首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Species extinctions are biased towards higher trophic levels, and primary extinctions are often followed by unexpected secondary extinctions. Currently, predictions on the vulnerability of ecological communities to extinction cascades are based on models that focus on bottom‐up effects, which cannot capture the effects of extinctions at higher trophic levels. We show, in experimental insect communities, that harvesting of single carnivorous parasitoid species led to a significant increase in extinction rate of other parasitoid species, separated by four trophic links. Harvesting resulted in the release of prey from top‐down control, leading to increased interspecific competition at the herbivore trophic level. This resulted in increased extinction rates of non‐harvested parasitoid species when their host had become rare relative to other herbivores. The results demonstrate a mechanism for horizontal extinction cascades, and illustrate that altering the relationship between a predator and its prey can cause wide‐ranging ripple effects through ecosystems, including unexpected extinctions.  相似文献   

2.
Local species extinctions may lead to, often unexpected, secondary extinctions. To predict these, we need to understand how indirect effects, within a network of interacting species, affect the ability of species to persist. It has been hypothesized that the persistence of some predators depends on other predator species that suppress competitively dominant prey to low levels, allowing a greater diversity of prey species, and their predators, to coexist. We show that, in experimental insect communities, the absence of one parasitoid wasp species does indeed lead to the extinction of another that is separated by four trophic links. These results highlight the importance of a holistic systems perspective to biodiversity conservation and the necessity to include indirect population dynamic effects in models for predicting cascading extinctions in networks of interacting species.  相似文献   

3.
Ecological networks are tightly interconnected, such that loss of a single species can trigger additional species extinctions. Theory predicts that such secondary extinctions are driven primarily by loss of species from intermediate or basal trophic levels. In contrast, most cases of secondary extinctions from natural systems have been attributed to loss of entire top trophic levels. Here, we show that loss of single predator species in isolation can, irrespective of their identity or the presence of other predators, trigger rapid secondary extinction cascades in natural communities far exceeding those generally predicted by theory. In contrast, we did not find any secondary extinctions caused by intermediate consumer loss. A food web model of our experimental system—a marine rocky shore community—could reproduce these results only when biologically likely and plausible nontrophic interactions, based on competition for space and predator‐avoidance behaviour, were included. These findings call for a reassessment of the scale and nature of extinction cascades, particularly the inclusion of nontrophic interactions, in forecasts of the future of biodiversity.  相似文献   

4.
Plant diversity is predicted to be positively linked to the diversity of herbivores and predators in a foodweb. Yet, the relationship between plant and animal diversity is explained by a variety of competing hypotheses, with mixed empirical results for each hypothesis. We sampled arthropods for over a decade in an experiment that manipulated the number of grassland plant species. We found that herbivore and predator species richness were strongly, positively related to plant species richness, and that these relationships were caused by different mechanisms at herbivore and predator trophic levels. Even more dramatic was the threefold increase, from low- to high-plant species richness, in abundances of predatory and parasitoid arthropods relative to their herbivorous prey. Our results demonstrate that, over the long term, the loss of plant species propagates through food webs, greatly decreasing arthropod species richness, shifting a predator-dominated trophic structure to being herbivore dominated, and likely impacting ecosystem functioning and services.  相似文献   

5.
Understanding how biodiversity affects functioning of ecosystems requires integrating diversity within trophic levels (horizontal diversity) and across trophic levels (vertical diversity, including food chain length and omnivory). We review theoretical and experimental progress toward this goal. Generally, experiments show that biomass and resource use increase similarly with horizontal diversity of either producers or consumers. Among prey, higher diversity often increases resistance to predation, due to increased probability of including inedible species and reduced efficiency of specialist predators confronted with diverse prey. Among predators, changing diversity can cascade to affect plant biomass, but the strength and sign of this effect depend on the degree of omnivory and prey behaviour. Horizontal and vertical diversity also interact: adding a trophic level can qualitatively change diversity effects at adjacent levels. Multitrophic interactions produce a richer variety of diversity-functioning relationships than the monotonic changes predicted for single trophic levels. This complexity depends on the degree of consumer dietary generalism, trade-offs between competitive ability and resistance to predation, intraguild predation and openness to migration. Although complementarity and selection effects occur in both animals and plants, few studies have conclusively documented the mechanisms mediating diversity effects. Understanding how biodiversity affects functioning of complex ecosystems will benefit from integrating theory and experiments with simulations and network-based approaches.  相似文献   

