首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Yuan J  Zhou J  Hu X  Li N 《Biochemical genetics》2007,45(3-4):185-194
We report cDNA sequences for the preproghrelin gene from goose, duck, and emu. This gene is involved in stimulating the release of growth hormone in mammals and may play a similar role in avian species. The complete coding sequence of avian preproghrelin encodes a 116 amino acid (aa) protein, which is organized into three parts: the N-terminal hydrophobic signal peptide, a 26 aa peptide for mature ghrelin, and a long C-terminal polypeptide. Domain/motif structures of preproghrelin protein are highly conserved among avian species. Although the avian and mammalian homologs are not highly similar for the whole 116 aa sequence, the identity of the highly conserved “active core” sequence and the n-octanoyl modification of the serine 3 residue avian ghrelin protein with its mammalian homologs implies conserved function of ghrelin protein during evolution. Information provided in this study will be useful in further studies to determine the role the preproghrelin gene plays in the regulation of growth hormone release and body weight gain in avian species. Jing Yuan and Jianjun Zhou contributed equally to this work  相似文献   

2.
While the growth hormone (GH) gene has been characterized in a broad range of vertebrates, surprisingly little is known about this gene in birds. In order to extend knowledge of the GH gene in avian species and non-domestic species, the pied flycatcher (Ficedula hypoleuca) GH gene has been sequenced in this study. The overall average pairwise sequence divergence level was 0.08 among all available avian sequences and 0.27 among other taxa. However, the overall genetic organization of the gene is quite conserved. The similarity of the GH gene sequence of pied flycatchers with those of chicken and duck suggests that the rapid bursts of molecular evolution observed in mammalian and fish GH have not occurred during the divergence of passerine and non-passerine birds.  相似文献   

3.
Carp growth hormone: molecular cloning and sequencing of cDNA   总被引:5,自引:0,他引:5  
Y Koren  S Sarid  R Ber  V Daniel 《Gene》1989,77(2):309-315
cDNA clones of the fish Cyprinus carpio growth hormone (GH) mRNA have been isolated from a cDNA library prepared from carp pituitary gland poly(A)+RNA. The nucleotide sequence of one of the carp GH cDNA clones containing an insert of 1164 nucleotides (nt) was determined. The cDNA sequence was found to encode a polypeptide of 210 amino acids (aa) including a signal peptide of 22 aa and to contain 5' and 3' untranslated regions of the mRNA of 36 and 498 nt, respectively. The carp GH presents a 63% amino acid sequence homology with the salmon GH, has structural features common with other GH polypeptides of mammalian or avian origin and contains domains of conserved sequence near the N- and C-terminal regions. Southern blot hybridization of carp genomic DNA with GH cDNA probes shows the presence of at least two GH-coding sequences in the fish genome.  相似文献   

4.
Porcine growth hormone (PGH) precursor cDNAs were cloned from a pituitary cDNA library constructed in lambda gt11 by immunoscreening. One of the three clones characterized contained an entire nucleotide sequence for the 216-amino-acid precursor molecule. The deduced amino-acid sequence of PGH confirmed the sequence previously reported for that of the genomic DNA of PGH except for one base difference in the coding sequence. Expression of the full-length PGH cDNA was achieved in bacteria and mammalian cells. The mammalian cell line, COS-1, produced the GH molecule which processed the signal peptide and had the same molecular weight as standard PGH, in contrast to the higher molecular weight of the bacterial product. Radioimmunoassay of the recombinant PGH produced in COS-1 cells also revealed an inhibition curve similar to that of the standard PGH.  相似文献   

