首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
2.
The major light-harvesting complex (LHC-II) of higher plants plays a crucial role in capturing light energy for photosynthesis and in regulating the flow of energy within the photosynthetic apparatus. Native LHC-II isolated from plant tissue consists of three isoforms, Lhcb1, Lhcb2, and Lhcb3, which form homo- and heterotrimers. All three isoforms are highly conserved among different species, suggesting distinct functional roles. We produced the three LHC-II isoforms by heterologous expression of the polypeptide in Escherichia coli and in vitro refolding with purified pigments. Although Lhcb1 and Lhcb2 are very similar in polypeptide sequence and pigment content, Lhcb3 is clearly different because it lacks an N-terminal phosphorylation site and has a higher chlorophyll a/b ratio, suggesting the absence of one chlorophyll b. Low temperature absorption and fluorescence emission spectra of the pure isoforms revealed small but significant differences in pigment organization. The oligomeric state of the pure isoforms and of their permutations was investigated by native gel electrophoresis, sucrose density gradient centrifugation, and SDS-PAGE. Lhcb1 and Lhcb2 formed trimeric complexes by themselves and with one another, but Lhcb3 was able to do so only in combination with one or both of the other isoforms. We conclude that the main role of Lhcb1 and Lhcb2 is in the adaptation of photosynthesis to different light regimes. The most likely role of Lhcb3 is as an intermediary in light energy transfer from the main Lhcb1/Lhcb2 antenna to the photosystem II core.  相似文献   

3.
In higher plants the light energy is captured by the photosynthetic pigments that are bound to photosystem I and II and their light-harvesting complex (LHC) subunits. In this study, we examined the photodynamic changes within chlorophyll-protein complexes in the thylakoid membrane of Arabidopsis thaliana leaves adapted to low light and subsequently exposed to light stress. Chlorophyll-protein complexes were isolated using sucrose density gradient centrifugation and blue-native polyacrylamid gel electrophoresis (BN-PAGE). Proteome analysis was performed using SDS-PAGE, HPLC and high resolution mass spectrometry. We identified several rarely expressed and stress-induced chlorophyll-binding proteins, showed changes in localization of early light-induced protein family and LHC protein family members between different photosynthetic complexes and assembled/disassembled subcomplexes under light stress conditions and discuss their role in a variety of light stress-related processes.  相似文献   

4.
Pinus palustris has a greatly reduced need for light to initiate chloroplast development in comparison to angiosperms. Light is not required for chlorophyll synthesis in dark-grown Pinus palustris seedlings. However, embryos do not contain chlorophyll, and synthesis is limited to seedlings having cotyledon lengths between about 0.5 cm and 2.0 cm. The final amount of chlorophyll accumulated by dark-grown seedlings is about one fifth of that in light-grown seedlingsat the same stage. The major light-harvesting chlorophyll a/b-polypeptides of Photosystem II (LHC IIb) are absent in the embryos but begin to accumulate in seedlings of 0.5 cm cotyledon length, irrespective of the light conditions. Although dark-grown seedlings accumulate most of the pigmented complexes seen in light-grown seedlings, there are differences in the subunit structure of some of them. These findings suggest that the majority of the components of the photosynthetic membrane do not require light for induction of synthesis or assembly into complexes, but that the final forms seen in light-grown seedlings may require light.Abbreviations ALA 5-amino levulinic acid - glucoside -D-glucopyranoside - LHC light-harvesting complex - lhc genes encoding LHCs - PS photosystem  相似文献   