6.
1. The loss of a species from an ecological community can trigger a cascade of secondary extinctions. Here we investigate how the complexity (connectance) of model communities affects their response to species loss. Using dynamic analysis based on a global criterion of persistence (permanence) and topological analysis we investigate the extent of secondary extinctions following the loss of different kinds of species. 2. We show that complex communities are, on average, more resistant to species loss than simple communities: the number of secondary extinctions decreases with increasing connectance. However, complex communities are more vulnerable to loss of top predators than simple communities. 3. The loss of highly connected species (species with many links to other species) and species at low trophic levels triggers, on average, the largest number of secondary extinctions. The effect of the connectivity of a species is strongest in webs with low connectance. 4. Most secondary extinctions are due to direct bottom-up effects: consumers go extinct when their resources are lost. Secondary extinctions due to trophic cascades and disruption of predator-mediated coexistence also occur. Secondary extinctions due to disruption of predator-mediated coexistence are more common in complex communities than in simple communities, while bottom-up and top-down extinction cascades are more common in simple communities. 5. Topological analysis of the response of communities to species loss always predicts a lower number of secondary extinctions than dynamic analysis, especially in food webs with high connectance.  相似文献   

7.
《Acta Oecologica》2007,31(1):79-85
Adding or removing a top-predator is known to affect lower trophic levels with potentially large, indirect effects on primary production. However, little is known about how predator diversity may affect lower trophic levels, or how adding or removing a top-predator influences the effects of predator diversity. Using aquatic mesocosms containing three and four trophic levels, we tested whether intermediate predator diversity affected predation on consumers and if top-predator presence influenced such effects. We found that the presence of intermediate predators suppressed the consumer population and that this suppression tended to increase with increased intermediate predator diversity when the top-predator was absent. However, with the top-predator present, increased intermediate predator diversity showed the opposite effect on the consumers compared to without a top-predator, i.e. decreased suppression of consumers with increased diversity. Hence, in our study, the loss of intermediate predator species weakened or strengthened predator–prey interactions depending on if the top-predator was present or not, while loss of the top-predator only strengthened the predator–prey interactions. Therefore, the loss of a predator species may render different, but perhaps predictable effects on the functioning of a system depending on from which trophic level it is lost and on the initial number of species in that trophic level.  相似文献   

8.
Mike S. Fowler 《Oikos》2013,122(12):1730-1738
Forcibly removing species from ecosystems has important consequences for the remaining assemblage, leading to changes in community structure, ecosystem functioning and secondary (cascading) extinctions. One key question that has arisen from single‐ and multi‐trophic ecosystem models is whether the secondary extinctions that occur within competitive communities (guilds) are also important in multi‐trophic ecosystems? The loss of consumer–resource links obviously causes secondary extinction of specialist consumers (topological extinctions), but the importance of secondary extinctions in multi‐trophic food webs driven by direct competitive exclusion remains unknown. Here I disentangle the effects of extinctions driven by basal competitive exclusion from those caused by trophic interactions in a multi‐trophic ecosystem (basal producers, intermediate and top consumers). I compared food webs where basal species either show diffuse (all species compete with each other identically: no within guild extinctions following primary extinction) or asymmetric competition (unequal interspecific competition: within guild extinctions are possible). Basal competitive exclusion drives extra extinction cascades across all trophic levels, with the effect amplified in larger ecosystems, though varying connectance has little impact on results. Secondary extinction patterns based on the relative abundance of the species lost in the primary extinction differ qualitatively between diffuse and asymmetric competition. Removing asymmetric basal species with low (high) abundance triggers fewer (more) secondary extinctions throughout the whole food web than removing diffuse basal species. Rare asymmetric competitors experience less pressure from consumers compared to rare diffuse competitors. Simulations revealed that diffuse basal species are never involved in extinction cascades, regardless of the trophic level of a primary extinction, while asymmetric competitors were. This work highlights important qualitative differences in extinction patterns that arise when different assumptions are made about the form of direct competition in multi‐trophic food webs.  相似文献   

9.
The large vulnerability of top predators to human-induced disturbances on ecosystems is a matter of growing concern. Because top predators often exert strong influence on their prey populations their extinction can have far-reaching consequences for the structure and functioning of ecosystems. It has, for example, been observed that the local loss of a predator can trigger a cascade of secondary extinctions. However, the time lags involved in such secondary extinctions remain unexplored. Here we show that the loss of a top predator leads to a significantly earlier onset of secondary extinctions in model communities than does the loss of a species from other trophic levels. Moreover, in most cases time to secondary extinction increases with increasing species richness. If local secondary extinctions occur early they are less likely to be balanced by immigration of species from local communities nearby. The implications of these results for community persistence and conservation priorities are discussed.  相似文献   

