首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Annual (Lolium multiflorum Lam.) and perennial (Lolium perenne L.) ryegrasses are two important forage and turfgrass species. Improving the digestibility of forage by decreasing fiber content is a major goal in forage crop breeding programs. An annual × perennial ryegrass interspecific hybrid population was used to map quantitative trait loci (QTLs) for fiber components, neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL), and crude protein (CP). Samples were harvested three times in August and September 2003 and August 2004, respectively. Simple interval mapping was used to detect QTLs from both the male and female parental maps previously developed for the population. Fiber components were all correlated positively with each other and were negatively correlated with CP. The largest correlations were between NDF and ADF with r = 0.86, 0.72, and 0.82 for each of the three harvests. All four traits showed intermediate broad-sense heritability values ranging from 0.35 to 0.72. A total of 63 QTLs were detected for the four traits measured over the three harvests from both the female and male maps. Coincident QTLs were detected on linkage groups (LGs) 2, 6, and 7 for NDF, LGs 1, 2, and 7 for ADF, LGs 6 and 7 for ADL, and LG 2 for CP, respectively. Coincident QTLs were also detected on LGs 2, 6, and 7 for NDF and ADF, providing evidence of the genetic basis of the observed high level of phenotypic correlation. The QTLs on LGs 2, 6, and possibly 7 for fiber components were co-located on the same LG as several lignin biosynthetic genes from perennial ryegrass.  相似文献   

2.
Susceptibility to foliar pathogens commonly causes significant reductions in productivity of the important temperate forage perennial ryegrass. Breeding for durable disease resistance involves not only the deployment of major genes but also the additive effects of minor genes. An approach based on in vitro single nucleotide polymorphism (SNP) discovery in candidate defence response (DR) genes has been used to develop potential diagnostic genetic markers. SNPs were predicted, validated and mapped for representatives of the pathogenesis-related (PR) protein-encoding and reactive oxygen species (ROS)-generating gene classes. The F(1)(NA(6) x AU(6)) two-way pseudo-test cross population was used for SNP genetic mapping and detection of quantitative trait loci (QTLs) in response to a crown rust field infection. Novel resistance QTLs were coincident with mapped DR gene SNPs. QTLs on LG3 and LG7 also coincided with both herbage quality QTLs and candidate genes for lignin biosynthesis. Multiple DR gene SNP loci additionally co-located with QTLs for grey leaf spot, bacterial wilt and crown rust resistance from other published studies. Further functional validation of DR gene SNP loci using methods such as fine-mapping and association genetics will improve the efficiency of parental selection based on superior allele content.  相似文献   

3.
Perennial ryegrass (Lolium perenne L.) is the most important forage crop in temperate livestock agriculture. Its nutritional quality has significant impact on the quality of meat and milk for human consumption. Evidence suggests that higher energy content in forage can assist in reducing greenhouse gas emissions from ruminants. Increasing the fatty acid content (especially α‐linolenic acid, an omega‐3 fatty acid) may thus contribute to better forage, but little is known about the genetic basis of variation for this trait. To this end, quantitative trait loci (QTLs) were identified associated with major fatty acid content in perennial ryegrass using a population derived from a cross between the heterozygous and outbreeding high‐sugar grass variety AberMagic and an older variety, Aurora. A genetic map with 434 restriction‐associated DNA (RAD) and SSR markers was generated. Significant QTLs for the content of palmitic (C16:0) on linkage groups (LGs) 2 and 7; stearic (C18:0) on LGs 3, 4 and 7; linoleic (C18:2n‐6) on LGs 2 and 5; and α‐linolenic acids (C18:3n‐3) on LG 1 were identified. Two candidate genes (a lipase and a beta‐ketoacyl CoA synthase), both associated with C16:0, and separately with C18:2n‐6 and C18:0 contents, were identified. The physical positions of these genes in rice and their genetic positions in perennial ryegrass were consistent with established syntenic relationships between these two species. Validation of these associations is required, but the utility of RAD markers for rapid generation of genetic maps and QTL analysis has been demonstrated for fatty acid composition in a global forage crop.  相似文献   