5.
Selection for crypsis in varying environments has long been established as the main evolutionary force promoting the huge variation in avian egg coloration. In several avian species, variation in egg coloration exists, but available information available on the relative success of these different colour morphs against predation is scarce. We investigated the value of eggshell coloration against mammal and avian predators in the South American Tern, Sterna hirundinacea. We found evidence of a relationship between particular eggshell ground coloration and success against predation, in different tern colonies, where strong selection was caused by single avian and mammalian predator species. Survival to hatching of eggs with greenish ground coloration was greater than in eggs of the remaining colours when a mammalian carnivore was present. This implies that the human visual system does not accurately represent predator perception but that, viewed through the predator's eyes, the conspicuous greenish eggs are well concealed. The rate of artificial nest predation by visually searching gulls was higher for eggs more conspicuous to the human eye than for eggs more closely resembling the nest substrate. The evolution of polymorphisms in eggshell ground colour may have resulted from differences in the type of predator present, and differences in choice of breeding site varying in the background substrate. The nomadic breeding behaviour of terns may imply that females differing in the frequency of alleles expressing particular egg coloration, selected for in particular environments, may eventually gather in some colonies, thus producing the observed intracolony variation in egg coloration. We hypothesise that egg colour variation could be maintained in the population by shifting peaks of predation impact in the different locations where colonies form, e.g. islands without mammalian predators vs. mainland sites.  相似文献   

6.
Nonrandom patterns associated with adaptively evolving genes can shed light on how selection and mutation produce rapid changes in sequences. I examine such patterns in two independent families of antimicrobial peptide genes: those in frogs, which are known to have evolved under positive selection, and those in flatfishes, which I show have also evolved under positive selection. I address two recently proposed hypotheses about the molecular evolution of antimicrobial peptide genes. The first is that the mature peptide region is replicated by an error-prone polymerase that increases the mutation rate and the transversion/transition ratio compared to the signal sequence of the same genes. The second is that mature peptides evolve in a coordinated fashion with their propieces, such that a change in net charge in one molecular region prompts an opposite change in charge in the other region. I test these hypotheses using alternative methods that minimize alignment errors, correct for phylogenetic nonindependence, reduce sequence saturation, and account for differing selection pressures on different regions of the gene. In both gene families I show that divergence at both synonymous and nonsynonymous sites within the mature peptide region is enhanced. However, in neither gene family is there evidence of an increased mutational transversion/transition ratio or coordinated evolution. My observations are consistent with either an elevated mutation rate in an adaptively evolving gene region or widespread selection on “silent” sites. These hypotheses challenge the assumption that mutations are random and can be measured by the synonymous substitution rate. [Reviewing Editor: Dr. Willie J. Swanson]  相似文献   

7.
The nucleotide sequence of avian (chicken) prepro-PTH (prepro-PTH) mRNA was determined from a 2.3-kilobase fragment of complementary chicken parathyroid DNA cloned in E. coli MM 924. Northern blot analysis of chicken parathyroid mRNA, using both bovine and chicken cDNA probes, showed that the mRNA (2.3 kilobases) for chicken hormone precursor was approximately 3 times the size of mRNA for mammalian prepro-PTH. Cleavage of the cloned DNA with restriction endonuclease Pstl resulted in three fragments, each of which was subjected to sequence determination. The hormone sequence deduced from the DNA showed that chicken prepro-PTH mRNA encoded a 119-amino acid precursor which included a 25-amino acid signal sequence, a six-residue prohormone peptide, and an 88-amino acid hormone. The hormonal peptide was four residues longer than all known mammalian homologs and included gene deletions and insertions. There was significant homology of sequence in the biologically active 1-34 region with mammalian hormones, but much less in the middle and carboxyl-terminal regions. This is the first nonmammalian PTH sequence to be determined and should prove useful in studying evolution of the gene as well as structure-function relationships of the hormone.  相似文献   

8.
A cDNA encoding Ailuropoda melanoleuca growth hormone (AmGH) was isolated from pituitary total RNA using RT-PCR and expressed in Escherichia coli. This is the first report of a GH nucleotide and amino acid (aa) sequence from giant panda. The open reading frame of AmGH (651 bp) encodes a precursor of 216 aa comprising a 26 aa signal peptide and a 190 aa mature protein with four cysteine residues similar to the typical primary structure of mammalian GH precursor. AmGH shares a high degree of identity (54-98.9%) with that of mammals, birds and amphibians, but a very low identity with bony fish GH (only 20-30%). The mature AmGH exhibits striking similarity to that of putative ancestral GH with a difference of only two residues, indicating a very slow basal rate of molecular evolution. The DNA fragment encoding mature AmGH was then subcloned into the pGEX-4T-1 expression vector and highly expressed in E. coli host BL21 with IPTG induction. The expressed proteins fused to GST were found to be sequestered into inclusion bodies and therefore the NaOH method was employed to solubilize the inclusion bodies; the proteins were further purified by Glutathione Sepharose 4B affinity chromatography. The production and purification of GST-AmGH reported here provide a basis for further studies on the biological activity of AmGH.  相似文献   