5.
The Lhcb gene family in green plants encodes several light-harvesting Chl a/b-binding (LHC) proteins that collect and transfer light energy to the reaction centers of PSII. We comprehensively characterized the Lhcb gene family in the unicellular green alga, Chlamydomonas reinhardtii, using the expressed sequence tag (EST) databases. A total of 699 among over 15,000 ESTs related to the Lhcb genes were assigned to eight, including four new, genes that we isolated and sequenced here. A sequence comparison revealed that six of the Lhcb genes from C. reinhardtii correspond to the major LHC (LHCII) proteins from higher plants, and that the other two genes (Lhcb4 and Lhcb5) correspond to the minor LHC proteins (CP29 and CP26). No ESTs corresponding to another minor LHC protein (CP24) were found. The six LHCII proteins in C. reinhardtii cannot be assigned to any of the three types proposed for higher plants (Lhcb1-Lhcb3), but were classified as follows: Type I is encoded by LhcII-1.1, LhcII-1.2 and LhcII-1.3, and Types II, III and IV are encoded by LhcII-2, LhcII-3 and LhcII-4, respectively. These findings suggest that the ancestral LHC protein diverged into LHCII, CP29 and CP26 before, and that LHCII diverged into multiple types after the phylogenetic separation of green algae and higher plants.  相似文献   

6.
The regulation by light of the photosynthetic apparatus, and composition of light-harvesting complexes in mesophyll and bundle sheath chloroplasts was investigated in maize. Leaf chlorophyll content, level of plastoquinone, PSI and PSII activities and Lhc polypeptide compositions were determined in plants grown under high, moderate and low irradiances. Photochemical efficiency of PSII, photochemical fluorescence quenching and non-photochemical fluorescence quenching over a range of actinic irradiances were also determined, using chlorophyll a fluorescence analysis. Acclimation of plants to different light conditions caused marked changes in light-harvesting complexes, LHCI and LHCII, and antenna complexes were also reorganized in these types of chloroplasts. The level of LHCII increased in plants grown in low light, even in agranal bundle sheath chloroplasts where the amount of PSII was strongly reduced. Irradiance also affected LHCI complex and the number of structural polypeptides, in this complex, generally decreased in chloroplasts from plants grown under lower light. Surprisingly moderate and low irradiances during growth do not affect the light reaction and fluorescence parameters of plants but generated differences in composition of light-harvesting complexes in chloroplasts. On the other hand, the changes in photosynthetic apparatus in plants acclimated to high light, resulted in a higher efficiency of photosynthesis. Based on these observations we propose that light acclimation to high light in maize is tightly coordinated adjustment of light reaction components/activity in both mesophyll and bundle sheath chloroplasts. Acclimation is concerned with balancing light utilization and level of the content of LHC complexes differently in both types of chloroplasts.  相似文献   

7.
Anna Drozak  El?bieta Romanowska 《BBA》2006,1757(11):1539-1546
The regulation by light of the photosynthetic apparatus, and composition of light-harvesting complexes in mesophyll and bundle sheath chloroplasts was investigated in maize. Leaf chlorophyll content, level of plastoquinone, PSI and PSII activities and Lhc polypeptide compositions were determined in plants grown under high, moderate and low irradiances. Photochemical efficiency of PSII, photochemical fluorescence quenching and non-photochemical fluorescence quenching over a range of actinic irradiances were also determined, using chlorophyll a fluorescence analysis. Acclimation of plants to different light conditions caused marked changes in light-harvesting complexes, LHCI and LHCII, and antenna complexes were also reorganized in these types of chloroplasts. The level of LHCII increased in plants grown in low light, even in agranal bundle sheath chloroplasts where the amount of PSII was strongly reduced. Irradiance also affected LHCI complex and the number of structural polypeptides, in this complex, generally decreased in chloroplasts from plants grown under lower light. Surprisingly moderate and low irradiances during growth do not affect the light reaction and fluorescence parameters of plants but generated differences in composition of light-harvesting complexes in chloroplasts. On the other hand, the changes in photosynthetic apparatus in plants acclimated to high light, resulted in a higher efficiency of photosynthesis. Based on these observations we propose that light acclimation to high light in maize is tightly coordinated adjustment of light reaction components/activity in both mesophyll and bundle sheath chloroplasts. Acclimation is concerned with balancing light utilization and level of the content of LHC complexes differently in both types of chloroplasts.  相似文献   

