首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In rapidly growing tumor cells exhibiting high glucose catabolic rates, the enzyme hexokinase is markedly elevated and bound in large amounts (50-80% of the total cell activity) to the outer mitochondrial membrane (Arora, K.K., and Pedersen, P.L. (1988) J. Biol. Chem. 263, 17422-17428; Parry, D.M., and Pedersen, P.L. (1983) J. Biol. Chem. 258, 10904-10912). In extending these studies, we have isolated a cDNA clone of hexokinase from a lambda gt11 library of the highly glycolytic, c37 mouse hepatoma cell line. This clone, comprising 4,198 base pairs, contains a single open reading frame of 2,754 nucleotides which encode a 918-amino acid hexokinase with a mass of 102,272 daltons. This enzyme exhibits, respectively, 68 and 32 amino acid differences, including several charge differences, from the recently sequenced human kidney and rat brain enzymes. The putative glucose and ATP binding domains present in the latter two enzymes and in rat liver glucokinase are conserved in the tumor enzyme. At its N-terminal region, tumor hexokinase has a 12-amino acid hydrophobic stretch which is present in the rat brain enzyme but absent in the rat liver glucokinase, a cytoplasmic enzyme. The mature tumor hexokinase protein has been overexpressed in active form in Escherichia coli and purified 9-fold. The overexpressed enzyme binds to rat liver mitochondria in the presence of MgCl2. This is the first report describing the cloning and sequencing of a tumor hexokinase, and the first report documenting the overexpression of any hexokinase type in E. coli. Questions pertinent to the enzyme's mechanism, regulation, binding to mitochondria, and its marked elevation in tumor cells can now be addressed.  相似文献   

2.
The isoenzyme pattern of hexokinase in rabbit red cells (erythrocytes, fetal erythrocytes and reticulocytes) were determined by means of agarose gel and disc electrophoresis. One duplicated hexokinase (4a and 4b according to the IUPAC-nomenclature) was detected in rabbit erythrocytes as also described for human erythrocytes. Besides the isoenzymes 4a and 4b reticulocytes also contain hexokinase 2 and 3 like rabbit and rat liver. The high KM glucose phosphorylating enzyme, hexokinase 1 could be demonstrated only under specific conditions in the reticulocytes during the initial stage of the anemia. After the fractionation of reticulocyte homogenates the total hexokinase activity was recovered in the mitochondria and cytosol to nearly equal amounts as revealed by the distribution of markers. Hexokinase 2 and 3 were detectable in reticulocytes and in isolated mitochondria only after the addition of certain dissociating agents. In contrast to the tightly bound mitochondrial hexokinases 2 and 3 the type 4a and 4b are more loosely bound and exhibit a bilocal distribution between mitochondria and cytosol of reticulocytes.  相似文献   

3.
A major fraction of hexokinase was found to be bound, presumably to mitochondria, in both normal and tumoral rat pancreatic islet cells examined after either mechanical disruption or digitonin treatment. Spermidine enhanced the binding and glucose 6-phosphate caused the release of hexokinase to and from islet mitochondria, in a manner comparable to that seen in parotid or brain homogenates. In hepatocytes, some hexokinase, but no glucokinase, was found in the bound form. In islet cells, however, the pattern of glucokinase binding was similar to that of hexokinase. It is speculated that the preferential location of both hexokinase and glucokinase on mitochondria may favor the maintenance of a high cytosolic ATP content in islet cells.  相似文献   

4.
Arden C  Baltrusch S  Agius L 《FEBS letters》2006,580(8):2065-2070
The association of glucokinase with liver mitochondria has been reported [Danial et al. (2003) BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424, 952-956]. We confirmed association of glucokinase immunoreactivity with rat liver mitochondria using Percoll gradient centrifugation and demonstrated its association with the 68 kDa regulatory protein (GKRP) but not with the binding protein phosphofructokinase-2/fructose bisphosphatase-2. Substrates and glucagon induced adaptive changes in the mitochondrial glucokinase/GKRP ratio suggesting a regulatory role for GKRP. Combined with previous observations that GKRP overexpression partially inhibits glycolysis [de la Iglesia et al. (2000) The role of the regulatory protein of glucokinase in the glucose sensory mechanism of the hepatocyte. J. Biol. Chem. 275, 10597-10603] these findings suggest that there may be distinct glycolytic pools of glucokinase.  相似文献   

