, where target CD4(+)CCR5(+) cells are exposed to effector cells expressing Env in the presence of a coreceptor antagonist and the fraction of target cells fused with effector cells is measured. Our model employs a reaction network-based approach to describe protein interactions that precede viral entry coupled with the ternary complex model to quantify the allosteric interactions of the coreceptor antagonist and predicts the fraction of target cells fused. By fitting model predictions to published data of cell-cell fusion in the presence of the CCR5 antagonist vicriviroc, we estimated the threshold surface density of gp120-CCR5 complexes for cell-cell fusion as ~20 μm(-2). Model predictions with this threshold captured data from independent cell-cell fusion assays in the presence of vicriviroc and rapamycin, a drug that modulates CCR5 expression, as well as assays in the presence of maraviroc, another CCR5 antagonist, using sixteen different Env clones derived from transmitted or early founder viruses. Our estimate of the threshold surface density of gp120-CCR5 complexes necessary for HIV-1 entry thus appears robust and may have implications for optimizing treatment with coreceptor antagonists, understanding the non-pathogenic infection of non-human primates, and designing vaccines that suppress the availability of target CD4(+)CCR5(+) cells.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) preferentially utilizes the CCR5 coreceptor for target cell entry in the acute phase of infection, while later in disease progression the virus switches to the CXCR4 coreceptor in approximately 50% of patients. In response to HIV-1 the adaptive immune response is triggered, and antibody (Ab) production is elicited to block HIV-1 entry. We recently determined that dendritic cells (DCs) can efficiently capture Ab-neutralized HIV-1, restore infectivity, and transmit infectious virus to target cells. Here, we tested the effect of Abs on trans transmission of CCR5 or CXCR4 HIV-1 variants. We observed that transmission of HIV-1 by immature as well as mature DCs was significantly higher for CXCR4- than CCR5-tropic viral strains. Additionally, neutralizing Abs directed against either the gp41 or gp120 region of the envelope such as 2F5, 4E10, and V3-directed Abs inhibited transmission of CCR5-tropic HIV-1, whereas Ab-treated CXCR4-tropic virus demonstrated unaltered or increased transmission. To further study the effects of coreceptor usage we tested molecularly cloned HIV-1 variants with modifications in the envelope that were based on longitudinal gp120 V1 and V3 variable loop sequences from a patient progressing to AIDS. We observed that DCs preferentially facilitated infection of CD4+ T lymphocytes of viral strains with an envelope phenotype found late in disease. Taken together, our results illustrate that DCs transmit CXCR4-tropic HIV-1 much more efficiently than CCR5 strains; we hypothesize that this discrimination could contribute to the in vivo coreceptor switch after seroconversion and could be responsible for the increase in viral load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号