首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rat testis mitochondrial ATPase was not inhibited by oligomycin at pH 7.5. It was inhibited only at higher alkaline pH's, and showed a lower sensitivity both to oligomycin and N,N′-dicyclohexylcarbodiimide and a higher one to efrapeptin. In submitochondrial particles, testis ATPase was only slightly inhibited by oligomycin, ossamycin, and efrapeptin. The possibility of a loose binding of F1 to the membrane was supported by its recovery from the supernatant of the submitochondrial particles. Furthermore, by electron microscopy, after hypoosmotic shock and negative staining of the mitochondrial preparations, most of the inner mitochondrial membranes showed only a few “knobs” or none at all. The capacity of the testis mitochondrial preparation to produce ATP was tested and compared to that from liver. ATP synthetase/ATPase activity ratio was 301 in liver mitochondria, whereas in the testis it was 31. In spite of this large difference, at least part of the testis ATPase must be firmly bound to the membrane, since it is able to form ATP. The rest seems to be loosely bound and its functional significance is still unknown.  相似文献   

2.
A. Vdineanu  J.A. Berden  E.C. Slater 《BBA》1976,449(3):468-479
1. Isolated F1 (mitochondrial ATPase) binds to urea-treated submitochondrial particles suspended in sucrose/Tris/EDTA with a dissociation constant of 0.1 μM.

2. About one-third of the F1 and the oligomycin-sensitivity conferring protein (OSCP) are lost during preparation of submitochondrial particles prepared at high pH (A particles). None is lost from particles treated with trypsin (T particles).

3. After further treatment with alkali of urea-treated particles, binding of F1 requires the addition of OSCP. Maximum binding is reached when both OSCP and Fc2 are added. The concentration of F1-binding sites in the presence of both OSCP and Fc2 is about the same as that in TU particles.

4. After further extraction with silicotungstate of urea- and alkali-treated particles, OSCP no longer induces binding of F1, unless Fc2 is also present. Fc2 induces binding in the absence of OSCP but with a lower binding constant and, in contrast to results under all the other conditions studied in this paper, the ATPase activity is oligomycin insensitive.

5. It is tentatively concluded that OSCP is the binding site for F1 and Fc2 is the binding site for OSCP.  相似文献   


3.
Digestion of the submitochondrial particle (ETPH) with a proteolytic enzyme, Nagarse, selectively and completely removed the headpieces from the membrane without damaging the electron transfer chain. By determining the amount of protein released by the Nagarse treatment, it was calculated that the headpieces represent 16±0.5% of the total protein of the submitochondrial particles.In respiring ETPH, membrane-bound AMP was found to be an acceptor of inorganic phosphate, and this esterification led to the formation of membrane-bound ADP. About 70% of the membranebound adenine nucleotides were found to be tightly bound to the intrinsic proteins of the membrane. A transphosphorylation reaction was observed between external and membrane-bound ADP.Abbreviations F1 coupling factor one - OSCP oligomycin-sensitivity conferring protein - TRU tripartite repeating unit - ETPH phosphorylating electron transfer particle  相似文献   

4.
5.
Stomatin is a member of a large family of proteins including prohibitins, HflK/C, flotillins, mechanoreceptors and plant defense proteins, that are thought to play a role in protein turnover. Using different proteomic approaches, we and others have identified SLP-2, a member of the stomatin gene family, as a component of the mitochondria. In this study, we show that SLP-2 is strongly associated with the mitochondrial inner membrane and that it interacts with prohibitins. Depleting HeLa cells of SLP-2 lead to increased proteolysis of prohibitins and of subunits of the respiratory chain complexes I and IV. Further supporting the role of SLP-2 in regulating the stability of specific mitochondrial proteins, we found that SLP-2 is up-regulated under conditions of mitochondrial stress leading to increased protein turnover. These data indicate that SLP-2 plays a role in regulating the stability of mitochondrial proteins including prohibitins and subunits of respiratory chain complexes.  相似文献   