5.
The effect of insulin on the intracellular localization of rat skeletal muscle hexokinase isozyme II (hexokinase II) was studied in vivo. It was found that after injection of the hormone the glucose concentration in the muscle gradually increases in parallel with the hexokinase II redistribution between the cytosol and the mitochondrial fraction in the direction of the bound form of the enzyme. This effect of insulin is due to glucose, an indispensable participant of the complex formation between the enzyme and the mitochondrial membrane. It was shown that the effect of glucose as a hexokinase II adsorbing reagent is a highly specific one. The hexokinase II binding to mitochondria in the presence of glucose is accompanied by changes in some kinetic properties of the enzyme. A kinetic analysis of catalytic efficiency of the free and bound hexokinase II forms revealed that the catalytic efficiency of hexokinase II within the composition of the enzyme-membrane complex exceeds by two orders of magnitude that of the free enzyme. The data obtained are discussed in the framework of an adsorption mechanism of hexokinase activity regulation in the cell.  相似文献   

6.
1. The intracellular distribution of hexokinase activity was studied in the mucosa of rat and guinea-pig small intestine. In the rat 60% and in the guinea pig 45% of the hexokinase activity of homogenates were recovered in a total particulate fraction that contained only 5-17% of the homogenate activity of hexose phosphate isomerase, pyruvate kinase, lactate dehydrogenase and overall glycolysis (formation of lactate from glucose). 2. Fractionation of homogenates from guineapig small intestine showed that the particulate hexokinase activity was chiefly in the mitochondrial fraction with a small proportion in the nuclei plus brush-border fraction. 3. After chromatography of the particle-free supernatants on DEAE-cellulose, hexokinase types I and II were determined quantitatively. No evidence was obtained for the presence of hexokinase type III or glucokinase. In the preparations from guinea pigs, hexokinase types I and II amounted to 69% and 31% respectively of the eluted activity; the corresponding values for preparations from rats were 5.8% and 94.2%. 4. Total and specific hexokinase activities decreased significantly in homogenates and particle-free supernatants prepared from the intestinal mucosa of rats starved for 36hr. and increased again after re-feeding. The decrease in hexokinase activity in the particle-free supernatant from starved rats was chiefly due to a decrease in the type II enzyme.  相似文献   

7.
Previous studies from this laboratory have shown that mitochondrial bound hexokinase is markedly elevated in highly glycolytic hepatoma cells (Parry, D. M., and Pedersen, P.L. (1983) J. Biol. Chem. 258, 10904-10912). A pore-forming protein, porin, within the outer membrane appears to comprise at least part of the receptor site (Nakashima, R.A., Mangan, P.S., Colombini, M., and Pedersen, P.L. (1986). Biochemistry 25, 1015-1021). In studies reported here experiments were carried out to assess the functional significance of mitochondrial bound tumor hexokinase. Two approaches were used to determine whether the bound enzyme has preferred access to mitochondrially generated ATP relative to cytosolic ATP. The first approach compared the time course of glucose 6-phosphate formation by AS-30D hepatoma mitochondria under conditions where ATP was regenerated endogenously via oxidative phosphorylation or exogenously by added pyruvate kinase and phosphoenolpyruvate. The second approach involved the measurement of the specific radioactivity of glucose 6-phosphate formed following the addition of [gamma-32P]ATP to either phosphorylating or nonphosphorylating AS-30D mitochondria. Both approaches provided results which show that the source of ATP for bound hexokinase is derived preferentially from the ATP synthase residing within the inner mitochondrial membrane compartment rather than from the medium (i.e. from the cytosolic compartment). These results provide the first direct demonstration that the exceptionally high level of hexokinase bound to mitochondria of highly glycolytic tumor cells has preferred access to mitochondrially generated ATP, a finding that may have rather profound metabolic significance for such tumors.  相似文献   

