首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Utilizing the arterial and venous occlusion technique, the effects of lung inflation and deflation on the resistance of alveolar and extraalveolar vessels were measured in the dog in an isolated left lower lobe preparation. The lobe was inflated and deflated slowly (45 s) at constant speed. Two volumes at equal alveolar pressure (Palv = 9.9 +/- 0.6 mmHg) and two pressures (13.8 +/- 0.8 mmHg, inflation; 4.8 +/- 0.5 mmHg, deflation) at equal volumes during inflation and deflation were studied. The total vascular pressure drop was divided into three segments: arterial (delta Pa), middle (delta Pm), and venous (delta Pv). During inflation and deflation the changes in pulmonary arterial pressure were primarily due to changes in the resistance of the alveolar vessels. At equal Palv (9.9 mmHg), delta Pm was 10.3 +/- 1.2 mmHg during deflation compared with 6.8 +/- 1.1 mmHg during inflation. At equal lung volume, delta Pm was 10.2 +/- 1.5 mmHg during inflation (Palv = 13.8 mmHg) and 5.0 +/- 0.7 mmHg during deflation (Palv = 4.8 mmHg). These measurements suggest that the alveolar pressure was transmitted more effectively to the alveolar vessels during deflation due to a lower alveolar surface tension. It was estimated that at midlung volume, the perimicrovascular pressure was 3.5-3.8 mmHg greater during deflation than during inflation.  相似文献   

2.
To determine alveolar pressure-volume relationships, alveolar three-dimensional reconstructions were prepared from lungs fixed by vascular perfusion at various points on the pressure-volume curve. Lungs from male Sprague-Dawley rats were fixed by perfusion through the pulmonary artery following a pressure-volume maneuver to the desired pressure point on either the inflation or deflation curve. Tissue samples from lungs were serially sectioned for determination of the volume fraction of alveoli and alveolar ducts and reconstruction of alveoli. Alveoli from lungs fixed at 5 cmH2O on the deflation curve (approximating functional residual volume) had a volume of 173 X 10(3) microns3, a surface area of 11,529 microns2, a mouth opening diameter of 72.7 microns, and a mean caliper diameter of 91.8 micron (SE). Alveolar shape changes during deflation from total lung capacity to residual volume was first (30 to 10 cmH2O) associated with little change in the diameter of the alveoli (102.7 +/- 2.4 to 100.3 +/- 3.3 microns). In the range overlapping normal breathing (10 to 0 cmH2O) there was a substantial decrease in diameter (100.3 +/- 3.3 to 43.3 +/- 2.3 microns). These measurements and others made on the relative changes in the dimensions of the alveolus suggest that the elastic network, particularly around the alveolar ducts, are predominant in determining lung behavior near the volume expansion limits of the lung while the elastic and surface tension properties of the alveoli are predominant in the volume range around functional residual capacity.  相似文献   

3.
Steady-state diffusing capacity of the lungs for carbon monoxide (DLCO) was measured in 13 anesthetized, paralyzed dogs ventilated at constant tidal volume and rate, using four different inspired CO levels (190, 600, 1,110, and 2,000 ppm). DLCO increased and reached a maximum as the inspired CO level was raised from 190 to 600 ppm. Further increases in inspired CO concentration were accompanied by a decrease in inspired CO concentration were accompanied by a decrease in DLCO. CO dead space and Pao2 remained constant at all inspired O2 levels. In some experiments a second set of measurements was made, the results of which were similar to those of the first set. The results cannot be explained by changes in CO back pressure, pulmonary capillary volume, or reaction rate of CO with hemoglobin, but can be explained if there is carrier-mediated CO transport in the alveolar capillary membrane.  相似文献   

