首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work was to determine in what form carbon destined for starch synthesis crosses the membranes of plastids in developing pea (Pisum sativum L.) embryos. Plastids were isolated mechanically and incubated in the presence of ATP with the following 14C-labelled substrates: glucose, fructose, glucose 6-phosphate, glucose 1-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate, dihydroxyacetone phosphate. Glucose 6-phosphate was the only substrate that supported physiologically relevant rates of starch synthesis. Incorporation of label from glucose 6-phosphate into starch was dependent upon the integrity of the plastids and the presence of ATP. The rate of incorporation approached saturation at a glucose 6-phosphate concentration of less than 1 mM. It is argued that glucose 6-phosphate is likely to enter the plastid as the source of carbon for starch synthesis in vivo.Abbreviations ADPG PPase ADP-glucose pyrophosphorylase - DHAP dihydroxyacetone phosphate  相似文献   

2.
Purified pea root plastids were supplied with glutamine, 2-oxoglutarate and phosphorylated sugars. Formation of glutamate was linear for 75 min and dependent upon the intactness of the organelle. Glucose-6-phosphate and ribose-5-phosphate were the most effective substrates in supporting glutamate synthesis. Flux through the oxidative pentose phosphate pathway during glutamate synthesis in purified plastids was followed by monitoring the release of 14CO2 from [1-14C]glucose-6-phosphate. 14CO2 evolution from C-1 was dependent upon the presence of both glutamine and 2-oxoglutarate and could be inhibited by the application of azaserine. The data are discussed in view of the role of the oxidative pentose phosphate pathway in non-photosynthetic plastids.  相似文献   

3.
4.
The aim of this work was to investigate the capacity for synthesis of starch and fatty acids from exogenous metabolites by plastids from developing embryos of oilseed rape (Brassica napus L.). A method was developed for the rapid isolation from developing embryos of intact plastids with low contamination by cytosolic enzymes. The plastids contain a complete glycolytic pathway, NADP-glucose-6-phosphate dehydrogenase, NADP-6-phosphogluconate dehydrogenase, fructose-1,6-bisphosphatase, NADP-malic enzyme, the pyruvate dehydrogenase complex (PDC), and acetyl-CoA carboxylase. Organelle fractionation studies showed that 67% of the total cellular PDC activity was in the plastids. The isolated plastids were fed with 14C-labelled carbon precursors and the incorporation of 14C into starch and fatty acids was determined. 14C from glucose-6-phosphate (G-6-P), fructose, glucose, fructose-6-phosphate and dihydroxyacetone phosphate (DHAP) was incorporated into starch in an intactness- and ATP-dependent manner. The rate of starch synthesis was highest from G-6-P, although fructose gave rates which were 70% of those from G-6-P. Glucose-1-phosphate was not utilized by intact plastids for starch synthesis. The plastids utilized pyruvate, G-6-P, DHAP, malate and acetate as substrates for fatty acid synthesis. Of these substrates, pyruvate and G-6-P supported the highest rates of synthesis. These studies show that several cytosolic metabolites may contribute to starch and/or fatty acid synthesis in the developing embryos of oilseed rape.  相似文献   

5.
Fan Kang  Stephen Rawsthorne 《Planta》1996,199(2):321-327
The aim of this work was to investigate the partitioning of imported glucose 6-phosphate (Glc6P) to starch and fatty acids, and to CO2 via the oxidative pentose phosphate pathway (OPPP) in plastids isolated from developing embryos of oilseed rape (Brassica napus L.). The ability of the isolated plastids to utilize concurrently supplied substrates and the effects of these substrate combinations on the Glc6P partitioning were also assessed. The relative fluxes of carbon from Glc6P to starch, fatty acids, and to CO2 via the OPPP were close to 2∶1∶1 when Glc6P was supplied alone. Under these conditions NADPH generated via the OPPP was greater than that required by the concurrent rate of fatty acid synthesis. Fatty acid synthesis was unaffected by the presence or absence of exogenous NADH and/or NADPH and the requirement of fatty acid synthesis for reducing power is therefore met entirely by intraplastidial metabolism. When Glc6P was supplied in the presence of either pyruvate or pyruvate and acetate, the total flux from these metabolites to fatty acids was up to threefold greater than that from either Glc6P or pyruvate when they were supplied singly. In these experiments there was little competition between Glc6P and pyruvate in fatty acid synthesis and the flux to starch was unchanged. This implies that the starch and fatty acid biosynthesis pathways did not compete for the exogenously supplied ATP on which they were strongly dependent. When Glc6P and pyruvate were provided together, the NADPH generated by the OPPP pathway was less than that required by the concurrent rate of fatty acid synthesis. This suggests that the metabolism of exogenous Glc6P via the OPPP can contribute to the NADPH demand created during fatty acid synthesis but it also indicates that other intraplastidial sources of reducing power must be available under the in-vitro conditions used.  相似文献   