8.
As recently demonstrated by our group (da-Silva, W. S., Gómez-Puyou, A., Gómez-Puyou, M. T., Moreno-Sanchez, R., De Felice, F. G., de Meis, L., Oliveira, M. F., and Galina, A. (2004) J. Biol. Chem. 279, 39846-39855) mitochondrial hexokinase activity (mt-HK) plays a preventive antioxidant role because of steady-state ADP re-cycling through the inner mitochondrial membrane in rat brain. In the present work we show that ADP re-cycling accomplished by the mitochondrial creatine kinase (mt-CK) regulates reactive oxygen species (ROS) generation, particularly in high glucose concentrations. Activation of mt-CK by creatine (Cr) and ATP or ADP, induced a state 3-like respiration in isolated brain mitochondria and prevention of H(2)O(2) production obeyed the steady-state kinetics of the enzyme to phosphorylate Cr. The extension of the preventive antioxidant role of mt-CK depended on the phosphocreatine (PCr)/Cr ratio. Rat liver mitochondria, which lack mt-CK activity, only reduced state 4-induced H(2)O(2) generation when 1 order of magnitude more exogenous CK activity was added to the medium. Simulation of hyperglycemic conditions, by the inclusion of glucose 6-phosphate in mitochondria performing 2-deoxyglucose phosphorylation via mt-HK, induced H(2)O(2) production in a Cr-sensitive manner. Simulation of hyperglycemia in embryonic rat brain cortical neurons increased both DeltaPsi(m) and ROS production and both parameters were decreased by the previous inclusion of Cr. Taken together, the results presented here indicate that mitochondrial kinase activity performed a key role as a preventive antioxidant against oxidative stress, reducing mitochondrial ROS generation through an ADP-recycling mechanism.  相似文献   

9.
Characterization of glucokinase regulatory protein-deficient mice   总被引:3,自引:0,他引:3  
The glucokinase regulatory protein (GKRP) inhibits glucokinase competitively with respect to glucose by forming a protein-protein complex with this enzyme. The physiological role of GKRP in controlling hepatic glucokinase activity was addressed using gene targeting to disrupt GKRP gene expression. Heterozygote and homozygote knockout mice have a substantial decrease in hepatic glucokinase expression and enzymatic activity as measured at saturating glucose concentrations when compared with wild-type mice, with no change in basal blood glucose levels. Interestingly, when assayed under conditions to promote the association between glucokinase and GKRP, liver glucokinase activity in wild-type and null mice displayed comparable glucose phosphorylation capacities at physiological glucose concentrations (5 mM). Thus, despite reduced hepatic glucokinase expression levels in the null mice, glucokinase activity in the liver homogenates was maintained at nearly normal levels due to the absence of the inhibitory effects of GKRP. However, following a glucose tolerance test, the homozygote knockout mice show impaired glucose clearance, indicating that they cannot recruit sufficient glucokinase due to the absence of a nuclear reserve. These data suggest both a regulatory and a stabilizing role for GKRP in maintaining adequate glucokinase in the liver. Furthermore, this study provides evidence for the important role GKRP plays in acutely regulating of hepatic glucose metabolism.  相似文献   

10.
To gain better insight into the insulin secretory activity of fetal beta cells in response to glucose, the expression of glucose transporter 2 (GLUT-2), glucokinase and mitochondrial glycerol phosphate dehydrogenase (mGDH) were studied. Expression of GLUT-2 mRNA and protein in pancreatic islets and liver was significantly lower in fetal and suckling rats than in adult rats. The glucokinase content of fetal islets was significantly higher than of suckling and adult rats, and in liver the enzyme appeared for the first time on about day 20 of extrauterine life. The highest content of hexokinase I was found in fetal islets, after which it decreased progressively to the adult values. Glucokinase mRNA was abundantly expressed in the islets of all the experimental groups, whereas in liver it was only present in adults and 20-day-old suckling rats. In fetal islets, GLUT-2 and glucokinase protein and their mRNA increased as a function of increasing glucose concentration, whereas reduced mitochondrial citrate synthase, succinate dehydrogenase and cytochrome c oxidase activities and mGDH expression were observed. These findings, together with those reported by others, may help to explain the decreased insulin secretory activity of fetal beta cells in response to glucose.  相似文献   