10.
Experiments and theory in single trophic level systems dominate biodiversity and ecosystem functioning research and recent debates. All natural ecosystems contain communities with multiple trophic levels, however, and this can have important effects on ecosystem structure and functioning. Furthermore, many experiments compare assembled communities, rather than examining loss of species directly. We identify three questions around which to organise an investigation of how species loss affects the structure and functioning of multitrophic systems. 1) What is the distribution of species richness among trophic levels; 2) from which trophic levels are species most often lost; and 3) does loss of species from different trophic levels influence ecosystem functioning differently? Our analyses show that: 1) Relatively few high‐quality data are available concerning the distribution of species richness among trophic levels. A new data‐set provides evidence of a decrease in species richness as trophic height increases. 2) Multiple lines of evidence indicate that species are lost from higher trophic levels more frequently than lower trophic levels. 3) A theoretical model suggests that both the structure of food webs (occurrence of omnivory and the distribution of species richness among trophic levels) and the trophic level from which species are lost determines the impact of species loss on ecosystem functioning, which can even vary in the sign of the effect. These results indicate that, at least for aquatic systems, models of single trophic level ecosystems are insufficient for understanding the functional consequences of extinctions. Knowledge is required of food web structure, which species are likely to be lost, and also whether cascading extinctions will occur.  相似文献   

11.
Understanding which species might become extinct and the consequences of such loss is critical. One consequence is a cascade of further, secondary extinctions. While a significant amount is known about the types of communities and species that suffer secondary extinctions, little is known about the consequences of secondary extinctions for biodiversity. Here we examine the effect of these secondary extinctions on trophic diversity, the range of trophic roles played by the species in a community. Our analyses of natural and model food webs show that secondary extinctions cause loss of trophic diversity greater than that expected from chance, a result that is robust to variation in food web structure, distribution of interactions strengths, functional response, and adaptive foraging. Greater than expected loss of trophic diversity occurs because more trophically unique species are more vulnerable to secondary extinction. This is not a straightforward consequence of these species having few links with others but is a complex function of how direct and indirect interactions affect species persistence. A positive correlation between a species' extinction probability and the importance of its loss defines high-risk species and should make their conservation a priority.  相似文献   

12.
Plant diversity and the stability of foodwebs   总被引:1,自引:0,他引:1  
Insect outbreaks in forest and agriculture monocultures led Charles Elton to propose, a half-century ago, that higher plant diversity stabilized animal foodweb dynamics in natural ecosystems. We tested this hypothesis by studying arthropod community dynamics in a long-term experimental manipulation of grassland plant species diversity. Over the course of a decade, we found that higher plant diversity increased the stability (i.e. lowered year-to-year variability) of a diverse (>700 species) arthropod community across trophic levels. As the number of plant species increased, the stability of both herbivore and predator species richness and of total herbivore abundance increased. The underlying mechanisms driving these diversity-stability relationships were plant diversity, via effects on primary productivity and plant community stability, and portfolio effects. Taken together, our results show that higher plant diversity provides more temporally consistent food and habitat resources to arthropod foodwebs. Consequently, actively managing for high plant diversity may have stronger than expected benefits for increasing animal diversity and controlling pest outbreaks.  相似文献   

13.
Cascading effects of predator diversity and omnivory in a marine food web   总被引:4,自引:1,他引:3  
Over‐harvesting, habitat loss and exotic invasions have altered predator diversity and composition in a variety of communities which is predicted to affect other trophic levels and ecosystem functioning. We tested this hypothesis by manipulating predator identity and diversity in outdoor mesocosms that contained five species of macroalgae and a macroinvertebrate herbivore assemblage dominated by amphipods and isopods. We used five common predators including four carnivores (crabs, shrimp, blennies and killifish) and one omnivore (pinfish). Three carnivorous predators each induced a strong trophic cascade by reducing herbivore abundance and increasing algal biomass and diversity. Surprisingly, increasing predator diversity reversed these effects on macroalgae and altered algal composition, largely due to the inclusion and performance of omnivorous fish in diverse predator assemblages. Changes in predator diversity can cascade to lower trophic levels; the exact effects, however, will be difficult to predict due to the many complex interactions that occur in diverse food webs.  相似文献   