4.
Aluminum (Al) toxicity in acid soils is a major limitation to the production of alfalfa (Medicago sativa subsp. sativa L.) in the USA. Developing Al-tolerant alfalfa cultivars is one approach to overcome this constraint. Accessions of wild diploid alfalfa (M. sativa subsp. coerulea) have been found to be a source of useful genes for Al tolerance. Previously, two genomic regions associated with Al tolerance were identified in this diploid species using restriction fragment length polymorphism (RFLP) markers and single marker analysis. This study was conducted to identify additional Al-tolerance quantitative trait loci (QTLs); to identify simple sequence repeat (SSR) markers that flank the previously identified QTLs; to map candidate genes associated with Al tolerance from other plant species; and to test for co-localization with mapped QTLs. A genetic linkage map was constructed using EST-SSR markers in a population of 130 BC1F1 plants derived from the cross between Al-sensitive and Al-tolerant genotypes. Three putative QTLs on linkage groups LG I, LG II and LG III, explaining 38, 16 and 27% of the phenotypic variation, respectively, were identified. Six candidate gene markers designed from Medicago truncatula ESTs that showed homology to known Al-tolerance genes identified in other plant species were placed on the QTL map. A marker designed from a candidate gene involved in malic acid release mapped near a marginally significant QTL (LOD 2.83) on LG I. The SSR markers flanking these QTLs will be useful for transferring them to cultivated alfalfa via marker-assisted selection and for pyramiding Al tolerance QTLs.  相似文献   

5.
An increasing interest to convert lignocellulosic biomass into biofuels has highlighted the potential of using willows for this purpose, due to its fast growth in short rotation coppice systems. Here, we use a mapping population of 463 individuals of a cross between Salix viminalis and S. viminalis × S. schwerinii to investigate the genetic background of different wood chemical traits, information of importance for breeding towards different uses of wood. Furthermore, using a subset of the mapping population, the correlation between biogas production and chemical traits was investigated. The phenotyping of wood was carried by Furrier-transformed-Infrared spectrometry (FT-IR) and water content analysis. Quantitative trait loci (QTLs) analysis was used to identify regions in the genome of importance for the phenotypic variation of these chemical traits. We found 27 QTLs for various traits. On linkage group (LG) VI-1, QTLs for signals assigned to G-lignin, lignin, and the S/G ratio were collocated and on LG XIV we found a cluster of QTLs representing signals assigned to lignin, cellulose, hemicellulose, and water. The QTLs explained from 3.4 to 6.9% of the phenotypic variation indicating a quantitative genetic background where many genes influence the traits. For the biogas production, a positive and negative correlation was seen with the signals assigned to acetyl and lignin, respectively. This study represents a first step in the understanding of the genetic background of wood chemical traits for willows, information needed for complementary studies, mapping of important genes, and for breeding of varieties for biofuel production purposes.  相似文献   

6.
The use of molecular markers to identify quantitative trait loci (QTLs) has the potential to enhance the efficiency of trait selection in plant breeding. The purpose of the present study was to identify additional QTLs for plant height, lodging, and maturity in a soybean, Glycine max (L.) Merr., population segregating for growth habit. In this study, 153 restriction fragment length polymorphisms (RFLP) and one morphological marker (Dt1) were used to identify QTLs associated with plant height, lodging, and maturity in 111 F2-derived lines from a cross of PI 97100 and Coker 237. The F2-derived lines and two parents were grown at Athens, Ga., and Blackville, S.C., in 1994 and evaluated for phenotypic traits. The genetic linkage map of these 143 loci covered about 1600 cM and converged into 23 linkage groups. Eleven markers remained unlinked. Using interval-mapping analysis for linked markers and single-factor analysis of variance (ANOVA), loci were tested for association with phenotypic data taken at each location as well as mean values over the two locations. In the combined analysis over locations, the major locus associated with plant height was identified as Dt1 on linkage group (LG) L. The Dt1 locus was also associated with lodging. This locus explained 67.7% of the total variation for plant height, and 56.4% for lodging. In addition, two QTLs for plant height (K007 on LG H and A516b on LG N) and one QTL for lodging (cr517 on LG J) were identified. For maturity, two independent QTLs were identified in intervals between R051 and N100, and between B032 and CpTI, on LG K. These QTLs explained 31.2% and 26.2% of the total variation for maturity, respectively. The same QTLs were identified for all traits at each location. This consistency of QTLs may be related to a few QTLs with large effects conditioning plant height, lodging, and maturity in this population.  相似文献   

