共查询到20条相似文献,搜索用时 15 毫秒
1.
Varicella-zoster virus open reading frame 10 protein, the herpes simplex virus VP16 homolog, transactivates herpesvirus immediate-early gene promoters. 总被引:1,自引:8,他引:1 下载免费PDF全文
The varicella-zoster virus (VZV) open reading frame 10 (ORF10) protein is the homolog of the herpes simplex virus type 1 (HSV-1) protein VP16. These are two virion tegument proteins that have extensive amino acid sequence identity in their amino-terminal and middle domains. ORF10, however, lacks the acidic carboxy terminus which is critical for transactivation by VP16. Earlier studies showed that VZV ORF10 does not form a tertiary complex with the TAATGARAT regulatory element (where R is a purine) with which HSV-1 VP16 interacts, suggesting that ORF10 may not have transactivating ability. Using transient-expression assays, we show that VZV ORF10 is able to transactivate VZV immediate-early (IE) gene (ORF62) and HSV-1 IE gene (ICP4 and ICP0) promoters. Furthermore, cell lines stably expressing ORF10 complement the HSV-1 mutant in1814, which lacks the transactivating function of VP16, and enhance the de novo synthesis of infectious virus following transfection of HSV-1 virion DNA. These results indicate that ORF10, like its HSV-1 homolog VP16, is a transactivating protein despite the absence of sequences similar to the VP16 carboxy-terminal domain. The transactivating function of the VZV ORF10 tegument protein may be critical for efficient initiation of viral infection. 相似文献
2.
The varicella-zoster virus (VZV) open reading frame 47 (ORF47) protein kinase is dispensable for viral replication and is not required for phosphorylation of ORF63 protein, the VZV homolog of herpes simplex virus ICP22. 下载免费PDF全文
To investigate the role of varicella-zoster virus (VZV) open reading frame 47 (ORF47) protein kinase during infection, a VZV mutant was generated in which two contiguous stop codons were introduced into ORF47, thus eliminating expression of the ORF47 kinase. ORF47 kinase was not essential for the growth of VZV in cultured cells, and the growth rate of the VZV mutant lacking ORF47 protein was indistinguishable from that of parental VZV. Nuclear extracts from cells infected with parental VZV contained several phosphorylated proteins which were not detected in extracts from cells infected with the ORF47 mutant. The herpes simplex virus type 1 (HSV-1) UL13 protein (the homolog of VZV ORF47 protein) is responsible for the posttranslational processing associated with phosphorylation of HSV-1 ICP22 (the homolog of VZV ORF63 protein). Immunoprecipitation of 32P-labeled proteins from cells infected with parental virus and those infected with ORF47 mutant virus yielded similar amounts of the VZV phosphoproteins encoded by ORF4, ORF62, ORF63, and ORF68 (VZV gE), and the electrophoretic migration of these proteins was not affected by the lack of ORF47 kinase. Therefore, while the VZV ORF47 protein is capable of phosphorylating several cellular or viral proteins, it is not required for phosphorylation of the ORF63 protein in virus-infected cells. 相似文献
3.
4.
5.
Varicella-zoster virus (VZV) open reading frame 61 protein transactivates VZV gene promoters and enhances the infectivity of VZV DNA. 总被引:1,自引:4,他引:1 下载免费PDF全文
The varicella-zoster virus (VZV) open reading frame 61 (ORF61) protein is the homolog of herpes simplex virus type 1 (HSV-1) ICP0. Both genes are located in similar parts of the genome, their predicted products share a cysteine-rich motif, and cell lines expressing VZV ORF61 are able to complement an HSV-1 ICP0 deletion mutant (H. Moriuchi, M. Moriuchi, H. A. Smith, S. E. Straus, and J. I. Cohen, J. Virol. 66:7303-7308, 1992). In transient expression assays, HSV-1 ICP0 is a transactivator alone and transactivates in synergy with another viral transactivator, ICP4. However, VZV ORF61 represses the activation by VZV-encoded proteins ORF62 (the homolog of ICP4) and ORF4. To further characterize the function of VZV ORF61 and its role(s) in regulation of viral gene expression, we performed transient expression assays using target promoters from VZV, HSV-1, and unrelated viruses. In the absence of other viral activators, VZV ORF61 transactivated most promoters tested. In addition, a cell line stably expressing VZV ORF61 complemented the HSV-1 mutant in 1814, which lacks the transactivating function of VP16. The cell line expressing VZV ORF61 enhanced the infectivity of HSV-1 virion DNA. Moreover, transient expression of VZV ORF61 also enhanced the infectivity of VZV DNA. These results indicate that VZV ORF61 can stimulate expression of HSV-1 and VZV genes at an early stage in the viral replicative cycle and that ORF61 has an important role in VZV gene regulation. 相似文献
6.