11.
We have investigated the mechanism responsible for mitochondria permeabilization occurring during cell apoptosis. We have developed an in vivo model of apoptotic rat liver. Mitochondria appeared as an homogenous population in control liver. On the contrary, mitochondria varied in size, morphology, and the matrical density in apoptotic liver. Mitochondria were purified from control and apoptotic livers. In control conditions, a single mitochondrial population was identified; whereas three populations of mitochondria were purified from apoptotic liver. Our data show that these apoptotic populations correspond to early, intermediate, and late apoptotic mitochondria, which are characterized by an increasing extent of permeabilization of their outer membrane and a gradual enrichment in oligomerized Bax protein. Remarkably, a new ionic channel was observed in apoptotic but not in control mitochondria. The biophysical and pharmacological properties of this channel are in good agreement with those reported for a previously described mitochondrial apoptosis-induced channel (MAC) (Pavlov, E. V., Priault, M., Pietkiewicz, D., Cheng, E. H., Antonsson, B., Manon, S., Korsmeyer, S. J., Mannella, C. A., and Kinnally, K. W. (2001) J. Cell Biol. 155, 725-731). However, MAC activity was only observed in the late apoptotic mitochondrial population. Thus, our study establishes that MAC activity is related to the overall apoptotic process but corresponds to a late event.  相似文献   

12.
The proportion of hexokinase that is bound to the outer mitochondrial membrane is tissue specific and metabolically regulated. This study examined the role of the N,N-dicyclohexylcarbodiimide-binding domain of mitochondrial porin in binding to hexokinase I. Selective proteolytic cleavage of porin protein was performed and peptides were assayed for their, effect on hexokinase I binding to isolated mitochondria. Specificity of DCCD-reactive domain binding to hexokinase I was demonstrated by competition of the peptides for porin binding sites on hexokinase as well as by blockage hexokinase binding by N,N-dicyclohexylcarbodiimide. One of the peptides, designated as 5 kDa (the smallest of the porin peptides, which contains a DCCD-reactive site), totally blocked binding of the enzyme to the mitochondrial membrane, and significantly enhanced the release of the mitochondrially bound enzyme. These experiments demonstrate that there exists a direct and specific interaction between the DCCD-reactive domain of VDAC and hexokinase I. The peptides were further characterized with respect to their effects on certain functional properties of hexokinase I. None had any detectable effect on catalytic properties, including inhibition by glucose 6-phosphate. To evaluate further the outer mitochondrial membranes role in the hexokinase binding, insertion of VDAC was examined using isolated rat mitochondria. Pre-incubation of mitochondria with purified porin strongly increases hexokinase I binding to rat liver mitochondria. Collectively, the results imply that the high hexokinase-binding capability of porin-enriched mitochondria was due to a quantitative difference in binding sites.  相似文献   

13.
R C Nordlie 《Life sciences》1979,24(26):2397-2404
Glucose-6-phosphatase is a multifunctional enzyme, displaying potent ability to synthesize as well as hydrolyze Glc-6-P. These multifunctional characteristics have been exploited in studies of the extended distribution of the enzyme, and their physiological significance has been examined. The enzyme is considerably more widely distributed than previously suspected. It has been found in pancreas, adrenals, lung, testes, spleen, and brain as well as in liver, kidney, and mucosa of small intestine. Approximately 15–20% of total hepatic glucose-6-phosphatase-phosphotransferase is present in nuclear membrane, 75–80% is found in endoplasmic reticulum, and small amounts have been detected also in plasma membrane and repeatedly-washed mitochondria. Both hydrolytic and synthetic functions, in constant proportions, have been found in livers of 21 species of birds, amphibia, reptiles, crustacea, fishes, and mammals (including man) studied. With 5 mM phosphoryl donor and 100 mM D-glucose as substrates, carbamyl-P:glucose phosphotransferase activity of glucose-6-phosphatase exceeded that of glucokinase by 5–50 fold. While latencies of activities of isolated microsomal preparations are extensive, those of nuclear membranes are not. Latencies of activities of intact endoplasmic reticulum of permeable hepatocytes are 28% for Glc-6-P phosphohydrolase and 56% for carbamyl-P:glucose phosphotransferase. Studies with isolated perfused livers from fasted rats suggest rather convincingly that such phosphotransferase activities may function as an hepatic glucose-phosphorylating system supplemental to glucokinase and hexokinase. This conclusion is based both on comparisons of rates of glucose uptake with hepatic enzyme levels (glucokinase, hexokinase, phosphotransferase), and on observed inhibitibility of glucose uptake by ornithine and 3-0-methyl-D-glucose. The question of availability of adequate concentrations of suitable phosphoryl donor(s) in cytosol of the liver cell constitutes a principal focus for continuing studies regarding physiological functions of this enzyme.  相似文献   