7.
Mutational load and resource allocation factors and their effects on limiting seed set were investigated in ryegrass by comparative mapping genomics and quantitative trait loci (QTL) analysis in two perennial ryegrass (Lolium perenne) mapping families sharing common genetic markers. Quantitative trait loci for seed-set were identified on chromosome (LG) 7 in both families and on LG4 of the F2/WSC family. On LG7, seed-set and heading date QTLs colocalized in both families and cannot be unequivocally resolved. Comparative genomics suggests that the LG7 region is syntenous to a region of rice LG6 which contains both fertility (S5(n)) and heading date (Hd1, Hd3a) candidate genes. The LG4 region is syntenous to a region of rice LG3 which contains a fertility (S33) candidate gene. QTL maxima for seed-set and heading date on LG4 in the F2/WSC family are separated by c. 8 cm, indicating distinct genetic control. Low seed set is under the control of recessive genes at both LG4 and LG7 locations. The identification of QTLs associated with seed set, a major component of seed yield in perennial ryegrass, indicates that mutational load associated with these genomic regions can be mitigated through marker-assisted selection.  相似文献   

8.
Genetic mapping of QTLs conditioning soybean sprout yield and quality   总被引:10,自引:0,他引:10  
Soybean sprouts have been used as a food in the Orient since ancient times. In this study, 92 restriction fragment length polymorphism (RFLP) loci and two morphological markers (W1 and T) were used to identify quantitative trait loci (QTLs) associated with soybean sprout-related traits in 100 F2-derived lines from the cross of ’Pureunkong’×’Jinpumkong 2’. The genetic map consisted of 76 loci which covered about 756 cM and converged into 20 linkage groups. Eighteen markers remained unlinked. Phenotypic data were collected in 1996 and 1997 for hypocotyl length, percentage of abnormal seedlings, and sprout yield 6 days after germination at 20°C. Hypocotyl length was determined as the average length from the point of initiation of the first secondary root to the point of attachment of the cotyledons. The number of decayed seeds and seedlings, plus the number of stunted seedlings (less than 2-cm growth), was recorded a s abnormal seedlings. Seed weight was determined based on the 50-seed sample. Sprout yield was recorded as the total fresh weight of soybean sprouts produced from the 50-seed sample divided by the dry weight of the 50-seed sample. Four QTLs were associated with sprout yield in the combined analysis across 2 years. For the QTL linked to L154 on the Linkage Group (LG) G the positive allele was derived from Pureunkong (R 2 = 0.19), whereas at the other three QTLs (A089 on LG B1, A668n on LG K and B046 on LG L) the positive alleles were from Jinpumkong 2. QTLs conditioning seed weight were linked to markers A802n (LG B1), A069 (LG E), Cr321 (LG F) and A235 (LG G). At these four markers, the Jinpumkong allele increased seed weight. Markers K011n on LG B1, W1 on LG F and A757 on LG L were linked to QTLs conditioning hypocotyl length; and Bng119, K455n and K418n to QTLs conditioning the abnormal seedlings. The QTLs conditioning sprout yield were in the same genomic locations as the QTLs for seed weight identified in this population or from previously published research, indicating that QTLs for sprout yield are genetically linked to seed-weight QTLs or else that seed-weight QTLs pleiotropically condition sprout yield. These data demonstrate that effective marker-assisted selection may be feasible for enhancing sprout yield in a soybean. The transgressive segregation of sprout yield, as well as the existence of two QTLs conditioning greater than 10% of the phenotypic variation in sprout yields provides an opportunity to select for progeny lines with a greater sprout yield than currently preferred cultivars such as Pureunkong. Received: 23 August 2000 / Accepted: 23 January 2001  相似文献   