4.
Although a considerable amount of information is available regarding the remodeling and growth of the pulmonary arterial circulation, relatively little is known regarding postnatal development of the pulmonary microcirculation. We hypothesized that the maximal velocity (Vmax) of pulmonary angiotensin-converting enzyme (ACE) activity, measured from indicator-dilution outflow curves using a synthetic substrate, 3H-labeled benzoyl-phenylalanyl-alanyl-proline (BPAP), is directly related to the capillary endothelial cell surface area in the lungs of developing lambs. Accordingly we measured apparent kinetics of pulmonary ACE activity in 22 anesthetized ventilated lambs (2-171 days old) and compared our functional assessment to simultaneous in vivo determinations of CO diffusing capacity (DLCO) and postmortem structural assessment of alveolar septal dimensions using stereology and electron microscopy. There was a progressive increase in Vmax of ACE in this age group, with little change in apparent affinity for BPAP. Similar functional manifestation of growth was noted by an age-dependent increase in DLCO. Neither Vmax nor DLCO was significantly affected by an increase in left atrial pressure to 19 Torr (via inflation of a balloon in the left atrium), suggesting little recruitment of vessels under conditions of the present protocol. A close correlation was observed when either Vmax for ACE activity or DLCO was plotted vs. capillary endothelial cell surface area. Double logarithmic transformation of capillary endothelial cell surface area, Vmax-ACE and DLCO vs. lung volume revealed power functions with slopes all greater than that predicted from isotropic growth, suggesting selective differential postnatal development of the endothelium of the alveolar septum in lambs from 2-171 days of age.  相似文献   

5.
Study aimed to determine whether short-term graded exercise affects single-breath lung diffusion capacity for nitric oxide (DLNO) and carbon monoxide (DLCO) similarly, and whether the DLNO/DLCO ratios during rest are altered post-exercise compared to pre-exercise. Eleven healthy subjects (age=29+/-6 years; weight=76.6+/-13.2 kg; height=177.9+/-13.2 cm; and maximal oxygen uptake or V(.-)(O(2max) = 52.7 +/- 9.3 ml kg(-1) min(-1))performed simultaneous single-breath DLNO and DLCO measurements at rest (inspired NO concentration=43.2+/-4.1 ppm, inspired CO concentration=0.30%) 15 min before and 2h after a graded exercise test to exhaustion (exercise duration=593+/-135 s). Resting DLNO and DLCO was similarly reduced 2h post-exercise (DLNO=-7.8+/-3.5%, DLCO=-10.3+/-6.9%, and P<0.05) due to reductions in pulmonary capillary blood volume (-11.3+/-9.0%, P<0.05) and membrane diffusing capacity for CO (-7.8+/-3.5%; P<0.05). The change in DLCO was reflected by the change in DLNO post-exercise such that 68% of the variance in the change in DLCO was accounted for by the variance in the change in DLNO (P<0.05). The DLNO/DLCO ratio was not altered post-exercise (5.87+/-0.37) compared to pre-exercise (5.70+/-0.34). We conclude that the decrease in single-breath DLNO and DLCO from pre- to post-exercise is similar, the magnitude of the change in DLCO closely reflects that of the change in DLNO, and single-breath DLNO/DLCO ratios are independent of the timing of measurement suggesting that using NO and CO transfer gases are valid in looking at short-term changes in lung diffusional conductance.  相似文献   

6.
Using a rapidly responding nitric oxide (NO) analyzer, we measured the steady-state NO diffusing capacity (DL(NO)) from end-tidal NO. The diffusing capacity of the alveolar capillary membrane and pulmonary capillary blood volume were calculated from the steady-state diffusing capacity for CO (measured simultaneously) and the specific transfer conductance of blood per milliliter for NO and for CO. Nine men were studied bicycling at an average O(2) consumption of 1.3 +/- 0.2 l/min (mean +/- SD). DL(NO) was 202.7 +/- 71.2 ml. min(-1). Torr(-1) and steady-state diffusing capacity for CO, calculated from end-tidal (assumed alveolar) CO(2), mixed expired CO(2), and mixed expired CO, was 46.9 +/- 12.8 ml. min(-1). Torr(-1). NO dead space = (VT x FE(NO) - VT x FA(NO))/(FI(NO) - FA(NO)) = 209 +/- 88 ml, where VT is tidal volume and FE(NO), FI(NO), and FA(NO) are mixed exhaled, inhaled, and alveolar NO concentrations, respectively. We used the Bohr equation to estimate CO(2) dead space from mixed exhaled and end-tidal (assumed alveolar) CO(2) = 430 +/- 136 ml. Predicted anatomic dead space = 199 +/- 22 ml. Membrane diffusing capacity was 333 and 166 ml. min(-1). Torr(-1) for NO and CO, respectively, and pulmonary capillary blood volume was 140 ml. Inhalation of repeated breaths of NO over 80 s did not alter DL(NO) at the concentrations used.  相似文献   