6.
Starch synthesis by isolated amyloplasts from wheat endosperm   总被引:4,自引:0,他引:4  
R. H. Tyson  T. ap Rees 《Planta》1988,175(1):33-38
The aim of this work was to discover which compound(s) cross the amyloplast envelope to supply the carbon for starch synthesis in grains of Triticum aestivum L. Amyloplasts were isolated, on a continuous gradient of Nycodenz, from lysates of protoplasts of endosperm of developing grains, and then incubated in solutions of 14C-labelled: glucose, glucose 1-phosphate, glucose 6-phosphate, fructose 6-phosphate, fructose-1,6-bisphosphate, dihydroxyacetone phosphate and glycerol 3-phosphate. Only glucose 1-phosphate gave appreciable labelling of starch that was dependent upon the integrity of the amyloplasts. Incorporation into starch was linear with respect to time for 2 h. At the end of the incubations, 98% of the 14C in the soluble fraction of the incubation mixture was recovered as [14C]glucose 1-phosphate. Thus it is unlikely that the added [14C glucose 1-phosphate was extensively metabolized prior to uptake by the amyloplasts. It is argued that the behaviour of the isolated amyloplasts, and previously published data on the labelling of starch by [13C]glucose, are consistent with the view that in wheat grains it is a C-6, not a C-3, compound that enters the amyloplast to provide the carbon for starch synthesis.Abbreviations PPase alkaline inorganic pyrophosphatase - UDPglucose uridine 5-diphosphoglucose  相似文献   

7.
The potential role of the plastidial oxidative pentose phosphate pathway (OPPP) in providing the NADPH for fatty acid synthesis in plastids from developing embryos of Brassica napus (L.) has been investigated. Measurements of distributions of enzyme activities in fractions obtained from homogenates of isolated embryos have revealed that the glucose 6-phosphate and 6-phosphogluconate dehydrogenases are present in both cytosol and plastid, as is ribose 5-phosphate isomerase. However, transketolase and transaldolase are most probably confined to the plastid, while ribulose 5-phosphate epimerase is essentially cytosolic, although a very small proportion of plastid-localized activity cannot be ruled out. The activity of the OPPP in intact plastids was measured by the release of (14)CO(2) from [1-(14)C]glucose 6-phosphate. Activity was detectable in the absence of electron sinks created by the addition of metabolites to the incubation media and was stimulated 1.3-, 3.2-, and 7.9-fold by the respective additions of glutamine plus 2-oxoglutarate, cofactors and substrates for fatty acid synthesis, or methyl viologen. An increase in OPPP activity in response to additions that are absolutely required for fatty acid synthesis in these isolated plastids provides direct evidence that these two processes are connected, most probably by NADP/NADPH metabolism. The OPPP activity with methyl viologen was more than twice that during fatty acid synthesis, suggesting that the latter is not limited by OPPP capacity. Light energy may also contribute to reductant provision and, consistent with the possibility of maintenance of a balance of NADPH from light and the OPPP, glucose 6-phosphate dehydrogenase activity in the isolated plastids was decreased by light or by DTT.  相似文献   