9.
We report the first genetic linkage map of white lupin (Lupinus albus L.). An F8 recombinant inbred line population developed from Kiev mutant x P27174 was mapped with 220 amplified fragment length polymorphism and 105 gene-based markers. The genetic map consists of 28 main linkage groups (LGs) that varied in length from 22.7 cM to 246.5 cM and spanned a total length of 2951 cM. There were seven additional pairs and 15 unlinked markers, and 12.8% of markers showed segregation distortion at P < 0.05. Syntenic relationships between Medicago truncatula and L. albus were complex. Forty-five orthologous markers that mapped between M. truncatula and L. albus identified 17 small syntenic blocks, and each M. truncatula chromosome aligned to between one and six syntenic blocks in L. albus. Genetic mapping of three important traits: anthracnose resistance, flowering time, and alkaloid content allowed loci governing these traits to be defined. Two quantitative trait loci (QTLs) with significant effects were identified for anthracnose resistance on LG4 and LG17, and two QTLs were detected for flowering time on the top of LG1 and LG3. Alkaloid content was mapped as a Mendelian trait to LG11.  相似文献   

10.
A genetic linkage map of grapevine was constructed using a pseudo-testcross strategy based upon 138 individuals derived from a cross of Vitis vinifera Cabernet Sauvignon × Vitis riparia Gloire de Montpellier. A total of 212 DNA markers including 199 single sequence repeats (SSRs), 11 single strand conformation polymorphisms (SSCPs) and two morphological markers were mapped onto 19 linkage groups (LG) which covered 1,249 cM with an average of 6.7 cM between markers. The position of SSR loci in the maps presented here is consistent with the genome sequence. Quantitative traits loci (QTLs) for several traits of inflorescence and flower morphology, and downy mildew resistance were investigated. Two novel QTLs for downy mildew resistance were mapped on linkage groups 9 and 12, they explain 26.0–34.4 and 28.9–31.5% of total variance, respectively. QTLs for inflorescence morphology with a large effect (14–70% of total variance explained) were detected close to the Sex locus on LG 2. The gene of the enzyme 1-aminocyclopropane-1-carboxylic acid synthase, involved in melon male organ development and located in the confidence interval of all QTLs detected on the LG 2, could be considered as a putative candidate gene for the control of sexual traits in grapevine. Co-localisations were found between four QTLs, detected on linkage groups 1, 14, 17 and 18, and the position of the floral organ development genes GIBBERELLIN INSENSITIVE1, FRUITFULL, LEAFY and AGAMOUS. Our results demonstrate that the sex determinism locus also determines both flower and inflorescence morphological traits.  相似文献   

11.
Seed yield is a trait of major interest for the key grassland species Lolium perenne L. An F2 mapping population of perennial ryegrass (VrnA), recently characterised for vernalisation response, was assessed in a glasshouse for traits related to seed yield based on a lattice design with four replications over 2 years. The traits heading date, plant height, length of panicles, number of panicles per plant, seed yield per panicle, flag leaf length, flag leaf width and seed yield per plant revealed repeatabilities ranging from 41 to 76% and a considerable amount of genetic variation in the VrnA population. Path analysis partitioned the direct and indirect effects of seed yield components on seed yield per plant. Seed yield per panicle showed the highest effect on total seed yield. The adjusted mean values of each trait and a genetic linkage map consisting of 97 anonymous and 85 gene associated DNA markers were used for quantitative trait loci (QTL) analysis. Of particular interest were two QTL on linkage group (LG) 1 and LG 2, explaining 41 and 18%, respectively, of the observed phenotypic variation for the trait seed yield per panicle. Both QTL co-located with two major QTL for total seed yield per plant possibly representing the S and Z loci of the gametophytic self incompatibility (SI) system of perennial ryegrass. The diversity of SI alleles in mapping parents and the degree of heterozygosity at SI loci in the full sib progeny determines the interference of self incompatibility with seed production.  相似文献   