14.
It is predicted that warmer conditions should lead to a loss of trophic levels, as larger bodied consumers, which occupy higher trophic levels, experience higher metabolic costs at high temperature. Yet, it is unclear whether this prediction is consistent with the effect of warming on the trophic structure of natural systems. Furthermore, effects of temperature at the species level, which arise through a change in species composition, may differ from those at the population level, which arise through a change in population structure. We investigate this by building species-level trophic networks, and size-structured trophic networks, as a proxy for population structure, for 18 648 stream fish communities, from 4 145 234 individual fish samples, across 7024 stream locations in France from 1980 to 2008. We estimated effects of temperature on total trophic diversity (total number of nodes), vertical trophic diversity (mean and maximum trophic level) and distribution of biomass across trophic level (correlation between trophic level and biomass) in these networks. We found a positive effect of temperature on total trophic diversity in both species- and size-structured trophic networks. We found that maximum trophic level and biomass distribution decreased in species-level and size-structured trophic networks, but the mean trophic level decreased only in size-structured trophic networks. These results show that warmer temperatures associate with a lower vertical trophic diversity in size-structured networks, and a higher one in species-level networks. This suggests that vertical trophic diversity is shaped by antagonistic effects of temperature on population structure and on species composition. Our results hence demonstrate that effects of temperature do not only differ across trophic levels, but also across levels of biological organisation, from population to species level, implying complex changes in network structure and functioning with warming.  相似文献   

15.
The loss of a predator from an ecological community can cause large changes in community structure and ecosystem processes, or have very little consequence for the remaining species and ecosystem. Understanding when and why the loss of a predator causes large changes in community structure and ecosystem processes is critical for understanding the functional consequences of biodiversity loss. We used experimental microbial communities to investigate how the removal of a large generalist predator affected the extinction frequency, population abundance and total biomass of its prey. We removed this predator in the presence or absence of an alternative, more specialist, predator in order to determine whether the specialist predator affected the outcome of the initial species removal. Removal of the large generalist predator altered some species' populations but many were unaffected and no secondary extinctions were observed. The specialist predator, though rare, altered the response of the prey community to the removal of the large generalist predator. In the absence of the specialist predator, the effects of the removal were only measurable at the level of individual species. However, when the specialist predator was present, the removal of the large generalist predator affected the total biomass of prey species. The results demonstrate that the effect of species loss from high trophic levels may be very context-dependent, as rare species can have disproportionately large effects in food webs.  相似文献   

16.
Although predator effects on the number of locally coexisting species are well understood, there are few formal predictions of how these local predator effects influence patterns of prey diversity at larger spatial scales. Building on the theory of island biogeography, we develop a simple model that describes how predators can alter the scaling of diversity in prey metacommunities and compares the effects of generalist and specialist predators on regional prey diversity. Generalist predators, which consume prey randomly with respect to species identity, are predicted to reduce α‐diversity and increase β‐diversity thereby maintaining regional diversity (γ‐diversity). Alternatively, specialist predators, which filter out prey species intolerant of predators, are predicted to reduce bothα‐diversity andβ‐diversity by causing the same prey species to be extirpated in each locality, resulting in regional prey species extinctions and lower γ‐diversity. These distinct effects of generalist and specialist predators on prey diversity at different spatial scales are uniquely shaped by the extent of predation within those metacommunities. Overall, our model results make general predictions for how different types of predators can differentially affect prey diversity across spatial scales, allowing a more complete understanding of the possible implications of predator eradications or introductions for biodiversity.  相似文献   

17.
Although human-mediated extinctions disproportionately affect higher trophic levels, the ecosystem consequences of declining diversity are best known for plants and herbivores. We combined field surveys and experimental manipulations to examine the consequences of changing predator diversity for trophic cascades in kelp forests. In field surveys we found that predator diversity was negatively correlated with herbivore abundance and positively correlated with kelp abundance. To assess whether this relationship was causal, we manipulated predator richness in kelp mesocosms, and found that decreasing predator richness increased herbivore grazing, leading to a decrease in the biomass of the giant kelp Macrocystis. The presence of different predators caused different herbivores to alter their behaviour by reducing grazing, such that total grazing was lowest at highest predator diversity. Our results suggest that declining predator diversity can have cascading effects on community structure by reducing the abundance of key habitat-providing species.  相似文献   