14.
1. The distribution of l-alanine-glyoxylate aminotransferase activity between subcellular fractions prepared from rat liver homogenates was investigated. The greater part of the homogenate activity (about 80%) was recovered in the ;total-particles' fraction sedimented by high-speed centrifugation and the remainder in the cytosol fraction. 2. Subfractionation of the particles by differential sedimentation and on sucrose density gradients revealed a specific association between the aminotransferase and the mitochondrial enzymes glutamate dehydrogenase and rhodanese. 3. The aminotransferase activities in the cytosol and the mitochondria are due to isoenzymes. The solubilized mitochondrial enzyme has a pH optimum of 8.6, an apparent K(m) of 0.24mm with respect to glyoxylate and is inhibited by glyoxylate at concentrations above 5mm. The cytosol aminotransferase shows no distinct pH optimum (over the range 7.0-9.0) and has an apparent K(m) of 1.11mm with respect to glyoxylate; there is no evidence of inhibition by glyoxylate. 4. The mitochondrial location of the bulk of the rat liver l-alanine-glyoxylate aminotransferase activity is discussed in relation to a pathway for gluconeogenesis involving glyoxylate.  相似文献   

15.
1. Parenchymal cells have been prepared from mouse liver by enzymic and mechanical means. 2. The dry weights, protein and DNA contents of these cells have been determined. 3. Mouse liver ;M-' and ;L-type' pyruvate kinases have been prepared free of contamination with each other; their kinetic properties have been examined and a method has been developed for their assay in total liver homogenates. 4. Recoveries of phosphoglycerate kinase, lactate dehydrogenase and phosphofructokinase in enzymically prepared cells indicate that little, if any, cytoplasmic protein is lost during preparation. 5. Parenchymal cells exhibit a very substantial increase in the activity ratio of glucokinase to hexokinase over that in total liver homogenate; in three out of eight experiments, hexokinase activity was undetectable. 6. ;L-type' pyruvate kinase alone occurs in the parenchymal cell. Non-parenchymal cells are characterized by the presence of ;M-type' activity only. 7. Parenchymal cells contain both glucose 6-phosphatase and fructose 1,6-diphosphatase. The non-parenchymal fraction appears to contain fructose 1,6-diphosphatase, but is devoid of glucose 6-phosphatase. 8. No aldolase A was detectable in the whole liver. Aldolase B occurs in both parenchymal and non-parenchymal tissue. 9. Parenchymal cells prepared by mechanical disruption of mouse liver with 20% polyvinyl alcohol exhibit a similar enzyme profile to those prepared enzymically. 10. The methodology involved in the preparation of isolated liver cells is discussed. The importance of the measurement of several parameters as criteria for establishing the viability of parenchymal cells is stressed. 11. The metabolic implications of the results in the present study are discussed.  相似文献   