8.
The effect of light quality on the composition, function and structure of the thylakoid membranes, as well as on the photosynthetic rates of intact fronds from Asplenium australasicum, a shade plant, grown in blue, white, or red light of equal intensity (50 microeinsteins per square meter per second) was investigated. When compared with those isolated from plants grown in white and blue light, thylakoids from plants grown in red light have higher chlorophyll a/chlorophyll b ratios and lower amounts of light-harvesting chlorophyll a/b-protein complexes than those grown in blue light. On a chlorophyll basis, there were higher levels of PSII reaction centers, cytochrome f and coupling factor activity in thylakoids from red light-grown ferns, but lower levels of PSI reaction centers and plastoquinone. The red light-grown ferns had a higher PSII/PSI reaction center ratio of 4.1 compared to 2.1 in blue light-grown ferns, and a larger apparent PSI unit size and a lower PSII unit size. The CO2 assimilation rates in fronds from red light-grown ferns were lower on a unit area or fresh weight basis, but higher on a chlorophyll basis, reflecting the higher levels of electron carriers and electron transport in the thylakoids.

The structure of thylakoids isolated from plants grown under the three light treatments was similar, with no significant differences in the number of thylakoids per granal stack or the ratio of appressed membrane length/nonappressed membrane length. The large freeze-fracture particles had the same size in the red-, blue-, and white-grown ferns, but there were some differences in their density. Light quality is an important factor in the regulation of the composition and function of thylakoid membranes, but the effects depend upon the plant species.

  相似文献   

9.
10.
Acclimation to changes in the light environment was investigated in Arabidopsis thaliana (L.) Heynh. cv. Landsberg erecta. Plants grown under four light regimes showed differences in their development, morphology, photosynthetic performance and in the composition of the photosynthetic apparatus. Plants grown under high light showed higher maximum rates of oxygen evolution and lower levels of light-harvesting complexes than their low light-grown counterparts; plants transferred to low light showed rapid changes in maximum photosynthetic rate and chlorophyll-a/b ratio as they became acclimated to the new environment. In contrast, plants grown under lights of differing spectral quality showed significant differences in the ratio of photosystem II to photosystem I. These changes are consistent with a model in which photosynthetic metabolism provides signals which regulate the composition of the thylakoid membrane.Abbreviations Aac1 gene encoding actin - Chl chlorophyll - F far-red-enriched light (R:FR = 0.72) - FR far-red light - H high light (400 mol · m–2 · s–1) - L low light (100 ml · m–2 · s–1) - LHCII light-harvesting complex of PSII - Lhcb genes encoding the proteins of LHCII - R red light - Rbcs genes encoding the small subunit of Rubisco - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - W white light (R:FR = 1.40) This work was supported by Natural Environment Research Council Grant No. GR3/7571A. We would like to thank H. Smith (Botany Department, University of Leicester) and E. Murchie (University of Sheffield) for helpful discussions.  相似文献   

11.
We have constructed Arabidopsis thaliana plants that are virtually devoid of the major light-harvesting complex, LHC II. This was accomplished by introducing the Lhcb2.1 coding region in the antisense orientation into the genome by Agrobacterium-mediated transformation. Lhcb1 and Lhcb2 were absent, while Lhcb3, a protein present in LHC II associated with photosystem (PS) II, was retained. Plants had a pale green appearance and showed reduced chlorophyll content and an elevated chlorophyll a/b ratio. The content of PS II reaction centres was unchanged on a leaf area basis, but there was evidence for increases in the relative levels of other light harvesting proteins, notably CP26, associated with PS II, and Lhca4, associated with PS I. Electron microscopy showed the presence of grana. Photosynthetic rates at saturating irradiance were the same in wild-type and antisense plants, but there was a 10-15% reduction in quantum yield that reflected the decrease in light absorption by the leaf. The antisense plants were not able to perform state transitions, and their capacity for non-photochemical quenching was reduced. There was no difference in growth between wild-type and antisense plants under controlled climate conditions, but the antisense plants performed worse compared to the wild type in the field, with decreases in seed production of up to 70%.  相似文献   