6.
1. Isolated F1 (mitochondrial ATPase) binds to urea-treated submitochondrial particles suspended in sucrose/Tris/EDTA with a dissociation constant of 0.1 muM. 2. About one-third of the F1 and the oligomycin-sensitivity conferring protein (OSCP) are lost during preparation of submitochondrial particles prepared at high pH (A particles). None is lost from particles treated with trypsin (T particles). 3. After further treatment with alkali of urea-treated particles, binding of F1 requires the addition of OSCP. Maximum binding is reached when both OSCP and Fc2 are added. The concentration of F1-binding sites in the presence of both OSCP and Fc2 is about the same as that in TU particles. 4. After further extraction with silicotungstate of urea- and alkali-treated particles, OSCP no longer induces binding of F1, unless Fc2 is also present. Fc2 induces binding in the absence of OSCP but with a lower binding constant and, in contrast to results under all the other conditions studied in this paper, the ATPase activity is oligomycin insensitive. 5. It is tentatively concluded that OSCP is the binding site for F1 and Fc2 is the binding site for OSCP.  相似文献   

7.
The MDM31 and MDM32 genes are required for normal distribution and morphology of mitochondria in the yeast Saccharomyces cerevisiae. They encode two related proteins located in distinct protein complexes in the mitochondrial inner membrane. Cells lacking Mdm31 and Mdm32 harbor giant spherical mitochondria with highly aberrant internal structure. Mitochondrial DNA (mtDNA) is instable in the mutants, mtDNA nucleoids are disorganized, and their association with Mmm1-containing complexes in the outer membrane is abolished. Mutant mitochondria are largely immotile, resulting in a mitochondrial inheritance defect. Deletion of either one of the MDM31 and MDM32 genes is synthetically lethal with deletion of either one of the MMM1, MMM2, MDM10, and MDM12 genes, which encode outer membrane proteins involved in mitochondrial morphogenesis and mtDNA inheritance. We propose that Mdm31 and Mdm32 cooperate with Mmm1, Mmm2, Mdm10, and Mdm12 in maintenance of mitochondrial morphology and mtDNA.  相似文献   

8.
Valinomycin and nigericin are potassium ionophores acting selectively on the mitochondrial inner membrane of Saccharomyces cerevisiae [Kovac, L., Bohmerova, E., Butko, P., 1982a. Ionophores and intact cells. I. Valinomycin and nigericin act preferentially on mitochondria and not on the plasma membrane of Saccharomyces cerevisiae. Biochim. Biophys. Acta 721, 341-348]. However, the molecular mechanism of their action is not understood. Here we show that their selective effect on mitochondrial membranes is not caused by the pleiotropic drug resistance system. To identify the molecular components mediating the action of ionophores we isolated several mutants specifically resistant to valinomycin and/or nigericin. In contrast to the parental strain, these mutants do not form respiratory-deficient cells in the presence of ionophores. Moreover, all mutants harbor extensively fragmented mitochondria and these morphological defects can be alleviated by the ionophores. Interestingly, we observed that these mitochondrial defects may be accompanied by changes in vacuolar dynamics. Our results demonstrate that the classical genetic approach can provide a starting point for the analysis of components involved in the action of ionophores on mitochondria-related processes in eukaryotic cell.  相似文献   

9.
The yeast proteins Mrs3p and Mrs4p are two closely related members of the mitochondrial carrier family (MCF), which had previously been implicated in mitochondrial Fe2+ homeostasis. A vertebrate Mrs3/4 homologue named mitoferrin was shown to be essential for erythroid iron utilization and proposed to function as an essential mitochondrial iron importer. Indirect reporter assays in isolated yeast mitochondria indicated that the Mrs3/4 proteins are involved in mitochondrial Fe2+ utilization or transport under iron-limiting conditions. To have a more direct test for Mrs3/4p mediated iron uptake into mitochondria we studied iron (II) transport across yeast inner mitochondrial membrane vesicles (SMPs) using the iron-sensitive fluorophore PhenGreen SK (PGSK). Wild-type SMPs showed rapid uptake of Fe2+ which was driven by the external Fe2+ concentration and stimulated by acidic pH. SMPs from the double deletion strain mrs3/4Δ failed to show this rapid Fe2+ uptake, while SMPs from cells overproducing Mrs3/4p exhibited increased Fe2+ uptake rates. Cu2+ was transported at similar rates as Fe2+, while other divalent cations, such as Zn2+ and Cd2+ apparently did not serve as substrates for the Mrs3/4p transporters. We conclude that the carrier proteins Mrs3p and Mrs4p transport Fe2+ across the inner mitochondrial membrane. Their activity is dependent on the pH gradient and it is stimulated by iron shortage.  相似文献   