7.
The purpose of these experiments was to quantify stagnant intrapulmonary blood caused by a pulmonary arterial occlusion (PAO). The hypothesis was that the diffusing capacity of the lung for CO (DLCO) would be altered little by PAO when measured with the usual inspired concentrations (0.3%) of CO, since stagnant blood distal to the occlusion takes up CO for 20 s or more before significant CO backpressure would develop. However, higher levels of CO (i.e., greater than or equal to 3%) would equilibrate faster with capillary blood (within 5-10 s), and DLCO measured 10-20 s subsequent to the high CO exposure would reflect only the DLCO in the unoccluded regions. Thus the fractional reduction in DLCO measured with 3% CO, with respect to that measured with 0.3% CO, should be related to the fractional occlusion of the pulmonary artery in a predictable way. We occluded the right pulmonary artery (RPAO), the left pulmonary artery (LPAO), or the left lower lobar artery (LLPAO) and found that DLCO measured during rebreathing a 0.3% CO mixture was 80, 87, and 94%, respectively, of the preocclusion value, whereas the DLCO measured during rebreathing a 3.3% CO mixture was 59, 73, and 87% of the preocclusion value. A computer model was developed to predict the reduction in DLCO at different levels of CO exposure that would be caused by varying fractions of PAO. Our data indicated that RPAO corresponded to a 42% vascular occlusion, LPAO a 35% occlusion, and LLPAO a 20% occlusion. Measurement of DLCO using low and high concentrations of CO might be useful in assessing the fraction of vascular bed occluded and in following noninvasively the course of vascular occlusion in a variety of pulmonary diseases.  相似文献   

8.
The distribution of red blood cells in alveolar capillaries is typically nonuniform, as shown by intravital microscopy and in alveolar tissue fixed in situ. To determine the effects of red cell distribution on pulmonary diffusive gas transport, we computed the uptake of CO across a two-dimensional geometric capillary model containing a variable number of red blood cells. Red blood cells are spaced uniformly, randomly, or clustered without overlap within the capillary. Total CO diffusing capacity (DLCO) and membrane diffusing capacity (DmCO) are calculated by a finite-element method. Results show that distribution of red blood cells at a fixed hematocrit greatly affects capillary CO uptake. At any given average capillary red cell density, the uniform distribution of red blood cells yields the highest DmCO and DLCO, whereas the clustered distribution yields the lowest values. Random nonuniform distribution of red blood cells within a single capillary segment reduces diffusive CO uptake by up to 30%. Nonuniform distribution of red blood cells among separate capillary segments can reduce diffusive CO uptake by >50%. This analysis demonstrates that pulmonary microvascular recruitment for gas exchange does not depend solely on the number of patent capillaries or the hematocrit; simple redistribution of red blood cells within capillaries can potentially account for 50% of the observed physiological recruitment of DLCO from rest to exercise.  相似文献   

