首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Drosophila Wingless (Wg) is the founding member of the Wnt family of secreted proteins. During the wing development, Wg acts as a morphogen whose concentration gradient provides positional cues for wing patterning. The molecular mechanism(s) of Wg gradient formation is not fully understood. Here, we systematically analyzed the roles of glypicans Dally and Dally-like protein (Dlp), the Wg receptors Frizzled (Fz) and Fz2, and the Wg co-receptor Arrow (Arr) in Wg gradient formation in the wing disc. We demonstrate that both Dally and Dlp are essential and have different roles in Wg gradient formation. The specificities of Dally and Dlp in Wg gradient formation are at least partially achieved by their distinct expression patterns. To our surprise, although Fz2 was suggested to play an essential role in Wg gradient formation by ectopic expression studies, removal of Fz2 activity does not alter the extracellular Wg gradient. Interestingly, removal of both Fz and Fz2, or Arr causes enhanced extracellular Wg levels, which is mainly resulted from upregulated Dlp levels. We further show that Notum, a negative regulator of Wg signaling, downregulates Wg signaling mainly by modifying Dally. Last, we demonstrate that Wg movement is impeded by cells mutant for both dally and dlp. Together, these new findings suggest that the Wg morphogen gradient in the wing disc is mainly controlled by combined actions of Dally and Dlp. We propose that Wg establishes its concentration gradient by a restricted diffusion mechanism involving Dally and Dlp in the wing disc.  相似文献   

2.
Morphogens are signaling molecules that regulate growth and patterning during development by forming a gradient and activating different target genes at different concentrations. The extracellular distribution of morphogens is tightly regulated, with the Drosophila morphogen Wingless (Wg) relying on Dally-like (Dlp) and transcytosis for its distribution. However, in the absence of Dlp or endocytic activity, Wg can still move across cells along the apical (Ap) surface. We identified a novel secreted heparan sulfate proteoglycan (HSPG) that binds to Wg and promotes its extracellular distribution by increasing Wg mobility, which was thus named Carrier of Wg (Cow). Cow promotes the Ap transport of Wg, independent of Dlp and endocytosis, and this function addresses a previous gap in the understanding of Wg movement. This is the first example of a diffusible HSPG acting as a carrier to promote the extracellular movement of a morphogen.  相似文献   

3.
Hedgehog (Hh) and Wingless (Wg) morphogens specify cell fate in a concentration-dependent manner in the Drosophila wing imaginal disc. Proteoglycans, components of the extracellular matrix, are involved in Hh and Wg stability, spreading, and reception. In this study, we demonstrate that the glycosyl-phosphatidyl-inositol (GPI) anchor of the glypican Dally-like (Dlp) is required for its apical internalization and its subsequent targeting to the basolateral compartment of the epithelium. Dlp endocytosis from the apical surface of Hh-receiving cells catalyzes the internalization of Hh bound to its receptor Patched (Ptc). The cointernalization of Dlp with the Hh/Ptc complex is dynamin dependent and necessary for full-strength Hh signaling. We also demonstrate that Wg is secreted apically in the disc epithelium and that apicobasal trafficking of Dlp allows Wg transcytosis to favor Wg spreading along the basolateral compartment. Thus, Dlp endocytosis is a common regulatory mechanism of both Hh and Wg morphogen action.  相似文献   

4.
Wingless (Wg) is a morphogen required for the patterning of many Drosophila tissues. Several lines of evidence implicate heparan sulfate-modified proteoglycans (HSPGs) such as Dally-like protein (Dlp) in the control of Wg distribution and signaling. We show that dlp is required to limit Wg levels in the matrix, contrary to the expectation from overexpression studies. dlp mutants show ectopic activation of Wg signaling at the presumptive wing margin and a local increase in extracellular Wg levels. dlp somatic cell clones disrupt the gradient of extracellular Wg, producing ectopic activation of high threshold Wg targets but reducing the expression of lower threshold Wg targets where Wg is limiting. Notum encodes a secreted protein that also limits Wg distribution, and genetic interaction studies show that dlp and Notum cooperate to restrict Wg signaling. These findings suggest that modification of an HSPG by a secreted hydrolase can control morphogen levels in the matrix.  相似文献   

5.
The glypican family of heparan sulfate proteoglycans has been implicated in formation of morphogen gradients. Here, we examine the role of the glypican Dally-like protein (Dlp) in shaping the Wingless gradient in the Drosophila wing disc. Surprisingly, we find that Dlp has opposite effects at high and low levels of Wingless. Dlp promotes low-level Wingless activity but reduces high-level Wingless activity. We present evidence that the Wg antagonist Notum acts to induce cleavage of the Dlp glypican at the level of its GPI anchor, which leads to shedding of Dlp. Thus, spatially regulated modification of Dlp by Notum employs the ligand binding activity of Dlp to promote or inhibit signaling in a context-dependent manner. Notum-induced shedding of Dlp could convert Dlp from a membrane-tethered coreceptor to a secreted antagonist.  相似文献   