10.
Three reading frames called ccmF(N1), ccmF(N2), and ccmF(c) are found in the mitochondrial genome of Arabidopsis. These sequences are similar to regions of the bacterial gene ccmF involved in cytochrome c maturation. ccmF genes are always absent from animal and fungi genomes but are found in mitochondrial genomes of land plant and several evolutionary distant eukaryotes. In Arabidopsis, ccmF(N2) despite the absence of a classical initiation codon is not a pseudo gene. The 3 ccmF genes of Arabidopsis are expressed at the protein level. Their products are integral proteins of the mitochondrial inner membrane with in total 11 to 13 predicted transmembrane helices. The conserved WWD domain of CcmF(N2) is localized in the inter membrane space. The 3 CcmF proteins are all detected in a high molecular mass complex of 500 kDa by Blue Native PAGE. Direct interaction between CcmF(N2) and both CcmF(N1) and CcmF(C) is shown with the yeast two-hybrid split ubiquitin system, but no interaction is observed between CcmF(N1) and CcmF(C). Similarly, interaction is detected between CcmF(N2) and apocytochrome c but also with apocytochrome c(1). Finally, CcmF(N1) and CcmF(N2) both interact with CCMH previously shown to interact as well with cytochrome c. This strengthens the hypothesis that CcmF and CCMH make a complex that performs the assembly of heme with c-type apocytochromes in plant mitochondria.  相似文献   

11.
12.
Here, we report the identification of yeast 15-kD Tim15/Zim17, a new member of mitochondrial Hsp70 (mtHsp70)-associated motor and chaperone (MMC) proteins. The 15-kD MMC protein is a peripheral inner membrane protein with a zinc-finger motif. Depletion of the 15-kD protein led to impaired import of presequence-containing proteins into the matrix in vivo and in vitro. Overexpression of the 15-kD protein rescued the functional defects of mtHsp70 in ssc1-3 cells, and a fusion protein containing the 15-kD protein physically interacts with purified mtHsp70. Tim15/Zim17 therefore cooperates with mtHsp70 to facilitate import of presequence-containing proteins into the matrix.  相似文献   

13.
Import of carrier proteins from the cytoplasm into the mitochondrial inner membrane of yeast is mediated by a distinct system consisting of two soluble 70-kDa protein complexes in the intermembrane space and a 300-kDa complex in the inner membrane, the TIM22 complex. The TIM22 complex contains the peripheral subunits Tim9p, Tim10p, and Tim12p and the integral membrane subunits Tim22p and Tim54p. We identify here an additional subunit, an 18-kDa integral membrane protein termed Tim18p. This protein is made as a 21.9-kDa precursor which is imported into mitochondria and processed to its mature form. When mitochondria are gently solubilized, Tim18p comigrates with the other subunits of the TIM22 complex on nondenaturing gels and is coimmunoprecipitated with Tim54p and Tim12p. Tim18p does not cofractionate with the TIM23 complex upon immunoprecipitation or nondenaturing gel electrophoresis. Deletion of Tim18p decreases the growth rate of yeast cells by a factor of two and is synthetically lethal with temperature-sensitive mutations in Tim9p or Tim10p. It also impairs the import of several precursor proteins into isolated mitochondria, and lowers the apparent mass of the TIM22 complex. We suggest that Tim18p functions in the assembly and stabilization of the TIM22 complex but does not directly participate in protein insertion into the inner membrane.  相似文献   