18.
Global biodiversity is eroding due to anthropogenic causes, such as climate change, habitat loss, and trophic simplification of biological communities. Most studies address only isolated causes within a single group of organisms; however, biological groups of different trophic levels may respond in particular ways to different environmental impacts. Our study used natural microcosms to investigate the predicted individual and interactive effects of warming, changes in top predator diversity, and habitat size on the alpha and beta diversity of macrofauna, microfauna, and bacteria. Alpha diversity (i.e., richness within each bromeliad) generally explained a larger proportion of the gamma diversity (partitioned in alpha and beta diversity). Overall, dissimilarity between communities occurred due to species turnover and not species loss (nestedness). Nevertheless, the three biological groups responded differently to each environmental stressor. Microfauna were the most sensitive group, with alpha and beta diversity being affected by environmental changes (warming and habitat size) and trophic structure (diversity of top predators). Macrofauna alpha and beta diversity was sensitive to changes in predator diversity and habitat size, but not warming. In contrast, the bacterial community was not influenced by the treatments. The community of each biological group was not mutually concordant with the environmental and trophic changes. Our results demonstrate that distinct anthropogenic impacts differentially affect the components of macro and microorganism diversity through direct and indirect effects (i.e., bottom‐up and top‐down effects). Therefore, a multitrophic and multispecies approach is necessary to assess the effects of different anthropogenic impacts on biodiversity.  相似文献   

19.
Global change is predicted to cause non-random species loss in plant communities, with consequences for ecosystem functioning. However, beyond the simple effects of plant species richness, little is known about how plant diversity and its loss influence higher trophic levels, which are crucial to the functioning of many species-rich ecosystems. We analyzed to what extent woody plant phylogenetic diversity and species richness contribute to explaining the biomass and abundance of herbivorous and predatory arthropods in a species-rich forest in subtropical China. The biomass and abundance of leaf-chewing herbivores, and the biomass dispersion of herbivores within plots, increased with woody plant phylogenetic diversity. Woody plant species richness had much weaker effects on arthropods, but interacted with plant phylogenetic diversity to negatively affect the ratio of predator to herbivore biomass. Overall, our results point to a strong bottom–up control of functionally important herbivores mediated particularly by plant phylogenetic diversity, but do not support the general expectation that top–down predator effects increase with plant diversity. The observed effects appear to be driven primarily by increasing resource diversity rather than diversity-dependent primary productivity, as the latter did not affect arthropods. The strong effects of plant phylogenetic diversity and the overall weaker effects of plant species richness show that the diversity-dependence of ecosystem processes and interactions across trophic levels can depend fundamentally on non-random species associations. This has important implications for the regulation of ecosystem functions via trophic interaction pathways and for the way species loss may impact these pathways in species-rich forests.  相似文献   

20.
1. We studied the community and food-web structure of trap-nesting insects in restored meadows and at increasing distances within intensively managed grassland at 13 sites in Switzerland to test if declining species diversity correlates with declining interaction diversity and changes in food-web structure. 2. We analysed 49 quantitative food webs consisting of a total of 1382 trophic interactions involving 39 host/prey insect species and 14 parasitoid/predator insect species. Species richness and abundance of three functional groups, bees and wasps as the lower trophic level and natural enemies as the higher trophic level, were significantly higher in restored than in adjacent intensively managed meadows. Diversity and abundance of specific trophic interactions also declined from restored to intensively managed meadows. 3. The proportion of attacked brood cells and the mortality of bees and wasps due to natural enemies were significantly higher in restored than in intensively managed meadows. Bee abundance and the rate of attacked brood cells of bees declined with increasing distance from restored meadows. These findings indicate that interaction diversity declines more rapidly than species diversity in our study system. 4. Quantitative measures of food-web structure (linkage density, interaction diversity, interaction evenness and compartment diversity) were higher in restored than in intensively managed meadows. This was reflected in a higher mean number of host/prey species per consumer species (degree of generalism) in restored than in intensively managed meadows. 5. The higher insect species and interaction diversity was related to higher plant species richness in restored than in intensively managed meadows. In particular, bees and natural enemies reacted positively to increased plant diversity. 6. Our findings provide empirical evidence for the theoretical prediction that decreasing species richness at lower trophic levels should reduce species richness at higher trophic levels, and in addition lead to even stronger reductions in interaction diversity at these higher levels. Species at higher trophic levels may thus benefit relatively more than species at lower trophic levels from habitat restoration in the grassland ecosystems studied. We also demonstrate enhanced compartment diversity and lower interaction evenness in restored than in intensively managed meadows, both of which are theoretically positively associated with increased ecosystem stability in restored meadows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号