8.
Steven A Hill  Tom ap Rees 《Planta》1995,197(2):313-323
The aim of this work was to determine the effects of hypoxia on the major fluxes of carbohydrate metabolism in climacteric fruit of banana (Musa cavendishii Lamb ex Paxton). Hands of bananas, untreated with ethylene, were allowed to ripen in air at 21°C in the dark. When the climacteric began, fruit were transferred to 15 or 10% oxygen and were analysed once the climacteric peak had been reached 8–12 h later. The rates of starch breakdown, sucrose, glucose and fructose accumulation, and CO2 production were determined, as were the contents of hexose monophosphates, adenylates and pyruvate. In addition, the detailed distribution of label was determined after supplying [U-14C]-, [1-14C]-, [3,4-14C]- and [6-14C]glucose, and [U-14C]glycerol to cores of tissue under hypoxia. The data were used to estimate the major fluxes of carbohydrate metabolism. There was a reduction in the rate of respiration. The ATP/ADP ratio was unaffected but there was a significant increase in the content of AMP. In 15% oxygen only minor changes in fluxes were observed. In 10% oxygen starch breakdown was reduced and starch synthesis was not detected. The rate of sucrose synthesis decreased, as did the rate of re-entry of hexose sugars into the hexose monophosphate pool. There was a large increase in both the glycolytic flux and in the flux from triose phosphates to hexose monophosphates. It is argued that the increase in these fluxes is due to activation of pyrophosphate: fructose-6-phosphate 1-phosphotransferase, and that this enzyme has an important role in hypoxia. The results are discussed in relation to our understanding of the control of carbohydrate metabolism in hypoxia.Abbreviations Glc6P glucose-6-phosphate - Glc1P glucose-1-phosphate - Fru6P fructose-6-phosphate - PPi inorganic pyro-phosphate We thank Geest Foods Group, Great Dunmow, Essex, UK for giving us the bananas. S.A.H. thanks the managers of the Brood bank Fund for a fellowship.  相似文献   

9.
10.
The rates of incorporation of various metabolites into starch by isolated amyloplasts from developing endosperm of spring wheat (Triticum aestivum L. cv. Axona) were examined. Of the metabolites tested that were likely to be present in the cytosol at concentrations sufficient to sustain starch synthesis, only glucose 1-phosphate (Glc1P) supported physiologically relevant rates of starch synthesis. Incorporation of Glc1P into starch was both dependent on the presence of ATP and intact organelles. The rate of incorporation of hexose into starch became saturated at a Glc1P concentration of less than 1 mol·m-3 in the presence of 1 mol·m-3 ATP. Starch synthesis from 5 mol · m-3 ADP-glucose supplied to the organelles occurred at rates 15-fold higher than from similar concentrations of Glc1P, but it is argued that this is probably of little physiological relevance. The net incorporation of hexose units into starch from GlclP was inhibited 50% by 100 mmol.m-3 carboxyatractyloside. Carbohydrate oxidation in the amyloplast was stimulated by the addition of 2-oxoglutarate and glutamine, and in such circumstances incorporation of14C-labelled metabolites into starch was reduced. Glucose 6-phosphate proved to be a better substrate for oxidative pathways than Glc1P. Our results suggest that Glc1P is the primary substrate for starch synthesis in developing wheat endosperm, and that ATP required for starch synthesis is imported via an adenylate translocator.  相似文献   

11.
During the culture of tobacco BY 2 cells derived from Nicotiana tabacum L. cv. Bright Yellow 2, morphological changes of plastid (pt) nucleoids and their replication were examined by fluorescence microscopy after staining with 46-diamidino-2-phenylindole. Upon transfer to fresh medium, the fluorescence intensity originating from pt nucleoids increased markedly. Copy numbers of ptDNA per cell calculated from the quantitative data by super-sensitive microspectroscopy increased 11-fold within 1 d of culture to reach 11 000, then decreased gradually to 1 000 after one week of culture. Autoradiography by labelling with [3H]thymidine showed that DNA synthesis in plastids occurred exclusively during the first day of culture, whereas nuclear DNA synthesis was observed from the first to the sixth day of culture. Replication of plastids was most frequently observed on the second day. Thereafter the formation of starch granules predominated in plastids up to the fifth day of culture, but the starch granules disappeared in the stationary-phase cells. The meaning of such preferential synthesis of ptDNA upon transfer to fresh medium is discussed in relation to the interaction between plastids and nuclei.Abbreviations pt plastid - DAPI 4,6-diamidino-2-phenylindole  相似文献   