9.
In normal gravity, lung diffusing capacity (DL(CO)) and lung tissue volume (LTV; including pulmonary capillary blood volume) change in concert, for example, during shifts between upright and supine. Accordingly, DL(CO) and LTV might be expected to decrease together in sitting subjects in hypergravity due to peripheral pooling of blood and reduced central blood volume. Nine sitting subjects in a human centrifuge were exposed to one, two, and three times increased gravity in the head-to-feet direction (G(z+)) and rebreathed a gas containing trace amounts of acetylene and carbon monoxide. DL(CO) was 25.2 +/- 2.6, 20.0 +/- 2.1, and 16.7 +/- 1.7 ml. min(-1). mbar(-1) (means +/- SE) at 1, 2, and 3 G(z+), respectively (ANOVA P < 0.001). Corresponding values for LTV increased from 541 +/- 34 to 677 +/- 43, and 756 +/- 71 ml (P < 0.001) at 2 and 3 G(z+). Results are compatible with sequestration of blood in the dependent part of the pulmonary circulation just as in the systemic counterpart. DL(CO,) which under normoxic conditions is mainly determined by its membrane component, decreased despite an increased pulmonary capillary blood volume, most likely as a consequence of a less homogenous distribution of alveolar volume with respect to pulmonary capillary blood volume.  相似文献   

10.
Determinations of pulmonary diffusing capacity for CO (DLCO) by physiological and morphometric techniques have resulted in substantially different values for both DLCO and its major components. To evaluate the differences in these methods of measurement of DLCO, measurements were made under controlled conditions on isolated perfused dog lungs. Multiple gas-rebreathing techniques were used to measure DLCO, the membrane component of the diffusing capacity for CO (DmCO), and pulmonary capillary blood volume (Vc) in both anesthetized dogs and after isolation and perfusion of their lungs. The isolated perfused lungs were than perfusion fixed for morphometric analysis of the components of DLCO. The values obtained morphometrically for Vc were similar to those measured by physiological techniques. Perfusion fixation did not substantially alter the morphometric estimate of DmCO when compared with previous values obtained on inflation fixed lungs. However, the morphometric estimate of DmCO was over 10 times higher than that estimated physiologically. Analysis of the potential errors in the techniques suggests that the correct value for DmCO is substantially higher than that commonly estimated by use of physiological techniques and that the explanation for the difference is due to a number of factors that can influence the binding of CO to hemoglobin under in vivo conditions. The net effect of these factors can be represented by an unknown in each component of the Roughton-Forster relationship so that 1/DL = 1/(U1.Dm) + 1/(U2.theta Vc), where theta is the binding rate for CO to hemoglobin. Because the magnitudes of the unknown terms (U1 and U2) in the Roughton-Forster relationship are likely to be large, this relationship cannot be reliably used to determine Dm and Vc.  相似文献   

11.
For pulmonary structure-function analysis excised rabbit lungs were fixed by vascular perfusion at six points on the pressure-volume (P-V) curve, i.e. at 40, 80, and 100% of total lung capacity (TLC) on inflation, at 80 and 40% TLC on deflation, and at 80% TLC on reinflation. Before fixation alveolar surface tensions (gamma) were measured in individual alveoli over the entire P-V loop, using an improved microdroplet method. A maximal gamma of approximately 30 mN/m was measured at TLC, which decreased during lung deflation to about 1 mN/m at 40% TLC. Surface tensions were considerably higher on the inflation limb starting from zero pressure than on the deflation limb (gamma-V hysteresis). In contrast, the corresponding alveolar surface area-volume (SA-V) relationship did not form a complete hysteresis over the entire volume range. There was a considerable difference in SA between lungs inflated to 40% TLC (1.49 +/- 0.11 m2) and lungs deflated to 40% TLC (2.19 +/- 0.21 m2), but at 80% TLC the values of SA were essentially the same regardless of the volume history. The data indicate that the gamma-SA hysteresis is only in part accountable for the P-V hysteresis and that the determinative factors of alveolar geometry change with lung volume. At low lung volumes airspace dimensions appear to be governed by an interplay between surface and tissue forces. At higher lung volumes the tissue forces become predominant.  相似文献   