12.
Rogl H  Kühlbrandt W  Barth A 《Biochemistry》2003,42(34):10223-10228
Light-harvesting complex II (LHC-II) regulates the light energy distribution between photosystem I and II in plants. This process is mediated by phosphorylation of the LHC-II protein, which depends on the oxidation state of photosynthetic electron carriers. In addition to this regulatory mechanism, it has recently been proposed that light can directly induce a conformational change in isolated LHC-II. To provide biophysical evidence for such a conformational change in the protein, we studied infrared absorbance changes in isolated LHC-II upon exposure to light flashes. Compared to the signals obtained with other proteins that exhibit well-characterized conformational changes, the signal in the LHC-II difference spectra is very weak. The position of the difference bands coincides with the main IR absorption bands of chlorophyll. We conclude that there are no detectable light-induced changes in the LHC protein structure and attribute the observed IR signals to light-induced chlorophyll degradation.  相似文献   

13.
14.
In higher plants many different genes encode Lhcb proteins that belong to a highly conserved protein family. Evolutionary conservation of this genetic redundancy suggests that individual gene products play different roles in light harvesting and photoprotection depending on environmental conditions. We have tested the hypothesis that expression/accumulation of individual light harvesting complex (Lhc) proteins depends on plant growth conditions. Zea mays plants were grown in different temperature (13 degrees C vs. 24 degrees C) and light (high vs. low) conditions. The thylakoid membranes were isolated and fractionated by sucrose gradient and the protein content of the different bands was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Significant differences were found in the accumulation of both the major light harvesting complex of photosystem II (LHCII) complexes and the minor antenna chlorophyll proteins CP29, CP26 and CP24. In particular, temperature seems to play a major role in driving the expression/accumulation of the different proteins: the LHCII/minor antenna ratio increases with decreasing temperature. The pigment composition and the spectroscopic properties of LHCII complexes isolated from low temperature grown plants are significantly different from those of LHCII purified from high temperature grown plants. Two-dimensional maps show that different LHCII proteins are accumulated at different levels depending on growth conditions. Moreover the low temperature/high light grown plants show an increased value of nonphotochemical quenching. These results suggest a specific role of different LHCII complexes in the organization of the potosystem II and photoprotection.  相似文献   

15.
16.
The colonial green alga Botryococcus braunii (BB) is a potential source of biofuel due to its natural high hydrocarbon content. Unfortunately, its slow growth limits its biotechnological potential. Understanding its photosynthetic machinery could help to identify possible growth limitations. Here, we present the first study on BB light-harvesting complexes (LHCs). We purified two LHC fractions containing the complexes in monomeric and trimeric form. Both fractions contained at least two proteins with molecular weight (MW) around 25 kDa. The chlorophyll composition is similar to that of the LHCII of plants; in contrast, the main xanthophyll is loroxanthin, which substitutes lutein in most binding sites. Circular dichroism and 77 K absorption spectra lack typical differences between monomeric and trimeric complexes, suggesting that intermonomer interactions do not play a role in BB LHCs. This is in agreement with the low stability of the BB LHCII trimers as compared to the complexes of plants, which could be related to loroxanthin binding in the central (L1 and L2) binding sites. The properties of BB LHCII are similar to those of plant LHCII, indicating a similar pigment organization. Differences are a higher content of red chlorophyll a, similar to plant Lhcb3. These differences and the different Xan composition had no effect on excitation energy transfer or fluorescence lifetimes, which were similar to plant LHCII.  相似文献   