6.
Wang PY  Chang WL  Pai LM 《Fly》2008,2(3):118-120
Morphogen gradients provide unique positional information within a tissue. Cells that are sensitive to the concentration of the morphogen integrate this signal and develop an appropriately distinct cell fate. A morphogen gradient is usually generated by a restricted source and shaped by the speed of diffusion and stability of the signaling molecule. In addition, the availability of receptor and Heparan Sulfate Proteoglycans (HSPGs) help to shape the gradient. We have shown that overexpression of Dally-like protein (Dlp) causes an expansion of Gurken distribution and a loss of cell fates which are specified by high levels of epidermal growth factor receptor (Egfr) signaling. In this article, we discuss how D-Cbl mediated Egfr endocytosis and the levels of Dlp affect the shape of the Gurken gradient.  相似文献   

7.
Glypicans, a family of heparan sulfate proteoglycans attached to the cell surface via a glycosylphosphatidylinositol (GPI)-anchor, play essential roles in morphogen signaling and distributions. A Drosophila glypican, Dally, regulates the gradient formation of Decapentaplegic (Dpp) in the developing wing. To gain insights into the function of glypicans in morphogen signaling, we examined the activities of two mutant forms of Dally: a transmembrane form (TM-Dally) and a secreted form (Sec-Dally). Misexpression of tm-dally in the wing disc had a similar yet weaker effect in enhancing Dpp signaling compared to that of wild-type dally. In contrast, Sec-Dally shows a weak dominant negative activity on Dpp signal transduction. Furthermore, sec-dally expression led to patterning defects as well as a substantial overgrowth of tissues and animals through the expansion of the action range of Hh. These findings support the recently proposed model that secreted glypicans have opposing and/or distinct effects on morphogen signaling from the membrane-tethered forms.  相似文献   

8.
We have examined the respective contribution of Heparan Sulfate Proteoglycans (HSPGs) and Frizzled (Fz) proteins in the establishment of the Wingless (Wg) morphogen gradient. From the analysis of mutant clones of sulfateless/N-deacetylase-sulphotransferase in the wing imaginal disc, we find that lack of Heparan Sulfate (HS) causes a dramatic reduction of both extracellular and intracellular Wg in receiving cells. Our studies, together with others [Kirkpatrick, C.A., Dimitroff, B.D., Rawson, J.M., Selleck, S.B., 2004. Spatial regulation of Wingless morphogen distribution and signalling by Dally-like protein. Dev. Cell (in press)], reveals that the Glypican molecule Dally-like Protein (Dlp) is associated with both negative and positive roles in Wg short- and long-range signaling, respectively. In addition, analyses of the two Fz proteins indicate that the Fz and DFz2 receptors, in addition to transducing the signal, modulate the slope of the Wg gradient by regulating the amount of extracellular Wg. Taken together, our analysis illustrates how the coordinated activities of HSPGs and Fz/DFz2 shape the Wg morphogen gradient.  相似文献   

9.
Ligand-based signaling can potentiate communication between neighboring cells and between cells separated by large distances. In the Drosophila melanogaster ovary, Wingless (Wg) promotes proliferation of follicle stem cells located ∼50 µm or five cell diameters away from the Wg source. How Wg traverses this distance is unclear. We find that this long-range signaling requires Division abnormally delayed (Dally)-like (Dlp), a glypican known to extend the range of Wg ligand in the wing disc by binding Wg. Dlp-mediated spreading of Wg to follicle stem cells is opposed by the extracellular protease Mmp2, which cleaved Dlp in cell culture, triggering its relocalization such that Dlp no longer contacted Wg protein. Mmp2-deficient ovaries displayed increased Wg distribution, activity, and stem cell proliferation. Mmp2 protein is expressed in the same cells that produce Wg; thus, niche cells produce both a long-range stem cell proliferation factor and a negative regulator of its spreading. This system could allow for spatial control of Wg signaling to targets at different distances from the source.  相似文献   