12.
Blood pressure, pulse rate (PR), serum osmolality and electrolytes, as well as plasma vasopressin (PVP) and plasma renin activity (PRA), were measured in five men and two women [mean age 38.6 +/- 3.9 (SE) yr] before, during, and after inflation of an antigravity suit that covered the legs and abdomen. After 24 h of fluid deprivation the subjects stood quietly for 3 h: the 1st h without inflation, the 2nd with inflation to 60 Torr, and the 3rd without inflation. A similar control noninflation experiment was conducted 10 mo after the inflation experiment using five of the seven subjects except that the suit was not inflated during the 3-h period. Mean arterial pressure increased by 14 +/- 4 (SE) Torr (P less than 0.05) with inflation and decreased by 15 +/- 5 Torr (P less than 0.05) after deflation. Pulse pressure (PP) increased by 7 +/- 2 Torr (P less than 0.05) with inflation and PR decreased by 11 +/- 5 beats/min (P less than 0.05); PP and PR returned to preinflation levels after deflation. Plasma volume decreased by 6.1 +/- 1.5% and 5.3 +/- 1.6% (P less than 0.05) during hours 1 and 3, respectively, and returned to base line during inflation. Inflation decreased PVP from 6.8 +/- 1.1 to 5.6 +/- 1.4 pg/ml (P less than 0.05) and abolished the significant rise in PRA during hour 1. Both PVP and PRA increased significantly after deflation: delta = 18.0 +/- 5.1 pg/ml and 4.34 +/- 1.71 ng angiotensin I X ml-1 X h-1, respectively. Serum osmolality and Na+ and K+ concentrations were unchanged during the 3 h of standing.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We investigated whether partitioning DLCO into membrane conductance for CO (DmCO) and pulmonary capillary blood volume (Vcap) was helpful in suspecting precapillary pulmonary (arterial) hypertension (P(A)H) in systemic sclerosis (SSc) patients with or without interstitial lung disease (ILD). We included 63 SSc patients with isolated PAH (n=6), isolated ILD (n=19), association of both (n=12) or without PAH and ILD (n=26). Partitioning of DLCO was performed by the combined DLNO/DLCO method. DLCO, DmCO and Vcap were equally reduced in patients with isolated PAH and patients with isolated ILD but Vcap/alveolar volume (VA) ratio was significantly lower in the isolated PAH group. In patients without ILD, DLCO, DmCO, Vcap and Vcap/VA ratio were reduced in patients with isolated PAH when compared to patients without PAH and both Vcap/VA and DLCO had the highest AUC to detect PAH. In patients with ILD, Vcap had the highest AUC and performed better than DLCO to detect PH in this subgroup. In conclusion, Vcap/VA was lower in PAH than in ILD in SSC whereas DLCO was not different. Vcap/VA ratio and DLCO had similar high performance to detect PAH in patients without ILD. Vcap had better AUC than DLCO, DmCO and FVC/DLCO ratio to detect PH in SSC patients with ILD. These results suggest that partitioning of DLCO might be of interest to detect P(A)H in SSC patients with or without ILD.  相似文献   

14.
We studied the bronchial arterial blood flow (Qbr) and bronchial vascular resistance (BVR) in sheep prepared with carotid-bronchial artery shunt. Nine adult sheep were anesthetized, and through a left thoracotomy a heparinized Teflon-tipped Silastic catheter was introduced into the bronchial artery. The other end of the catheter was brought out through the chest wall and through a neck incision was introduced into the carotid artery. A reservoir filled with warm heparinized blood was connected to this shunt. The height of blood column in the reservoir was kept constant at 150 cm by adding more blood. Qbr was measured, after interrupting the carotid-bronchial artery flow, by the changes in the reservoir volume. The bronchial arterial back pressure (Pbr) was measured through the shunt when both carotid-bronchial artery and reservoir Qbr had been temporarily interrupted. The mean Qbr was 34.1 +/- 2.9 (SE) ml/min, Pbr = 17.5 +/- 3.3 cmH2O, BVR = 3.9 +/- 0.5 cmH2O X ml-1 X min, mean pulmonary arterial pressure = 21.5 +/- 3.6 cmH2O, and pulmonary capillary wedge pressure (Ppcw) = 14.3 +/- 3.7 cmH2O. We further studied the effect of increased left atrial pressure on these parameters by inflating a balloon in the left atrium. The left atrial balloon inflation increased Ppcw to 25.3 +/- 3.1 cmH2O, Qbr decreased to 21.8 +/- 2.4 ml/min (P less than 0.05), and BVR increased to 5.5 +/- 1.0 cmH2O.ml-1.min (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Lung volumes, oxygen uptake (VO2), end-tidal PO2, and PCO2, diffusing capacity of the lungs for CO (DLCO), pulmonary blood flow (QL) and respiratory frequency were measured in the green sea turtle (Chelonia mydas) (49-127 kg body wt). Mean lung volume (VL) determined from helium dilution was 57 ml/kg and physiological dead space volume (VD) was about 3.6 ml/kg. QL, determined from acetylene uptake during rebreathing, increased in proportion to VO2 with temperature. Therefore, constant O2 content difference was maintained between pulmonary arterial and venous blood. DLCO, measured using a rebreathing technique, was 0.04 ml X kg-1 X min-1 X Torr-1 at 25 degrees C. Several cardiopulmonary characteristics in C. mydas are advantageous to diving: large tidal volume relative to functional residual capacity promotes fast exchange of the alveolar gas when the turtle surfaces for breathing: and the concomitant rise of pulmonary blood flow and O2 uptake with temperature assures efficient O2 transport regardless of wide temperature variations encountered during migrations.  相似文献   