12.
QTL analysis of flower and fruit traits in sour cherry   总被引:2,自引:0,他引:2  
The map locations and effects of quantitative trait loci (QTLs) were estimated for eight flower and fruit traits in sour cherry (Prunus cerasus L.) using a restriction fragment length polymorphism (RFLP) genetic linkage map constructed from a double pseudo-testcross. The mapping population consisted of 86 progeny from the cross between two sour cherry cultivars, Rheinische Schattenmorelle (RS)×Erdi Botermo (EB). The genetic linkage maps for RS and EB were 398.2 cM and 222.2 cM, respectively, with an average interval length of 9.8 cM. The RS/EB linkage map that was generated with shared segregating markers consisted of 17 linkage groups covering 272.9 cM with an average interval length of 4.8 cM. Eleven putatively significant QTLs (LOD >2.4) were detected for six characters (bloom time, ripening time, % pistil death, % pollen germination, fruit weight, and soluble solids concentration). The percentage of phenotypic variation explained by a single QTL ranged from 12.9% to 25.9%. Of the QTLs identified for the traits in which the two parents differed significantly, 50% had allelic effects opposite to those predicted from the parental phenotype. Three QTLs affecting flower traits (bloom time, % pistil death, and % pollen germination) mapped to a single linkage group, EB 1. The RFLP closest to the bloom time QTL on EB 1 was detected by a sweet cherry cDNA clone pS141 whose partial amino acid sequence was 81% identical to that of a Japanese pear stylar RNase. Received: 4 March 1999 / Accepted: 27 August 1999  相似文献   

13.
Bacterial wilt caused by Xanthomonas translucens pv. graminis (Xtg) is a major disease of economically important forage crops such as ryegrasses and fescues. Targeted breeding based on seedling inoculation has resulted in cultivars with considerable levels of resistance. However, the mechanisms of inheritance of resistance are poorly understood and further breeding progress is difficult to obtain. This study aimed to assess the relevance of the seedling screening in the glasshouse for adult plant resistance in the field and to investigate genetic control of resistance to bacterial wilt in Italian ryegrass (Lolium multiflorum Lam.). A mapping population consisting of 306 F1 individuals was established and resistance to bacterial wilt was assessed in glasshouse and field experiments. Highly correlated data (r = 0.67–0.77, P < 0.01) between trial locations demonstrated the suitability of glasshouse screens for phenotypic selection. Analysis of quantitative trait loci (QTL) based on a high density genetic linkage map consisting of 368 amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers revealed a single major QTL on linkage group (LG) 4 explaining 67% of the total phenotypic variance (Vp). In addition, a minor QTL was observed on LG 5. Field experiments confirmed the major QTL on LG 4 to explain 43% (in 2004) to 84% (in 2005) of Vp and also revealed additional minor QTLs on LG 1, LG 4 and LG 6. The identified QTLs and the closely linked markers represent important targets for marker-assisted selection of Italian ryegrass.  相似文献   

14.
The α-subunit of the casein protein kinase CK2 has been implicated in both light-regulated and circadian rhythm-controlled plant gene expression, including control of the flowering time. Two putative CK2α genes of perennial ryegrass (Lolium perenne L.) have been obtained from a cDNA library constructed with mRNA isolated from cold-acclimated crown tissue. The genomic organisation of the two genes was determined by Southern hybridisation analysis. Primer designs to the Lpck2a-1 and Lpck2a-2 cDNA sequences permitted the amplification of genomic products containing large intron sequences. Amplicon sequence analysis detected single nucleotide polymorphisms (SNPs) within the p150/112 reference mapping population. Validated SNPs, within diagnostic restriction enzyme sites, were used to design cleaved amplified polymorphic sequence (CAPS) assays. The Lpck2a-1 CAPS marker was assigned to perennial ryegrass linkage group (LG) 4 and the Lpck2a-2 CAPS marker was assigned to LG2. The location of the Lpck2a-1 gene locus supports the previous conclusion of conserved synteny between perennial ryegrass LG4, the Triticeae homoeologous group 5L chromosomes and the corresponding segment of rice chromosome 3. Allelic variation at the Lpck2a-1 and Lpck2a-2 gene loci was correlated with phenotypic variation for heading date and winter survival, respectively. SNP polymorphism may be used for the further study of the role of CK2α genes in the initiation of reproductive development and winter hardiness in grasses.  相似文献   