9.
Insight into the molecular evolution of birds has been offered by the steady accumulation of avian DNA sequence data, recently culminating in the first draft sequence of an avian genome, that of chicken. By studying avian molecular evolution we can learn about adaptations and phenotypic evolution in birds, and also gain an understanding of the similarities and differences between mammalian and avian genomes. In both these lineages, there is pronounced isochore structure with highly variable GC content. However, while mammalian isochores are decaying, they are maintained in the chicken lineage, which is consistent with a biased gene conversion model where the high and variable recombination rate of birds reinforces heterogeneity in GC. In Galliformes, GC is positively correlated with the rate of nucleotide substitution; the mean neutral mutation rate is 0.12-0.15% at each site per million years but this estimate comes with significant local variation in the rate of mutation. Comparative genomics reveals lower d(N)/d(S) ratios on micro- compared to macrochromosomes, possibly due to population genetic effects or a non-random distribution of genes with respect to chromosome size. A non-random genomic distribution is shown by genes with sex-biased expression, with male-biased genes over-represented and female-biased genes under-represented on the Z chromosome. A strong effect of selection is evident on the non-recombining W chromosome with high d(N)/d(S) ratios and limited polymorphism. Nucleotide diversity in chicken is estimated at 4-5 x 10(-3) which might be seen as surprisingly high given presumed bottlenecks during domestication, but is lower than that recently observed in several natural populations of other species. Several important aspects of the molecular evolutionary process of birds remain to be understood and it can be anticipated that the upcoming genome sequence of a second bird species, the zebra finch, as well as the integration of data on gene expression, shall further advance our knowledge of avian evolution.  相似文献   

10.
Akashi H  Goel P  John A 《PloS one》2007,2(10):e1065
Reliable inference of ancestral sequences can be critical to identifying both patterns and causes of molecular evolution. Robustness of ancestral inference is often assumed among closely related species, but tests of this assumption have been limited. Here, we examine the performance of inference methods for data simulated under scenarios of codon bias evolution within the Drosophila melanogaster subgroup. Genome sequence data for multiple, closely related species within this subgroup make it an important system for studying molecular evolutionary genetics. The effects of asymmetric and lineage-specific substitution rates (i.e., varying levels of codon usage bias and departures from equilibrium) on the reliability of ancestral codon usage was investigated. Maximum parsimony inference, which has been widely employed in analyses of Drosophila codon bias evolution, was compared to an approach that attempts to account for uncertainty in ancestral inference by weighting ancestral reconstructions by their posterior probabilities. The latter approach employs maximum likelihood estimation of rate and base composition parameters. For equilibrium and most non-equilibrium scenarios that were investigated, the probabilistic method appears to generate reliable ancestral codon bias inferences for molecular evolutionary studies within the D. melanogaster subgroup. These reconstructions are more reliable than parsimony inference, especially when codon usage is strongly skewed. However, inference biases are considerable for both methods under particular departures from stationarity (i.e., when adaptive evolution is prevalent). Reliability of inference can be sensitive to branch lengths, asymmetry in substitution rates, and the locations and nature of lineage-specific processes within a gene tree. Inference reliability, even among closely related species, can be strongly affected by (potentially unknown) patterns of molecular evolution in lineages ancestral to those of interest.  相似文献   