12.
Roberto Viola 《Planta》1996,198(2):186-196
Metabolism of radiolabelled hexoses by discs excised from developing potato (Solanum tuberosum L.) tubers was been investigated in the presence of acid invertase to prevent accumulation of labelled sucrose in the bathing medium (Viola, 1996, Planta 198: 179–185). When the discs were incubated with either [U-14C]glucose or [U-14C]fructose without unlabelled hexoses, the unidirectional rate of sucrose synthesis was insignificant compared with that of sucrose breakdown. The inclusion of unlabelled fructose in the medium induced a dramatic increase in the unidirectional rate of sucroses synthesis in the tuber discs. Indeed, the decline in the sucrose content observed when discs were incubated without exogenous sugars could be completely prevented by including 300 mM fructose in the bathing medium. On the other hand, the inclusion of unlabelled glucose in the medium did not significantly affect the relative incorporation of [U-14C]glucose to starch, sucrose or glycolytic products. Substantial differences in the intramolecular distribution of 13C enrichment in the hexosyl moieties of sucrose were observed when the discs were incubated with either [2-13C]fructose or [2-13C]glucose. The pattern of 13C enrichment distribution in sucrose suggested that incoming glucose was converted into sucrose via the sucrose-phosphate synthase pathway whilst fructose was incorporated directly into sucrose via sucrose synthase. Quantitative estimations of metabolic fluxes in vivo in the discs were also provided. The apparent maximal rate of glucose phosphorylation was close to the extractable maximum catalytic activity of glucokinase. On the other hand, the apparent maximal rate of fructose phosphorylation was much lower than the maximum catalytic activity of fructokinase, suggesting that the activity of the enzyme (unlike that of glucokinase) was regulated in vivo. Although in the discs incubated with or without fructose the rates of starch synthesis or glycolysis were similar, the relative partitioning of metabolic intermediates into sucrose was much higher in discs incubated with fructose (0.6% and 32.6%, respectively). It is hypothesised that the equilibrium of the reaction catalysed by sucrose synthase in vivo is affected in discs incubated with fructose as a result of the accumulation of the sugar in the tissue. This results in the onset of sucrose cycling. Incubation with glucose enhanced all metabolic fluxes. In particular, the net rate of starch synthesis increased from 2.0 mol · hexose · g FW–1 · h–1 in the absence of exogenous glucose to 3.7 mol · hexose · g FW–1 · h–1 in the presence of 300 mM glucose. These data are taken as an indication that the regulation of fructokinase in vivo may represent a limiting factor in the utilisation of sucrose for biosynthetic processes in developing potato tubers.Abbreviations ADPGlc adenosine 5-diphosphoglucose - Glc6P glucose-6-phosphate - hexose-P hexose phosphate - NMR nuclear magnetic resonance - UDPGlc uridine 5-diphosphoglucose Many thanks to L. Sommerville for skillfull assistance and to J. Crawford and J. Liu for useful discussions on flux analysis. The research was funded by the Scottish Office Agriculture and Fisheries Department.  相似文献   

13.
Steven A Hill  Tom ap Rees 《Planta》1995,196(2):335-343
The effect of exogenous glucose on the major fluxes of carbohydrate metabolism in cores of climacteric fruit of banana (Musa cavendishii Lamb ex Paxton) was determined with the intention of using the effects in the application of top-down metabolic control analysis. Hands of bananas, untreated with ethylene, were allowed to ripen in the dark at 21 °C. Cores were removed from climacteric fruit and incubated in 100 or 200 mM glucose for 4 or 6 h. The rates of starch breakdown, sucrose and fructose accumulation and CO2 production were measured. The steady-state contents of hexose monophosphates, adenylates and pyruvate were determined. In addition, the detailed distribution of label was determined after supply of the following: [U-14C]-, [1-14C]-, [3,414C]and [6-14C]glucose, and [U-14C]glycerol. The data were used to estimate the major fluxes of carbohydrate metabolism. Supply of exogenous glucose led to increases in the size of the hexose-monophosphate pools. There was a small stimulation of the rate of sugar synthesis and a major increase in the rate of starch synthesis. Starch breakdown was inhibited. Respiration responded to the demand for ATP by sugar synthesis. The effect of glucose on fluxes and metabolite pools is discussed in relation to our understanding of the control and regulation of carbohydrate metabolism in ripening fruit.Abbreviations Glc6P glucose-6-phosphate - Glc1P glucose-1-phosphate - Fru6P fructose-6-phosphate - AEC adenylate energy charge We thank Geest Foods Group, Great Dunmow, Essex, UK for giving us the bananas. SAH thanks the managers of the Broodbank Fund for a fellowship.  相似文献   