16.
We have analysed the pattern of expression of the hexokinase isoenzyme group in RIN-m5F insulinoma cells. Three hexokinase forms were resolved by DEAE-cellulose chromatography. The most abundant isoenzyme co-eluted with hexokinase type II from rat adipose tissue and displayed a Km for glucose of 0.15 mM, similar to the adipose-tissue enzyme. Hexokinase type II was in large part associated with a particulate subcellular fraction in RIN-m5F cells. The two other hexokinases separated by ion-exchange chromatography were an enzyme similar to hexokinase type I from brain and glucokinase (or hexokinase type IV). The latter isoenzyme was identified as the liver-type glucokinase by the following properties: co-elution with hepatic glucokinase from DEAE-cellulose and DEAE-Sephadex; sigmoid saturation kinetics with glucose with half-maximal velocity at 5.6 mM and Hill coefficient (h) of 1.54; suppression of enzyme activity by antibodies raised against rat liver glucokinase; apparent Mr of 56,500 and pI of 5.6, as shown by immunoblotting after one- and two-dimensional gel electrophoresis; peptide map identical with that of hepatic glucokinase after proteolysis with chymotrypsin and papain. These data indicate that the gene coding for hepatic glucokinase is expressed in RIN-m5F cells, a finding consistent with indirect evidence for the presence of glucokinase in the beta-cell of the islet of Langerhans. On the other hand, the overall pattern of hexokinases is distinctly different in RIN-m5F cells and islets of Langerhans, since hexokinase type II appears to be lacking in islets. Alteration in hexokinase expression after tumoral transformation has been reported in other systems.  相似文献   

17.
Hexokinase activity was found in both soluble (cytosolic) and particulate subcellular fractions prepared from rat pancreatic islet homogenates. The bound enzyme was associated with mitochondria rather than secretory granules. Relative to the total hexokinase activity, the amount of bound enzyme was higher in islet homogenates prepared at pH 6.0 (72 +/- 7%) than in islets homogenized at pH 7.4 (38 +/- 1%). The affinity of hexokinase for equilibrated D-glucose was not different in the cytosolic and mitochondrial fractions. In both fractions, hexokinase displayed a greater affinity for alpha- than beta-D-glucose, but a higher maximal velocity with the beta- than alpha-anomer. Glucose 6-phosphate inhibited to a greater extent cytosolic than mitochondrial hexokinase. A high Km glucokinase-like enzymic activity was also present in both subcellular fractions. It is proposed that the ambiguity of hexokinase plays a propitious role in the glucose-sensing function of pancreatic islet cells.  相似文献   

18.
M. Kuwajima, C. B. Newgard, D. W. Foster, and J. D. McGarry (1986, J. Biol. Chem. 261, 8849-8853) have concluded that the reason postprandial hepatic glycogenesis occurs primarily from gluconeogenic precursors rather than glucose is because glucokinase activity is insufficient to support the observed rates of glycogen synthesis. F. L. Alvares and R. C. Nordlie (1977, J. Biol. Chem. 252, 8404-8414) have concluded that the combined activities of glucokinase and hexokinase are less than the apparent rates of hepatic glucose uptake. We have identified several factors in the assays used in these studies which lead to substantial underestimations of glucokinase activity. Glucokinase was assayed either by allowing glucose 6-phosphate to accumulate over 10 min (discontinuous assay) or by coupling the formation of glucose 6-phosphate with its oxidation by Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase and NAD (continuous assay). Accurate determinations of glucokinase at 37 degrees C with subsaturating glucose require both 100 mM KCl and 2.5 mM dithioerythritol in the assay medium; 2-mercaptoethanol will not substitute for dithioerythritol. When both KCl and dithioerythritol are absent (Kuwajima et al.) glucokinase activity is underestimated by 3- to 5-fold. The discontinuous assay as used previously (Alvares and Nordlie) underestimates glucokinase activity in crude extracts by 2- to 2.5-fold, due in part to the hydrolysis of glucose 6-phosphate and its transformation to other hexose monophosphates. Under optimized conditions at 37 degrees C both assays yield similar results in extracts from fed rats, i.e., 2-3 and 4-5 units/g liver at 10 and 100 mM glucose, respectively. Some implications of the finding that total hepatic glucose phosphorylating capacity at physiological concentrations significantly exceeds the observed rates of postprandial glycogen synthesis are discussed.  相似文献   