10.
11.
《Fly》2013,7(3):118-120
Morphogen gradients provide unique positional information within a tissue. Cells that are sensitive to the concentration of the morphogen integrate this signal and develop an appropriately distinct cell fate. A morphogen gradient is usually generated by a restricted source and shaped by the speed of diffusion and stability of the signaling molecule. In addition, the availability of receptor and Heparan Sulfate Proteoglycans (HSPGs) help to shape the gradient. We have shown that over-expression of Dally-like protein (Dlp) causes an expansion of Gurken distribution and a loss of cell fates which are specified by high levels of epidermal growth factor receptor (Egfr) signaling. In this article, we discuss how D-Cbl mediated Egfr endocytosis and the levels of Dlp affect the shape of the Gurken gradient.  相似文献   

12.
Protein Phosphatase 2A (PP2A) has a heterotrimeric-subunit structure, consisting of a core dimer of approximately 36 kDa catalytic and approximately 65 kDa scaffold subunits complexed to a third variable regulatory subunit. Several studies have implicated PP2A in Wg/Wnt signaling. However, reports on the precise nature of PP2A role in Wg/Wnt pathway in different organisms are conflicting. We show that twins (tws), which codes for the B/PR55 regulatory subunit of PP2A in Drosophila, is a positive regulator of Wg/Wnt signaling. In tws(-) wing discs both short- and long-range targets of Wingless morphogen are downregulated. Analyses of tws(-) mitotic clones suggest that requirement of Tws in Wingless pathway is cell-autonomous. Epistatic genetic studies indicate that Tws functions downstream of Dishevelled and upstream of Sgg and Armadillo. Our results suggest that Tws is required for the stabilization of Armadillo/beta-catenin in response to Wg/Wnt signaling. Interestingly, overexpression of, otherwise normal, Tws protein induce dominant-negative phenotypes. The conflicting reports on the role of PP2A in Wg/Wnt signaling could be due to the dominant-negative effect caused by the overexpression of one of the subunits.  相似文献   

13.
Glypicans are heparan sulfate proteoglycans that are attached to the cell surface by a GPI (glycosylphosphatidylinositol)anchor. Glypicans regulate the activity of Wnts, Hedgehogs,bone morphogenetic proteins and fibroblast growth factors. In the particular case of Wnts, it has been proposed that GPI-anchored glypicans stimulate Wnt signalling by facilitating and/or stabilizing the interaction between Wnts and their cell surface receptors. On the other hand, when glypicans are secreted to the extracellular environment, they can act as competitive inhibitors of Wnt. Genetic screens in Drosophila have recently identified a novel inhibitor of Wnt signalling named Notum. The Wnt inhibiting activity of Notum was associated with its ability to release Dlp [Dally (Division abnormally delayed)-like protein; a Drosophila glypican] from the cell surface by cleaving the GPI anchor. Because these studies showed that the other Drosophila glypican Dally was not released from the cell surface by Notum,it remains unclear whether this enzyme is able to cleave glypicans from mammalian cells. Furthermore, it is also not known whether Notum cleaves GPI-anchored proteins that are not members of the glypican family. Here, we show that mammalian Notum can cleave several mammalian glypicans. Moreover, we demonstrate that Notum is able to release GPI-anchored proteins other than glypicans. Another important finding of the present study is that,unlike GPI-phospholipase D, the other mammalian enzyme that cleaves GPI-anchored proteins, Notum is active in the extracellular environment. Finally, by using a cellular system in which GPC3 (glypican-3) stimulates Wnt signalling, we show that Notum can act as a negative regulator of this growth factor.  相似文献   

14.
Heparan sulfate proteoglycans (HSPGs) play critical roles in the distribution and signaling of growth factors, but the molecular mechanisms regulating HSPG function are poorly understood. Here, we characterized Sulf1, which is a Drosophila member of the HS 6-O endosulfatase class of HS modifying enzymes. Our genetic and biochemical analyses show that Sulf1 acts as a novel regulator of the Wg morphogen gradient by modulating the sulfation status of HS on the cell surface in the developing wing. Sulf1 affects gradient formation by influencing the stability and distribution of Wg. We also demonstrate that expression of Sulf1 is induced by Wg signaling itself. Thus, Sulf1 participates in a feedback loop, potentially stabilizing the shape of the Wg gradient. Our study shows that the modification of HS fine structure provides a novel mechanism for the regulation of morphogen gradients.  相似文献   