15.
Crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), and mineral content are important components of forage quality in grasses. Elevated [K]/([Ca] + [Mg]) ratios (KRAT) substantially increase the risk of grass tetany (hypomagnesemia) in grazing animals, which is a serious problem associated with some cool-season grasses. The objectives of this study were to map and compare QTLs controlling concentrations of CP, NDF, ADF, Al, B, Ca, Cl, Cu, Fe, K, Mg, Mn, Na, P, S, Si, Zn, and KRAT in two full-sib Leymus triticoides × (L. triticoides × L. cinereus) TTC1 and TTC2 families. Significant genetic variation and QTLs were detected for all traits, with evidence of conserved QTLs for ADF (LG1a, LG5Xm, LG7a), NDF (LG7a), Ca (LG1b), CP, (LG5Xm), KRAT (LG3b, LG6b, LG7a, LG7b), Mn (LG2b, LG3b, LG4Xm), and S (LG3a) content in both TTC1 and TTC2 families. Moreover, the direction of QTL effects was the same for 13 of the 14 homologous QTLs in both families. The TTC1 and TTC2 KRAT QTLs on LG7a and LG7b were located near markers defining homoeologous relationships between the sub-genomes of allotetraploid Leymus, suggesting possible QTL homoeology. Another 88 QTLs were unique to one family or the other, but many of these clustered in genome regions common between the two families. These results will support development of new Leymus wildrye forages and help characterize genes controlling mineral uptake and fiber synthesis.  相似文献   

16.
A backcross-self population from a cross between Gossypium hirsutum and G. barbadense was used to dissect the molecular basis of genetic variation governing 15 parameters that reflect fiber length. Applying a detailed restriction fragment length polymorphism (RFLP) map to 3,662 BC3F2 plants from 24 independently derived BC3 families, we detected 28, nine, and eight quantitative trait loci (QTLs) for fiber length, length uniformity, and short fiber content, respectively. For eight, six, and two chromosomal regions containing quantitative trait loci (QTLs) for fiber length, length uniformity, and short fiber content (respectively), two-way analysis of variance showed a significant (P<0.001) among-family genotypic effect. A total of 13, two, and four loci showed genotype × family interaction, illustrating some of the complexities that are likely to be faced in introgression of exotic germplasm into the gene pool of cultivated cotton. Co-location of many QTLs for fiber length, length uniformity, and short fiber content accounted for correlations among these traits, while the discovery of many QTLs unique to each trait suggests that maximum genetic gain will require breeding efforts that target each trait (or an index including all three). The availability of DNA markers linked to G. barbadense QTLs identified in this and other studies promise to assist breeders in transferring and maintaining valuable traits from exotic sources during cultivar development.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

17.
 One hundred and thirty nine restriction fragment length polymorphisms (RFLPs) were used to construct a soybean (Glycine max L. Merr.) genetic linkage map and to identify quantitative trait loci (QTLs) associated with resistance to corn earworm (Helicoverpa zea Boddie) in a population of 103 F2-derived lines from a cross of ‘Cobb’ (susceptible) and PI229358 (resistant). The genetic linkage map consisted of 128 markers which converged onto 30 linkage groups covering approximately 1325 cM. There were 11 unlinked markers. The F2-derived lines and the two parents were grown in the field under a plastic mesh cage near Athens, Ga., in 1995. The plants were artificially infested with corn earworm and evaluated for the amount of defoliation. Using interval-mapping analysis for linked markers and single-factor analysis of variance (ANOVA), markers were tested for an association with resistance. One major and two minor QTLs for resistance were identified in this population. The PI229358 allele contributed insect resistance at all three QTLs. The major QTL is linked to the RFLP marker A584 on linkage group (LG) ‘M’ of the USDA/Iowa State University public soybean genetic map. It accounts for 37% of the total variation for resistance in this cross. The minor QTLs are linked to the RFLP markers R249 (LG ‘H’) and Bng047 (LG ‘D1’). These markers explain 16% and 10% of variation, respectively. The heritability (h2) for resistance was estimated as 64% in this population. Received: 15 October 1997 / Accepted: 4 November 1997  相似文献   