11.
In mammals pituitary growth hormone (GH) shows a slow basal rate of evolution (0.22 ± 0.03 × 10–9 substitutions/amino acid site/year) which appears to have increased by at least 25–50-fold on two occasions, during the evolution of primates (to at least 10.8 ± 1.3 X 10–9 substitutions/amino acid site/year) and artiodactyl ruminants (to at least 5.6 ± 1.3 X 10–9 substitutions/amino acid site/year). That these rate increases are real, and not due to inadvertent comparison of nonorthologous genes, was established by showing that features of the GH gene sequences that are not expressed as mature hormone do not show corresponding changes in evolutionary rate. Thus, analysis of nonsynonymous substitutions in the coding sequence for the mature protein confirmed the rate increases seen in the primate and ruminant GHs, but analysis of nonsynonymous substitutions in the signal peptide sequence, synonymous substitutions in the coding sequence for signal peptide or mature protein, and 5 and 3 untranslated sequences showed no statistically significant changes in evolutionary rate. Evidence that the increases in evolutionary rate are probably due to positive selection is provided by the observation that in the cases of both ruminant and primate GHs the periods of rapid evolution were followed by a return to a slow rate similar to the basal rate seen in other mammalian GHs. Differences between the biological properties of GHs have been identified which may relate to these periods of rapid adaptive molecular evolution. On the basis of sequence data currently available (but excluding rodent GHs which show an intermediate rate, the basis of which is not clear) for most (90%) of evolutionary time mammalian GHs have been in the slow phase of evolution, with possibly most of the few amino acid substitutions that have occurred being neutral in nature. But most (80%) of the amino acid substitutions that have been introduced into GH during the course of mammalian evolution have been accepted during the rapid phases and were adaptive in nature.  相似文献   

12.
在通过大规模 ESTS技术对垂体基因表达谱的研究中 ,从垂体组织产生了 72 2 2个 ESTS,有385个 ESTs是代表生长激素 (GH)基因的 ,其中 1个为中间缺失 1 38bp的 GH异形体基因 ,并经巢式 RT- PCR及测序证实 ;该基因编码 1 71个氨基酸的前肽 ,去除信号肽后 ,其成熟肽由 1 45个氨基酸组成 ;经生物信息学处理 ,其分子量大小约 1 7k D;与正常生长激素分子内有 2个 GH受体结合位点不同 ,该新的 GH异形体分子内仅有一个生长激素受体的结合位点 .研究结果揭示 :正常垂体内存在着新的 GH异形体基因 ,该基因可能编码外周血中 1 6k D的生长激素 ;其功能可能为 2 2k D GH的生理拮挤剂 .  相似文献   

13.
M Krawczak  N A Chuzhanova  D N Cooper 《Gene》1999,237(1):143-151
The evolutionary relationship between the proximal growth hormone (GH) gene promoter sequences of 12 mammalian species was explored by comparison of their trinucleotide composition and by multiple sequence alignment. Both approaches yielded results that were consistent with the known fossil record-based phylogeny of the analysed sequences, suggesting that the two methods of tree reconstruction might be equally efficient and reliable. The pattern of evolution inferred for the mammalian GH gene promoters was found to vary both temporally and spatially. Thus, two distinct regions devoid of any evolutionary changes exist in primates, but only one of these 'gaps' is also observed in rodents, and neither is seen in ruminants. Furthermore, different evolutionary rates must have prevailed during different periods of evolutionary time and in different lineages, with a dramatic increase in evolutionary rate apparent in primates. Since a similar pattern of discontinuity has been previously noted for the evolution of the GH-coding regions, it may reflect the action of positive selection operating upon the GH gene as a single cohesive unit. Strong evidence for the action of gene conversion between primate GH gene promoters is provided by the fact that the human GH1 and GH2 sequences, which are thought to have diverged before the divergence of Old World monkeys from great apes, are more similar to one another than either is to the rhesus monkey GH2 promoter. Finally, it was noted that a number of nucleotide positions in the GH1 gene promoter that are polymorphic in humans appear to be highly conserved in mammals. This apparent conundrum, which could represent a caveat for the interpretation of phylogenetic footprinting studies, is potentially explicable in terms either of reduced genetic diversity in highly inbred animal species or insufficient population data from non-human species.  相似文献   

14.
15.
Bedford T  Wapinski I  Hartl DL 《Genetics》2008,179(2):977-984
Although protein evolution can be approximated as a "molecular evolutionary clock," it is well known that sequence change departs from a clock-like Poisson expectation. Through studying the deviations from a molecular clock, insight can be gained into the forces shaping evolution at the level of proteins. Generally, substitution patterns that show greater variance than the Poisson expectation are said to be "overdispersed." Overdispersion of sequence change may result from temporal variation in the rate at which amino acid substitutions occur on a phylogeny. By comparing the genomes of four species of yeast, five species of Drosophila, and five species of mammals, we show that the extent of overdispersion shows a strong negative correlation with the effective population size of these organisms. Yeast proteins show very little overdispersion, while mammalian proteins show substantial overdispersion. Additionally, X-linked genes, which have reduced effective population size, have gene products that show increased overdispersion in both Drosophila and mammals. Our research suggests that mutational robustness is more pervasive in organisms with large population sizes and that robustness acts to stabilize the molecular evolutionary clock of sequence change.  相似文献   