15.
16.
The signaling molecules Hedgehog (Hh), Decapentaplegic (Dpp) and Wingless (Wg) function as morphogens and organize wing patterning in Drosophila. In the screen for mutations that alter the morphogen activity, we identified novel mutants of two Drosophila genes, sister of tout-velu (sotv) and brother of tout-velu (botv), and new alleles of tout-velu (ttv). The encoded proteins of these genes belong to an EXT family of proteins that have or are closely related to glycosyltransferase activities required for biosynthesis of heparan sulfate proteoglycans (HSPGs). Mutation in any of these genes impaired biosynthesis of HSPGs in vivo, indicating that, despite their structural similarity, they are not redundant in the HSPG biosynthesis. Protein levels and signaling activities of Hh, Dpp and Wg were reduced in the cells mutant for any of these EXT genes to a various degree, Wg signaling being the least sensitive. Moreover, all three morphogens were accumulated in the front of EXT mutant cells, suggesting that these morphogens require HSPGs to move efficiently. In contrast to previous reports that ttv is involved exclusively in Hh signaling, we found that ttv mutations also affected Dpp and Wg. These data led us to conclude that each of three EXT genes studied contribute to Hh, Dpp and Wg morphogen signaling. We propose that HSPGs facilitate the spreading of morphogens and therefore, function to generate morphogen concentration gradients.  相似文献   

17.
Erickson JL 《Fly》2011,5(3):266-271
As early as 1964 it was suggested that simple diffusion of morphogens away from their secretion source did not provide an adequate explanation for the formation and maintenance of morphogen gradients. Involvement of the endosome in morphogen distribution models provides an explanation for the slow, directional movement of morphogens, as well as their ability to form intracellular and extracellular gradients independent of morphogen production rates. Drosophila melanogaster morphogens Wg and Dpp form stable, steep, long-range gradients that specify the polarity of the wing disc. The process of endocytosis is imperative to the two central themes in gradient formation: active transport facilitating long-range signaling and degradation of morphogen to sustain gradient shape. This review investigates the endomembrane-mediated processes of re-secretion, degradation and argosome transport of Wg and Dpp in the hope that a better understanding of the endomembrane system will contribute to a more accurate and comprehensive model for morphogen gradient formation and maintenance.  相似文献   

18.
Development of organ-specific size and shape demands tight coordination between tissue growth and cell-cell adhesion. Dynamic regulation of cell adhesion proteins thus plays an important role during organogenesis. In Drosophila, the homophilic cell adhesion protein DE-Cadherin (DE-Cad) regulates epithelial cell-cell adhesion at adherens junctions (AJs). Here, we show that along the proximodistal (PD) axis of the developing wing epithelium, apical cell shapes and expression of DE-Cad are graded in response to Wingless (Wg), a morphogen secreted from the dorsoventral (DV) organizer in distal wing, suggesting a PD gradient of cell-cell adhesion. The Fat (Ft) tumor suppressor, by contrast, represses DE-Cad expression. In genetic tests, ft behaves as a suppressor of Wg signaling. Cytoplasmic pool of beta-catenin/Arm, the intracellular transducer of Wg signaling, is negatively correlated with the activity of Ft. Moreover, unlike that of Wg, signaling by Ft negatively regulates the expression of Distalless (Dll) and Vestigial (Vg). Finally, we show that Ft intersects Wnt/Wg signaling, downstream of the Wg ligand. Fat and Wg signaling thus exert opposing regulation to coordinate cell-cell adhesion and patterning along the PD axis of Drosophila wing.  相似文献   

19.
Members of the Wg/Wnt family provide key intercellular signals during embryonic development and in the maintenance of homeostatic processes, but critical aspects of their signal transduction pathways remain controversial. We have found that canonical Wg signaling in Drosophila involves distinct initiation and amplification steps, both of which require Arrow/LRP. Expressing a chimeric Frizzled2-Arrow protein in flies that lack endogenous Wg or Arrow showed that this construct functions as an activated Wg receptor but is deficient in signal amplification. In contrast, a chimeric Arrow protein containing the dimerization domain of Torso acted as a potent amplifier of Wg signaling but could not initiate Wg signaling on its own. The two chimeric proteins synergized, so that their co-expression largely reconstituted the signaling levels achieved by expressing Wg itself. The amplification function of Arrow/LRP appears to be particularly important for long-range signaling, and may reflect a general mechanism for potentiating signals in the shallow part of a morphogen gradient.  相似文献   

20.
Recent studies in Drosophila have shown that heparan sulfate proteoglycans (HSPGs) are required for Wingless (Wg/Wnt) signaling. In addition, genetic and phenotypic analyses have implicated the glypican gene dally in this process. Here, we report the identification of another Drosophila glypican gene, dally-like (dly) and show that it is also involved in Wg signaling. Inhibition of dly gene activity implicates a function for DLY in Wg reception and we show that overexpression of DLY leads to an accumulation of extracellular Wg. We propose that DLY plays a role in the extracellular distribution of Wg. Consistent with this model, a dramatic decrease of extracellular Wg was detected in clones of cells that are deficient in proper glycosaminoglycan biosynthesis. We conclude that HSPGs play an important role in organizing the extracellular distribution of Wg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号