17.
The light-induced assembly of light-harvesting complex (LHC) II has been followed during the biogenesis of the plastid. Seedlings grown in intermittent light (IML) accumulate only small amounts of chlorophyll b. The minor LHC II apoproteins are present; however, the apoprotein levels of the major LHC II complex, LHC IIb, are severely depressed after exposure to IML. The levels of all LHC II apoproteins increase rapidly upon exposure to continuous illumination. The 25-kD, type 3 LHC IIb subunit appears to be more abundant during the early hours of greening in relation to its level in mature thylakoids. The LHC IIb apoproteins are initially associated with pigments to form monomeric pigment-protein complexes. The abundance of monomeric LHC IIb complexes gradually decreases during exposure to continuous light and a concomitant increase occurs in the amount of the trimeric and higher-order oligomeric forms. Pulse-chase experiments verify that labeled LHC IIb monomeric complexes are intermediates in the formation of trimeric and higher-order oligomeric LHC IIb-pigmented complexes. Therefore, the assembly of LHC II occurs via the initial pigmentation of the apoproteins to form monomeric complexes and proceeds in a sequential manner.  相似文献   

18.
The photosynthetic antenna system of diatoms contains fucoxanthin chlorophyll a/c binding proteins (FCPs), which are membrane intrinsic proteins showing high homology to the light harvesting complexes (LHC) of higher plants. In the present study, we used a mild solubilization of P. tricornutum thylakoid membranes in combination with sucrose density gradient centrifugation or gelfiltration and obtained an oligomeric FCP complex (FCPo). The spectroscopic characteristics and pigment stoichiometries of the FCPo complex were comparable to FCP complexes that were isolated after solubilization with higher detergent per chlorophyll ratios. The excitation energy transfer between the FCP-bound pigments was more efficient in the oligomeric FCPo complexes, indicating that these complexes may represent the native form of the diatom antenna system in the thylakoid membrane. Determination of the molecular masses of the two different FCP fractions by gelfiltration revealed that the FCP complexes consisted of trimers, whereas the FCPo complexes were either composed of six monomers or two tightly associated trimers. In contrast to vascular plants, stable functional monomers could not be isolated in P. tricornutum. Both types of FCP complexes showed two protein bands in SDS-gels with apparent molecular masses of 18 and 19 kDa, respectively. Sequence analysis by MS/MS revealed that the 19 kDa protein corresponded to the fcpC and fcpD genes, whereas the 18 kDa band contained the protein of the fcpE gene. The presence of an oligomeric antenna in diatoms is in line with the oligomeric organization of antenna complexes in different photoautotrophic groups.  相似文献   

19.
20.
Caffarri S  Croce R  Cattivelli L  Bassi R 《Biochemistry》2004,43(29):9467-9476
The major antenna complex of higher-plant photosynthesis, LHCII, is composed by the products of three genes, namely, Lhcb1-2-3. In this paper, the biochemical and spectroscopic properties of each of the three gene products were investigated. The three complexes were obtained by overexpression of the apoproteins in bacteria and refolding in vitro with purified pigments, thus allowing detection of differences in the structure/function of the pigment-binding gene products. The analyses showed that Lhcb1 and Lhcb2 complexes have similar pigment binding properties, although not identical, while Lhcb3 is clearly different with respect to both pigment binding and spectral properties and cannot produce homotrimers in vitro. Heterotrimers containing Lhcb3 together with Lhcb1 and/or -2 proteins were obtained upon assembly with Lhcb proteins purified from thylakoids. The major functional characteristics of Lhcb3 with respect to Lhcb1 and -2 consisted in (i) a red-shift of one specific chlorophyll a chromophore, strongly affecting the red-most region of the absorption spectrum and (ii) a different specificity for xanthophylls binding to sites L2 and N1. These properties make Lhcb3 a relative sink for excitation energy in isolated heterotrimers with Lhcb1 + Lhcb2, and potentially, a preferential site of regulation of the antenna function in excess light conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号