16.
Interspecific morphological variation in animal genitalia has long attracted the attention of evolutionary biologists because of the role genital form may play in the generation and/or maintenance of species boundaries. Here we examine the origin and evolution of genital variation in rodents of the muroid genus Neotoma. We test the hypothesis that a relatively rare genital form has evolved only once in Neotoma. We use four mitochondrial and four nuclear markers to evaluate this hypothesis by establishing a phylogenetic framework in which to examine genital evolution. We find intron seven of the beta-fibrinogen gene to be a highly informative nuclear marker for the levels of differentiation that characterize Neotoma with this locus evolving at a rate slower than cytochrome b but faster than 12S. We estimate phylogenetic relationships within Neotoma using both maximum parsimony and maximum likelihood-based Bayesian methods. Our Bayesian and parsimony reconstructions differ in significant ways, but we show that our parsimony analysis may be influenced by long-branch attraction. Furthermore, our estimate of Neotoma phylogeny remains consistent across various data partitioning strategies in the Bayesian analyses. Using ancestral state reconstruction, we find support for the monophyly of taxa that possess the relatively rare genital form. However, we also find support for the independent evolution of the common genital form and discuss possible underlying developmental shifts that may have contributed to our observed patterns of morphological evolution.  相似文献   

17.
18.
Growth hormone (GH) evolution is very conservative among mammals, except for primates and ruminant artiodactyls. In fact, most known mammalian GH sequences differ from the inferred ancestral mammalian sequence by only a few amino acids. In contrast, the human GH sequence differs from the inferred ancestral sequence by 59 amino acids. However, it is not known when this rapid evolution of GH occurred during primate evolution or whether it was due to positive selection. Also, human growth hormone receptor (GHR) displays species specificity; i.e., it can interact only with human (or rhesus monkey) GH, not with nonprimate GHS: The species specificity of human GHR is largely due to the Leu-->Arg change at position 43, and it has been hypothesized that this change must have been preceded by the His-->Asp change at position 171 of GH. Is this hypothesis true? And when did these changes occur? To address the above issues, we sequenced GH and GHR genes in prosimians and simians. Our data supported the above hypothesis and revealed that the species specificity of human GHR actually emerged in the common ancestor of Old World primates, but the transitional phase still persists in New World monkeys. Our data showed that the rapid evolution of primate GH occurred during a relatively short period (in the common ancestor of higher primates) and that the rate of change was especially high at functionally important sites, suggesting positive selection. However, the nonsynonymous rate/synonymous rate ratio at these sites was <1, so relaxation of purifying selection might have played a role in the rapid evolution of the GH gene in simians, possibly as a result of multiple gene duplications. Similar to GH, GHR displayed an accelerated rate of evolution in primates. Our data revealed proportionally more amino acid replacements at the functionally important sites in both GH and GHR in simians but, surprisingly, showed few coincidental replacements of amino acids forming the same intermolecular contacts between the two proteins.  相似文献   

19.
20.
The perform of chicken prolactin (PRL) deduced from the cDNA sequence contains a signal peptide of 30 amino acid residues followed by a mature PRL of 199 residues. Chicken PRL shows 77, 68, 67, 58, and 31% identity of amino acid sequence with whale, human, ovine, rat, and salmon PRLs, respectively. Elucidation of the primary structure of avian PRL enabled extended analysis of the specific and conserved amino acid residues and domains of the PRL molecules. The mammalian, teleostean, and avian PRLs share 32 common residues, and these conserved residues are observed to cluster in four distinct domains (PD1 to PD4), corresponding to four of five conserved domains of the growth hormones. Of the 32 residues, 8 residues in the PD2 and PD4 domains, including 4 cysteines, are conserved by other members of the growth hormone family, which indicates that these 8 residues may be essential for common structural features of the gene family. On the other hand, 13 other residues distributed among all four domains are conserved almost exclusively in the PRLs, suggesting that these residues are indispensable for specific binding of the PRLs to their receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号