14.
Fluxes of carbohydrate metabolism in ripening bananas   总被引:1,自引:0,他引:1  
The major fluxes of carbohydrate metabolism were estimated during starch breakdown by ripening bananas (Musa cavendishii Lamb ex Paxton). Hands of bananas, untreated with ethylene, were allowed to ripen in the dark at 21° C. Production of CO2 and the contents of starch, sucrose, glucose and fructose of intact fruit were determined for a period of 10 d that included the climacteric. The detailed distribution of label was determined after supplying the following to cores of pulp from climacteric fruit: [U-14C]-, [1-14C]-, [3,4-14C]-and [6-14C]glucose, [U-14C]glycerol, 14CO2. The data obtained were used to estimate the following fluxes, values given as mol hexose · (g FW)–1 · h–1 in parenthesis: starch to hexose monophosphates (5.9) and vice versa (0.4); hexose monophosphates to sucrose (7.7); sucrose to hexose (4.7); hexose to hexose monophosphate (3.8); glycolysis (0.5–1.6); triose phosphate to hexose monophosphates (0.14); oxidative pentose-phosphate pathway (0.48); CO2 fixation in the dark (0.005). These estimates are related to our understanding of carbohydrate metabolism during ripening.We both thank Mr Richard Trethewey for his constructive criticism: S.A.H. thanks the Managers of the Broodbank Fund for a fellowship.  相似文献   

15.
The neutral sugars (glucose, fructose, and sucrose) and the sugar phosphates (glucose 6-phosphate, glucose 1-phosphate and fructose 6-phosphate) soluble in hot aqueous 80% methanol from the fibres of cotton — Gossypium arboreum L., G. barbadense L., and G. hirsutum L. — were determined at various stages of fibre development. In addition, the (13)--D-glucan content was measured and in the case of G. arboreum the rate of (13)--D-glucan and cellulose synthesis was determined with [14C]sucrose as the precursor. For each of the species a similar chronology was obtained for the changes in content of the various non-structural carbohydrates. At the early stages of secondary wall formation, glucose and fructose exhibited a maximum which was closely followed by a maximum in the (13)--D-glucan content and in the sugar phosphates. On the other hand, the sucrose content increased regularly until fibre maturity. The rates of synthesis of (13)--D-glucan and of cellulose were highest following the maximum in the (13)--D-glucan content, when the latter was being depleted.Abbreviations DMSO dimethyl-sulphoxide - DPA days post anthesis - UDP-glucose uridinediphosphoglucose  相似文献   

16.
Amyloplasts have been isolated from tubers of potato plants (Solarium tuberosum. cv. Desirée). As it is difficult to isolate amyloplasts that have a high starch content, we used transformed plants in which the content of starch was reduced. This was achieved by decreasing the activity of ADP-glucose pyrophosphorylase by antisense techniques (Müller-Röber et al., 1992, EMBO. 11, 1229–1238). In the isolated plastids the activity of glutamine-oxoglutarate-aminotransferase (glutamate synthase, EC 2.6.1.53) was dependent upon the intactness of the plastids. For the supply of redox equivalents the addition of glucose-6-phosphate (Glc6P) was required. Glucose-1-phosphate (Glc1P) did not support glutamate synthesis. Plastids were treated with Triton X-100 and the solubilized proteins reconstituted into liposomes. Transport measurements with these liposomes revealed that inorganic phosphate (Pi), dihydroxyacetone phosphate (DHAP), 3-phosphoglycerate and Glc6P are transported in a counter-exchange mode. Transport of phosphoenolpyruvate was low and Glc1P was virtually not transported in exchange for Pi. Kinetic constants were determined for the Pi/Pi and Glc6P/Pi counter exchanges. For comparison, proteins of mitochondria from potato tubers and pea leaves were reconstituted into liposomes. As expected, the Pi/Pi exchange across the mitochondrial membrane was not affected by DHAP and Glc6P. Kinetic constants of the Pi/Pi counter exchange were determined for potato tuber mitochondria.Abbreviations DHAP dihydroxyacetone phosphate - Glc1P glucose-1-phosphate - Glc6P glucose-6-phosphate - PEP Phosphoenolpyruvate - 3-PGA 3-phosphoglycerate - Pi inorganic phosphate - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)-ethyl] glycine This work was supported by Deutsche Forschungsgemeinschaft.  相似文献   