19.
The differential tissue-specific regulation of glucokinase activity in liver and pancreatic islet cells was investigated in the insulinoma-bearing rat. A transplantable insulinoma caused hyperinsulinemia and hypoglycemia in the host by 2-3 months after implantation. Suppression of the pancreatic B-cells by the high insulin and/or low glucose manifested itself by a decrease of insulin in islet tissue. Removal of the tumor initiated transient insulin deficiency and hyperglycemia with extremes of these changes at 24 h after tumor resection. These conditions markedly affected glucose phosphorylation in the islet cells: glucokinase activity was reduced 71% in islet samples from insulinoma-bearing rats, and the enzyme fully recovered within 24 h after tumor resection. Hexokinase activity, by contrast, was not affected by these manipulations. To evaluate the relative contributions of hypoglycemia and hyperinsulinemia in islet glucokinase adaptation, glucose was intravenously infused to insulinoma-bearing rats; glycemia in excess of 150 mg/100 ml combined with excessive hyperinsulinemia resulted in a partial recovery of islet glucokinase activity, first apparent after 9 h of glucose infusion and with doubling of the activity after 24 h after glucose loading. In contrast, liver glucokinase was increased nearly 4-fold at the time of extreme hypoglycemia and hyperinsulinemia and rapidly fell to control rates following tumor removal. Intravenous infusion of glucose for 24 h into the tumor-bearing rat (i.e. hyperglycemia combined with excessive plasma insulin) had no influence on liver glucokinase activity. Liver hexokinase was not influenced by any of these experimental manipulations. The data indicate that the activities of pancreatic islet and liver glucokinase are regulated in a differential manner. Insulin is apparently the primary determinant of liver glucokinase and glucose seems to control islet glucokinase. Biochemical mechanisms for differential organ-specific regulation of glucokinase activity seem to have evolved such that this enzyme may play a dual role in glucose homeostasis, namely to serve as insulin-dependent glucose sensor in the B-cells and as insulin-sensitive determinant of hepatic glucose use.  相似文献   

20.
Adult pairs of Schistosoma mansoni convert glucose to lactate rapidly and almost quantitatively under aerobic and anaerobic conditions E. Bueding, 1950, Journal of General Physiology33, 475–495). Glycolysis is the principal source of energy of schistosomes and its inhibition by trivalent organic antimonials, at the phosphofructokinase step [EC 2.7.1.11], may be the basis for the chemotherapeutic effects of these agents E. Bueding and J. M. Mansour, 1957, British Journal of Pharmacology and Chemotherapy12, 159–165). We have developed standardized conditions for the comparison of rates of glucose consumption and lactate production by intact schistosomes in vitro and by centrifuged homogenates of worms. The rates of glycolysis of homogenates prepared from freshly isolated worms, and from worms that have been lyophilized immediately after harvesting and stored for prolonged periods at ?80 C were identical, when measured in media containing appropriate concentrations of glucose, NAD, ATP, MgCl2, KCl, and phosphate. The specific activities of the 11 glycolytic enzymes and of 3 related enzymes (fructose-biphosphatase [EC 3.1.3.11], glycerol-3-phosphate dehydrogenase [EC 1.1.1.8], and malate dehydrogenase [EC 1.1.1.37]) were measured in homogenates under optimal conditions. The profile of the relative activities of glycolytic enzymes of S. mansoni resembles closely that of Ehrlich ascites tumor cells, and differs markedly from that observed in erythrocytes or skeletal muscle. As is the case in many animal tissues, hexokinase [EC 2.7.1.1] was the enzyme of lowest specific activity, and the rate of glycolysis of homogenates was almost the same as the hexokinase activity. Several other lines of evidence support the view that the hexokinase reaction is the rate-limiting step in the glycolysis of worm homogenates. Hexokinase activity was not particulate in schistosome homogenates, and there was no detectable high Km glucokinase-like activity. The rate of glycolysis by homogenates exceeded that of intact worms by a factor of nearly 5. The contributions of glucose transport, availability of ADP and inorganic phosphate, regulatory enzymes, and a substrate cycle catalyzed by fructose-bisphosphatase are considered as possible mechanisms for the restraint of glycolysis in intact worms. The mechanisms contributing to the rapid rates of glycolysis of adult S. mansoni have not been identified, although several can be excluded (unusually high capacity of the glycolytic enzymes, the presence of mitochondrial hexokinase, the occurrence of glycosomes, and the operation of defective mitochondrial shuttles). In view of the regulatory role of hexokinase in the glycolysis of S. mansoni, inhibition of this enzyme is a potentially important target for the development of new antischistosomal drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号