16.
We previously reported in weanling guinea pigs raised at high altitude (HA; 3,800 m) an elevated lung diffusing capacity estimated by morphometry from alveolar-capillary surface area, harmonic mean blood-gas barrier thickness, and pulmonary capillary blood volume (Vc) compared with litter-matched control animals raised at an intermediate altitude (IA; 1,200 m) (Hsia CCW, Polo Carbayo JJ, Yan X, Bellotto DJ. Respir Physiol Neurobiol 147: 105-115, 2005). To determine if HA-induced alveolar ultrastructural changes are associated with improved alveolar function, we measured lung diffusing capacity for carbon monoxide (DLCO), membrane diffusing capacity for carbon monoxide (DMCO), Vc, pulmonary blood flow, and lung volume by a rebreathing technique in litter-matched male weanling Hartley guinea pigs raised at HA or IA for 4 or 12 mo. Separate control animals were also raised and studied at sea level (SL). Resting measurements were obtained in the conscious nonsedated state. In HA animals compared with corresponding IA or SL controls, lung volume and hematocrit were significantly higher while pulmonary blood flow was lower. At a given pulmonary blood flow, DLCO and DMCO were higher in HA-raised animals than in control animals without a significant change in Vc. We conclude that 1) HA residence enhanced physiological diffusing capacity corresponding to that previously estimated on the basis of structural adaptation, 2) adaptation in diffusing capacity and its components should be interpreted with respect to pulmonary blood flow, and 3) this noninvasive rebreathing technique could be used to follow adaptive responses in small animals.  相似文献   

17.
Morbidly obese individuals may have altered pulmonary diffusion during exercise. The purpose of this study was to examine pulmonary diffusing capacity for nitric oxide (DLNO) and carbon monoxide (DLCO) during exercise in these subjects. Ten morbidly obese subjects (age = 38 +/- 9 years, BMI = 47 +/- 7 kg/m(2), peak oxygen consumption or VO(2peak) = 2.4 +/- 0.4 l/min) and nine nonobese controls (age = 41 +/- 9 years, BMI = 23 +/- 2 kg/m(2), VO(2peak) = 2.6 +/- 0.9 l/min) participated in two sessions: the first measured resting O(2) and VO(2peak) for determination of wattage equating to 40, 75, and 90% oxygen uptake reserve (VO(2)R). The second session measured pulmonary diffusion from single-breath maneuvers of 5 s each, as well as heart rate (HR) and VO(2) over three workloads. DLNO, DLCO, and pulmonary capillary blood volume were larger in obese compared to nonobese groups (P 0.10). The morbidly obese have increased pulmonary diffusion per unit increase in VA compared with nonobese controls which may be due to a lower rise in VA per unit increase in VO(2) in the obese during exercise.  相似文献   