14.
Understanding the structural organization of biomolecules in cells, sub-cellular compartments or membranes requires non-invasive methods of observation that provide high spatial resolution. Recent advancements in fluorescence microscopy paved the way for novel super-resolution observations with an optical resolution well below the diffraction barrier of light. Here, we demonstrate that commercially available standard fluorescent probes, i.e. Alexa 647 labeled antibodies, can be used as efficient photoswitches. In combination with localization microscopy approaches the method is ideally suited to study the spatial organization of proteins in sub-cellular structures and membranes. The simplicity of the method lies in the fact that standard immunocytochemistry assays together with photoswitchable carbocyanine fluorophores and conventional total internal reflection fluorescence (TIRF) microscopy can be used to achieve a lateral resolution of 20 nm. We demonstrate subdiffraction-resolution fluorescence imaging of intracellular F0F1-ATP synthase and cytochrome c oxidase in the inner membrane of mitochondria. Besides the high localization precision of individual proteins we demonstrate how quantitative data, i.e. the protein distribution in the membrane, can be derived and compared.  相似文献   

15.
16.
Mitochondrial ATP synthase (F(1)F(o)-ATPase) is regulated by an intrinsic ATPase inhibitor protein. In the present study, we investigated the structure-function relationship of the yeast ATPase inhibitor by amino acid replacement. A total of 22 mutants were isolated and characterized. Five mutants (F17S, R20G, R22G, E25A, and F28S) were entirely inactive, indicating that the residues, Phe17, Arg20, Arg22, Glu25, and Phe28, are essential for the ATPase inhibitory activity of the protein. The activity of 7 mutants (A23G, R30G, R32G, Q36G, L37G, L40S, and L44G) decreased, indicating that the residues, Ala23, Arg30, Arg32, Gln36, Leu37, Leu40, and Leu44, are also involved in the activity. Three mutants, V29G, K34Q, and K41Q, retained normal activity at pH 6.5, but were less active at pH 7.2, indicating that the residues, Val29, Lys34, and Lys41, are required for the protein's action at higher pH. The effects of 6 mutants (D26A, E35V, H39N, H39R, K46Q, and K49Q) were slight or undetectable, and the residues Asp26, Glu35, His39, Lys46, and Lys49 thus appear to be dispensable. The mutant E21A retained normal ATPase inhibitory activity but lacked pH-sensitivity. Competition experiments suggested that the 5 inactivated mutants (F17S, R20G, R22G, E25A, and F28S) could still bind to the inhibitory site on F(1)F(o)-ATPase. These results show that the region from the position 17 to 28 of the yeast inhibitor is the most important for its activity and is required for the inhibition of F(1), rather than binding to the enzyme.  相似文献   

17.
Bilirubin in the presence of O2 and light catalyzes the photodynamic modification of the proteins of the inner mitochondrial membrane as monitored by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Numerous polypeptide bands become streaked towards higher apparent molecular weight and decrease in staining intensity while other bands remain largely unchanged. The loss in staining intensity which occurs is at least partially due to apparent cross-linking of the polypeptides to produce aggregates which cannot penetrate into the gel. The α and β bands of the mitochondrial ATPase differ markedly in their susceptibility to modification. The β subunit is rapidly modified while the α subunit is largely inert. This differential susceptibility is a consequence of the binding of the soluble F1 ATPase to the membrane. When submitochondrial particles with their normal complement of bound F1 are mixed with free F1 and are photolyzed together in the presence of bilirubin and O2, it is found that the β subunit of the membrane-bound F1, but not the α subunit, has been modified while neither subunit of the free F1 has been modified. This increased susceptibility of the β subunit in the membrane state may represent cross-linking to membrane components and is consistent with the β subunit making more extensive contacts with membrane components than does the α subunit.  相似文献   

18.
19.
20.
Wurm CA  Jakobs S 《FEBS letters》2006,580(24):5628-5634
The mitochondrial inner membrane exhibits a complex topology. Its infolds, the cristae membranes, are contiguous with the inner boundary membrane (IBM), which runs parallel to the outer membrane. Using live cells co-expressing functional fluorescent fusion proteins, we report on the distribution of inner membrane proteins in budding yeast. To this end we introduce the enlarged mitochondria of Deltamdm10, Deltamdm31, Deltamdm32, and Deltammm1 cells as a versatile model system to study sub-mitochondrial protein localizations. Proteins of the F(1)F(0) ATP synthase and of the respiratory chain complexes III and IV were visualized in the cristae-containing interior of the mitochondria. In contrast, proteins of the TIM23 complex and of the presequence translocase-associated motor were strongly enriched at the IBM. The different protein distributions shown here demonstrate that the cristae membranes and the IBM are functionally distinct sub-compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号