17.
Evidence is provided for a close link between glutamate (Glu) synthesis and the production of reducing power by the oxidative pentose phosphate pathway (OPPP) in barley ( Hordeum vulgare L. var. Alfeo) root plastids. A rapid procedure for isolating organelles gave yields of plastids of over 30%, 60% of which were intact. The formation of Glu by intact plastids fed with glutamine and 2-oxoglutarate, both substrates of glutamate synthase (GOGAT), depends on glucose-6-phosphate (Glc-6-P) supply. The whole process exhibited an apparent K(m Glc-6-P) of 0.45 mM and is abolished by azaserine, a specific inhibitor of GOGAT; ATP caused a decrease in the rate of Glu formation. Glucose and other sugar phosphates were not as effective in supporting Glu synthesis with respect to Glc-6-P; only ribose-5-phosphate, an intermediate of OPPP, supported rates equivalent to Glc-6-P. Glucose-6-phosphate dehydrogenase (Glc6PDH) rapidly purified from root plastids showed an apparent K(m Glc-6-P) of 0.96 mM and an apparent K(m NADP)(+) of 9 micro M. The enzyme demonstrated high tolerance to NADPH, exhibiting a K(i) (NADPH) of 58.6 micro M and selectively reacted with antibodies against potato plastidic, but not chloroplastic, Glc6PDH isoform. The data support the hypothesis that plastidic OPPP is the main site of reducing power supply for GOGAT within the plastids, and suggest that the plastidic OPPP would be able to sustain Glu synthesis under high NADPH:NADP(+) ratios even if the plastidic Glc6PDH may not be functioning at its highest rates.  相似文献   