Varicella-zoster virus open reading frame 61 protein is functionally homologous to herpes simplex virus type 1 ICP0. 总被引:3,自引:1,他引:3 下载免费PDF全文
The varicella-zoster virus (VZV) open reading frame 61 (ORF61) protein is thought to be the homolog of herpes simplex virus type 1 (HSV-1) ICP0, based on gene location and limited amino acid homology. However, HSV-1 ICP0 trans activates HSV-1 genes, while VZV ORF61 protein trans represses the function of VZV trans activators on VZV promoters in transient expression assays. To investigate the functional relatedness of HSV-1 ICP0 and VZV ORF61 protein, we established Vero and MeWo cell lines which stably express VZV ORF61 under the control of a metallothionein promoter and performed complementation studies with an HSV-1 ICP0 deletion mutant (7134). Mutant 7134 is impaired for plaque formation and replication at a low multiplicity of infection in cell culture, but these defects were complemented by up to 200-fold in Vero cell lines expressing VZV ORF61. Likewise, the efficiency of plaque formation was improved by up to 100-fold in MeWo cell lines expressing VZV ORF61. A cell line expressing another VZV immediate-early gene product (ORF62) was unable to complement mutant 7134. HSV-1 mutants which are deleted for other HSV-1 immediate-early gene products (ICP4, ICP27) were unable to grow in VZV ORF61-expressing cell lines. These results indicate that, despite marked differences in their sequences and in effects on their cognate promoters in transient expression assays, VZV ORF61 protein is the functional homolog of HSV-1 ICP0. 相似文献
7.
Varicella-zoster virus open reading frame 4 protein is functionally distinct from and does not complement its herpes simplex virus type 1 homolog, ICP27. 下载免费PDF全文
Varicella-zoster virus (VZV) open reading frame 4 (ORF4) encodes a putative immediate-early protein which is homologous to herpes simplex virus type 1 (HSV-1) ICP27 on the basis of gene location and similarity in amino acid sequence. In transient expression assays, however, ORF4 and ICP27 exhibit different properties. ICP27 alone has little activity on target plasmids, but it acts as a transactivator or a transrepressor in the presence of other HSV-1 transactivators. In contrast, ORF4 directly transactivates plasmids containing homologous or heterologous promoters and has no apparent transrepressing activity. To further illuminate the functional similarities and differences between ORF4 and ICP27, Vero cell lines which express ORF4 under the inducible metallothionein promoter were constructed. Cell lines expressing functionally active ORF4 protein upregulated the expression of transfected VZV target plasmids but were unable to efficiently complement HSV-1 ICP27 mutants. These results indicate that, despite structural similarities, VZV ORF4 and HSV-1 ICP27 behave differently in transient expression assays and may play different roles in virus replication. 相似文献
8.
9.
The open reading frames UL3, UL4, UL10, and UL16 are dispensable for the replication of herpes simplex virus 1 in cell culture. 总被引:1,自引:29,他引:1 下载免费PDF全文
By means of insertion and deletion mutagenesis, we have constructed four herpes simplex virus 1 recombinants, each lacking most sequences encoding a different open reading frame. The deleted genes are located in the unique sequences of the long component and include those designated UL3, UL4, UL10, and UL16. The recombinant virus R7211 lacks 579 of the 696 bp of UL3. The recombinant virus R7217 lacks 307 of the 597 bp of the UL4 open reading frame. R7216 contains a 972-bp deletion within the 1,419-bp open reading frame of UL10, whereas R7210 lacks 988 bp of the 1,119-bp UL16 open reading frame. Growth curves indicated that the yields of these viruses in Vero and BHK cell cultures were only slightly reduced from or in some instances equivalent to that of the parent virus. The function of the gene products is not known. It is of interest to note that (i) the UL16 open reading frame maps entirely within the single intron of UL15 and (ii) on the basis of the extent and size of hydrophobic domains, the UL3 and UL10 gene products were predicted to be membrane proteins. 相似文献
10.