18.
 Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, causes severe damage to soybean [Glycine max (L.) Merr] throughout North America and worldwide. Molecular markers associated with loci conferring SCN resistance would be useful in breeding programs using marker-assisted selection (MAS). In this study, 200 F2:3 families derived from two contrasting parents, SCN-resistant ‘Peking’ with relatively low protein and oil concentrations, and SCN-susceptible ‘Essex’ with high protein and oil concentrations, were used to determine loci underlying the SCN resistance and seed composition. Three different SCN Race isolates (1, 3, and 5) were used to screen both parents and F2:3 families. The parents were surveyed with 216 restriction fragment length polymorphism (RFLP) probes with five different restriction enzymes. Fifty-six were polymorphic and contrasted with trait data from bioassays to identify molecular markers associated with loci controlling resistance to SCN and seed composition. Five RFLP markers, A593 and T005 on linkage group (LG) B, A018 on LG E, and K014 and B072 on LG H, were significantly linked to resistance loci for Race 1 isolate, which jointly explained 57.7% of the total phenotypic variation. Three markers (B072 and K014, both on LG H; T005 on LG B) were associated with resistance to the Race 3 isolate and jointly explained 21.4% of the total phenotypic variation. Two markers (K011 on LG I, A963 on LG E) associated with resistance to the Race 5 isolate together explained 14.0% of the total phenotypic variation. In the same population we also identified two RFLP markers (B072 on LG H, B148 on LG F) associated with loci conferring protein concentration, which jointly explained 32.3% of the total phenotypic variation. Marker B072 was also linked to loci controlling the concentration of seed oil, which explained 21% of the total phenotypic variation. Clustering among quantitative trait loci (QTLs) conditioning resistance to different SCN Race isolates and seed protein and oil concentrations may exist in this population. We believe that markers located near these QTLs could be used to select for new SCN resistance and higher levels of seed protein and oil concentrations in breeding improved soybean cultivars. Received: 3 March 1998 / Accepted: 18 August 1998  相似文献   

19.
油菜油分、蛋白质和硫苷含量相关性分析及QTL 定位   总被引:3,自引:0,他引:3  
为定位与油分、蛋白质和硫苷含量等品质性状相关的数量性状位点(QTL), 以2个含油量较高的甘蓝型油菜(Brassica napus)品系8908B和R1为研究材料, 配置正反交组合。在正反交F2代群体中, 含油量和蛋白质含量都存在极显著的负相关, 相关系数分别为-0.68和-0.81, 含油量和硫苷含量相关性不显著; 蛋白质含量和硫苷含量在正交群体中相关性不显著, 但在反交群体中存在显著负相关(相关系数r =-0.45)。利用正交F2代群体中的118个单株, 构建了包含121个标记的遗传连锁图谱, 图谱长1 298.7 cM, 有21个连锁群(LGs)。采用复合区间作图法, 在连锁图上定位了2个与含油量有关的QTL, 分别位于LG8和LG10, 其贡献率分别为4.8%和13.7%, 增效基因都来源于R1; 定位了2个与蛋白质含量有关的QTL: pro1 和 pro2, 分别位于LG1和LG3, 其贡献率分别为15.2%和14.1%, 位点pro1由8908B提供增效基因, pro2则由R1提供增效基因; 定位了4个与硫苷含量有关的QTL, 其中LG20上有2个, LG4和LG8上各1个, 它们的贡献率在1.9%-25.4%之间, 除LG20上glu1的增效基因来自R1外, 其余3个QTL位点均由8908B提供增效基因。  相似文献   

20.
The objective of this study was to dissect the genetic control of days to flowering (DTF) and photoperiod sensitivity (PS) into the various components including the main-effect quantitative trait loci (QTLs), epistatic QTLs and QTL-by-environment interactions (QEs). Doubled haploid (DH) lines were produced from an F1 between two spring Brassica napus cultivars Hyola 401 and Q2. DTF of the DH lines and parents were investigated in two locations, one location with a short and the other with a long photoperiod regime over two years. PS was calculated by the delay in DTF under long day as compared to that under short day. A genetic linkage map was constructed that comprised 248 marker loci including SSR, SRAP, and AFLP markers. Further QTL analysis resolved the genetic components of flowering time and PS into the main-effect QTLs, epistatic QTLs, and QEs. A total of 7 main-effect QTLs and 11 digenic interactions involving 21 loci located on 13 out of the 19 linkage groups were detected for the two traits. Three main-effect QTLs and four pairs of epistatic QTLs were involved in QEs conferring DTF. One QTL on linkage group (LG) 18 was revealed to simultaneously affect DTF and PS and explain for the highest percentage of the phenotypic variation. The implications of the results for B. napus breeding have been discussed. The text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号