18.
Potato (Solanum tuberosum L.) plants were transformed with antisense constructs to the genes encoding the -and -subunits of pyrophosphate: fructose-6-phosphate phosphotransferase (PEP), their expression being driven by the constitutive CaMV 35S promotor. (i) In several independent transformant lines, PFP expression was decreased by 70–90% in growing tubers and by 88–99% in stored tubers. (ii) The plants did not show any visual phenotype, reduction of growth or decrease in total tuber yield. However, the tubers contained 20–40% less starch than the wild type. Sucrose levels were slightly increased in growing tubers, but not at other stages. The rates of accumulation of sucrose and free hexoses when tubers were stored at 4° C and the final amount accumulated were the same in antisense and wild-type tubers. (iii) Metabolites were investigated at four different stages in tuber life history; growing (sink) tubers, mature tubers, cold-sweetening tubers and sprouting (source) tubers. At all stages, compared to the wild type, antisense tubers contained slightly more hexose-phosphates, two- to threefold less glycerate-3-phosphate and phosphoenolpyruvate and up to four-to fivefold more fructose-2,6-bisphosphate. (iv) There was no accumulation or depletion of inorganic pyrophosphate (PPi), or of UDP-glucose relative to the hexose-phosphates. (v) The pyruvate content was unaltered or only marginally decreased, and the ATP/ADP ratio did not change. (vi) Labelling experiments on intact tubers did not reveal any significant decrease in the unidirectional rate of metabolism of [U-14C]sucrose to starch, organic acids or amino acids. Stored tubers with an extreme (90%) reduction of PFP showed a 25% decrease in the metabolism of [U14-C] sucrose. (vii) Metabolism (cycling) of [U-14C]glucose to surcrose increased 15-fold in discs from growing antisense tubers, compared with growing wild-type tubers. Resynthesis of sucrose was increased by 10–20% when discs from antisense and wild-type tubers stored at 4° C (cold sweetening) were compared. The conversion of [U-14C]glucose to starch was decreased by about 30% and 50%, respectively. (viii) The randomisation of [1-13C]glucose in the glucosyl and fructosyl moieties of sucrose was decreased from 13.8 and 15.7% in the wild type to 3.6 and 3.9% in an antisense transformant. Simultaneously, randomisation in glucosyl residues isolated from starch was reduced from 14.4 to 4.1%. (ix) These results provide evidence that PFP catalyses a readily reversible reaction in tubers, which is responsible for the recycling of label from triose-phosphates to hexose-phosphates, but with the net reaction in the glycolytic direction. The results do not support the notion that PFP is involved in regulating the cytosolic PPi concentration. They also demonstrate that PFP does not control the rate of glycolysis, and that tubers contain exessive capacity to phosphorylate fructose-6-phosphate. The decreased concentration of phosphoenolpyruvate and glycerate-3-phosphate compensates for the decrease of PFP protein by stimulating ATP-dependent phosphofructokinase, and by stimulating fructose-6-phosphate,2-kinase to increase the fructose-2,6-bisphosphate concentration and activate the residual PFP. The decreased starch accumulation is explained as an indirect effect, caused by the increased rate of resynthesis (cycling) of sucrose in the antisense tubers.Abbreviations Fru1,6bisP fructose-1,6-bisphosphate - Fru2,6bisP fructose-2,6-bisphosphate - Fru6P fructose-6-phosphate - Glc1P glucose-1-phosphate - Glc6P glucose-6-phosphate - NMR nuclear magnetic resonance - 3PGA glycerate-3-phosphate - PEP phosphoenolpyruvate - PEP pyrophosphate: fructose-6-phosphate phosphotransferase - PFK phosphofructokinase - UDPGlc UDP glucose - WT wild type This research was supported by the Bundesministerium for Forschung and Technology (M.S., U.S.), the Canadian Research Council (S.C., D.D.), the Agricultural and Food Research Council (R.V.) and Sandoz Agro Ltd. (M.H., M.S.).  相似文献   

19.
Recycling of carbon in the oxidative pentose phosphate pathway (OPPP) of intact pea root plastids has been studied. The synthesis of dihydroxyacetone phosphate (DHAP) and evolution of CO2 was followed in relation to nitrite reduction. A close coupling was observed between all three measured fluxes which were linear for up to 60 min and dependent upon the integrity of the plastids. However, the quantitative relationship between 1-14CO2 evolution from glucose 6-phosphate and nitrite reduction varied with available hexose phosphate concentration. When 10 mM glucose 6-phosphate was supplied to intact plastids a stoichiometry of 1.35 was observed between 14CO2 evolution and nitrite reduction. As exogenous glucose 6-phosphate was decreased this value fell, becoming 0.47 in the presence of 0.2 mM glucose 6-phosphate, indicative of considerable recycling of carbon. This conclusion was reinforced when using [2-14C]glucose-6-phosphate. The measured release of 2-14CO2 was consistent with the data for 1-14CO2, suggesting complete recycling of carbon in the OPPP. Ribose 5-phosphate was also able to support nitrite reduction and DHAP production. A stoichiometry of 2 NO 2 ? reduced: 1 DHAP synthesised was observed at concentrations of 1 mM ribose 5-phosphate or less. At concentrations of ribose 5-phosphate greater than 1 mM this stoichiometry was lost as a result of enhanced DHAP synthesis without further increase in nitrite reduction. It is suggested that this decoupling from nitrite reduction is a function of excess substrate entering directly into the non-oxidative reactions of the OPPP, and may be useful when the demand for OPPP products is not linked to the demand for reductant. The significance of recycling in the OPPP is discussed in relation to the coordination of nitrate assimilation with carbohydrate oxidation in roots and with the utilisation of carbohydrate by other pathways within plastids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号