18.
We studied the effect of mean airway pressure (Paw) on gas exchange during high-frequency oscillatory ventilation in 14 adult rabbits before and after pulmonary saline lavage. Sinusoidal volume changes were delivered through a tracheostomy at 16 Hz, a tidal volume of 1 or 2 ml/kg, and inspired O2 fraction of 0.5. Arterial PO2 and PCO2 (PaO2, PaCO2), lung volume change, and venous admixture were measured at Paw from 5 to 25 cmH2O after either deflation from total lung capacity or inflation from relaxation volume (Vr). The rabbits were lavaged with saline until PaO2 was less than 70 Torr, and all measurements were repeated. Lung volume change was measured in a pressure plethysmograph. Raising Paw from 5 to 25 cmH2O increased lung volume by 48-50 ml above Vr in both healthy and lavaged rabbits. Before lavage, PaO2 was relatively insensitive to changes in Paw, but after lavage PaO2 increased with Paw from 42.8 +/- 7.8 to 137.3 +/- 18.3 (SE) Torr (P less than 0.001). PaCO2 was insensitive to Paw change before and after lavage. At each Paw after lavage, lung volume was larger, venous admixture smaller, and PaO2 higher after deflation from total lung capacity than after inflation from Vr. This study shows that the effect of increased Paw on PaO2 is mediated through an increase in lung volume. In saline-lavaged lungs, equal distending pressures do not necessarily imply equal lung volumes and thus do not imply equal PaO2.  相似文献   

19.
Vaïda, Pierre, Christian Kays, Daniel Rivière,Pierre Téchoueyres, and Jean-Luc Lachaud.Pulmonary diffusing capacity and pulmonary capillary blood volumeduring parabolic flights. J. Appl.Physiol. 82(4): 1091-1097, 1997.Data from theSpacelab Life Sciences-1 (SLS-1) mission have shown sustained butmoderate increase in pulmonary diffusing capacity(DL). Because of the occupational constraints of the mission, data were only obtained after24 h of exposure to microgravity. Parabolic flights are often used tostudy some effects of microgravity, and we measured changes inDL occurring at the very onsetof weightlessness. Measurements ofDL, membrane diffusing capacity,and pulmonary capillary blood volume were made in 10 male subjectsduring the 20-s 0-G phases of parabolic flights performed by the"zero-G" Caravelle aircraft. Using the standardized single-breathtechnique, we measuredDL for CO andnitric oxide simultaneously. We found significant increases inDL for CO (62%),in membrane diffusing capacity for CO (47%), inDL for nitric oxide (47%), andin pulmonary capillary blood volume (71%). We conclude that majorchanges in the alveolar membrane gas transfers and in the pulmonarycapillary bed occur at the very onset of microgravity. Because thesechanges are much greater than those reported during sustainedmicrogravity, the effects of rapid transition from hypergravity tomicrogravity during parabolic flights remain questionable.

  相似文献   

20.
The inhibitory effect of CO2 on slowly adapting pulmonary stretch receptors (SARs) was examined before and after administration of ouabain, a Na+-K+ ATPase inhibitor, and flecainide, a Na+ channel blocker. The experiments were performed in anesthetized, artificially ventilated rabbits after vagus nerve section. CO2 inhalation (maximal tracheal CO2 concentration ranging from 9.2 % to 10.4%) for about 60 sec decreased the receptor activity during both inflation and deflation. The magnitude of decreased SAR activity during deflation was greater than that seen during inflation. Administration of ouabain (25 microg/kg) initially stimulated SAR activities during inflation and deflation, and after 20 min, the SAR response was still kept excitatory in both inflation and deflation phases. Under these conditions, CO2 inhalation inhibited SAR activities during inflation and deflation. Flecainide treatment (3 mg/kg) that abolished veratridine (30 microg/kg)-induced SAR excitation had no significant effect on the inhibitory responses of SAR activity to CO2. These results suggest that the inhibitory effect of CO2 occurs when ouabain results in intracellular Na+ concentration ([Na+]i) increases in the SAR endings, and that CO2-induced SAR inhibition may not be related to the reduction of influx of Na+ through voltage-gated Na+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号