Glycoprotein 110, the Epstein-Barr virus homolog of herpes simplex virus glycoprotein B, is essential for Epstein-Barr virus replication in vivo. 下载免费PDF全文
The Epstein-Barr virus (EBV) glycoprotein gp110 has substantial amino acid homology to gB of herpes simplex virus but localizes differently within infected cells and is essentially undetectable in virions. To investigate whether gp110, like gB, is essential for EBV infection, a selectable marker was inserted within the gp110 reading frame, BALF4, and the resulting null mutant EBV stain, B95-110HYG, was recovered in lymphoblastoid cell lines (LCLs). While LCLs infected with the parental virus B95-8 expressed the gp110 protein product following productive cycle induction, neither full-length gp110 nor the predicted gp110 truncation product was detectable in B95-110HYG LCLs. Infectious virus could not be recovered from B95-110HYG LCLs unless gp110 was provided in trans. Rescued B95-110HYG virus latently infected and growth transformed primary B lymphocytes. Thus, gp110 is required for the production of transforming virus but not for the maintenance of transformation of primary B lymphocytes by EBV. 相似文献
11.
12.
The extreme carboxyl terminus of the equine herpesvirus 1 homolog of herpes simplex virus VP16 is essential for immediate-early gene activation. 下载免费PDF全文
G D Elliott 《Journal of virology》1994,68(8):4890-4897
Gene 12 of equine herpesvirus 1 (EHV-1), the homolog of herpes simplex virus (HSV) VP16 (alpha TIF, Vmw65), was cloned into a eukaryotic expression vector by PCR and used in transactivation studies of both the EHV-1 and HSV-1 IE1 promoters. Results demonstrated that the product of gene 12 is a potent transactivator of immediate-early gene expression of both viruses, which requires sequences in the upstream HSV-1 promoter for activity. Mutational analysis of the gene 12 open reading frame indicated that removal of the C-terminal 7 amino acids, which contain a short region of homology with the extreme C terminus of VP16, inactivated the protein. Within this region, only a single methionine residue appeared to be essential for activity, implying that gene 12 may have a modular array of organization similar to that of VP16. However, fusion of the gene 12 C terminus to a truncated form of VP16, which contained the complex formation domain, did not restore activity to the HSV-1 protein. These data demonstrate that the EHV-1 immediate-early transactivator may not be functionally colinear with VP16, with transactivation requiring both the C terminus and another region(s) present within the N-terminal portion. 相似文献
13.
14.
15.
Properties of the protein encoded by the UL32 open reading frame of herpes simplex virus 1. 总被引:1,自引:3,他引:1 下载免费PDF全文
The functions previously assigned to the essential herpes simplex virus 1 UL32 protein were in cleavage and/or packaging of viral DNA and in maturation and/or translocation of viral glycoproteins to the plasma membrane. The amino acid sequence predicts N-linked glycosylation sites and sequences conserved in aspartyl proteases and in zinc-binding proteins. We report the following. (i) The 596-amino-acid UL32 protein accumulated predominantly in the cytoplasm of infected cells but was not metabolically labeled with glucosamine and did not band with membranes containing a known glycoprotein in flotation sucrose density gradients. The UL32 protein does not, therefore, have the properties of an intrinsic membrane protein. (ii) Experiments designed to demonstrate aspartyl protease activity in a phage display system failed to reveal proteolytic activity. Moreover, substitution of Asp-110 with Gly in the sequence Asp-Thr-Gly, the hallmark of aspartyl proteases, had no effect on viral replication in Vero and SK-N-SH cell lines or in human foreskin fibroblasts. Therefore, if the UL32 protein functions as a protease, this function is not required in cells in culture. (iii) Both the native UL32 protein and a histidine-tagged UL32 protein made in recombinant baculovirus-infected insect cells bound zinc. The consensus sequence is conserved in the UL32 homologs from varicella-zoster virus and equine herpesvirus 1. UL32 protein is therefore a cysteine-rich, zinc-binding essential cytoplasmic protein whose function is not yet clear. 相似文献
16.
Herpes simplex virus 1 protein kinase is encoded by open reading frame US3 which is not essential for virus growth in cell culture. 总被引:2,自引:17,他引:2 下载免费PDF全文
Earlier reports have described a novel protein kinase in cells infected with herpes simplex or pseudorabies viruses. These novel enzymes were characterized by their acceptance of protamine as a substrate and by their differential chromatographic behavior in anion-exchange chromatography. We report that this activity was not present in extracts of uninfected cells or of cells infected with a mutant constructed so as to contain a deletion in the US3 open reading frame mapping in the small component of herpes simplex virus 1 DNA. The activity was present in extracts of cells infected with wild-type virus and with a recombinant in which the US3 open reading frame had been rescued. Our results are consistent with the observation reported earlier that the coding sequences predict an amino acid motif common to protein kinases and lead to the conclusion that the US3 open reading frame encodes a virus-specific protein kinase that is not required for virus growth in cells in culture. 相似文献
17.
18.
19.