首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four batches of potato-processing wastewater were collected every two weeks. After sedimentation for 1 h and subsequent decanting, the supernatant had a 5-day biochemical oxygen demand (BOD) ranging from 620 to 1743 mg/l and total suspended solids ranging from 0.31 to 0.49 mg/ml. Thermophilic aerobic digestion (55°C, 0.6l air/min) decreased the BOD and total suspended solids of the supernatant by 98% and 75%, respectively, in 96 h.B. Malladi and S.C. Ingham are with the Department of Applied Microbiology and Food Science, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 0W0, Canada.  相似文献   

2.
The application of low-temperature (10 °C) anaerobic digestion (LtAD) for the treatment of complex dairy-based wastewater in an inverted fluidised bed (IFB) reactor was investigated. Inadequate mixing intensity provoked poor hydrolysis of the substrate (mostly protein), which resulted in low chemical oxygen demand (COD) removal efficiency throughout the trial, averaging ~69 % at the best operational period. Overgrowth of the attached biomass to the support particles (Extendospheres) induced bed stratification by provoking agglutination of the particles and supporting their washout by sedimentation, which contributed to unstable bioprocess performance at the organic loading rates (OLRs) between 0.5 and 5 kg COD m?3 day?1. An applied OLR above 2 kg COD m?3 day?1 additionally promoted acidification and strongly influenced the microbial composition and dynamics. Hydrogenotrophic methanogens appeared to be the mostly affected group by the Extendospheres particle washout as a decrease in their abundance was observed by quantitative PCR analysis towards the end of the trial, although the specific methanogenic activity and maximum substrate utilisation rate on H2/CO2 indicated high metabolic activity and preference towards hydrogenotrophic methanogenesis of the reactor biomass at this stage. The bacterial community in the bioreactor monitored via denaturing gradient gel electrophoresis (DGGE) also suggested an influence of OLR stress on bacterial community structure and population dynamics. The data presented in this work can provide useful information in future optimisation of fluidised reactors intended for digestion of complex industrial wastewaters during LtAD.  相似文献   

3.
Cellulose in wastewater was converted into H2 by a mixed culture in batch experiments at 55°C with various wastewaters pH (5.5–8.5) and cellulose concentrations (10–40 g l–1). At the optimal pH of 6.5, the maximum H2 yield was 102 ml g–1 cellulose and the maximum production rate was 287 ml d–1 for each gram of volatile suspended solids (VSS). Analysis of 16S rDNA sequences showed that the cellulose-degrading mixed culture was composed of microbes closely affiliated to genus Thermoanaerobacterium.  相似文献   

4.
Thermophilic biological nitrogen removal in industrial wastewater treatment   总被引:1,自引:0,他引:1  
Nitrification is an integral part of biological nitrogen removal processes and usually the limiting step in wastewater treatment systems. Since nitrification is often considered not feasible at temperatures higher than 40 °C, warm industrial effluents (with operating temperatures higher than 40 °C) need to be cooled down prior to biological treatment, which increases the energy and operating costs of the plants for cooling purposes. This study describes the occurrence of thermophilic biological nitrogen removal activity (nitritation, nitratation, and denitrification) at a temperature as high as 50 °C in an activated sludge wastewater treatment plant treating wastewater from an oil refinery. Using a modified two-step nitrification–two-step denitrification mathematical model extended with the incorporation of double Arrhenius equations, the nitrification (nitrititation and nitratation) and denitrification activities were described including the cease in biomass activity at 55 °C. Fluorescence in situ hybridization (FISH) analyses revealed that Nitrosomonas halotolerant and obligatehalophilic and Nitrosomonas oligotropha (known ammonia-oxidizing organisms) and Nitrospira sublineage II (nitrite-oxidizing organism (NOB)) were observed using the FISH probes applied in this study. In particular, this is the first time that Nitrospira sublineage II, a moderatedly thermophilic NOB, is observed in an engineered full-scale (industrial) wastewater treatment system at temperatures as high as 50 °C. These observations suggest that thermophilic biological nitrogen removal can be attained in wastewater treatment systems, which may further contribute to the optimization of the biological nitrogen removal processes in wastewater treatment systems that treat warm wastewater streams.  相似文献   

5.
Thermophilic anaerobic treatment of sulphur-rich paper mill wastewater (0.8-3.1 gCOD/l, 340–850 mgSO4/l; COD:SO4 3.4-5.3) was studied in three laboratory-scale, upflow anaerobic sludge blanket (UASB) reactors and in bioassays. The reactors were inoculated with non-adapted thermophilic granular sludge. In the bioassays, no inhibition of the inoculum was detected and about 62% COD removal (sulphide stripped) was obtained. About 70 to 80% of the removed COD was methanised. In the reactors, up to 60–74% COD removal (effluent sulphide stripped) was obtained at loading rates up to 10–30 kgCOD/m3d and hydraulic retention times down to 6 to 2 hours. The effluent total sulphide was up to 150–250 mg/l. Sulphide inhibition could not be confirmed from the reactor performances. The results from bioassays suggested that both the inoculum and sludge from the UASB reactor used acetate mainly for methane production, while sulphide was produced from hydrogen or its precursors.  相似文献   

6.
7.
Summary Wastewater from a dairy plant with an average BOD5 of 1060 mg/l and an average TKN of 109 mg/l was treated aerobically using three activated sludge reactors in series. With an overall retention time of 19.8 hrs, the final effluent contained 9 mg/l of BOD5 and 10 mg/l of TKN, corresponding to respective reductions of 99% and 91%.  相似文献   

8.
Synthetic wastewater containing -lactose and gelatin was treated in a thermophilic membrane-coupled bioreactor (MBR). Thermophilic (>45°C) treatment represents a potentially advantageous process for high-temperature as well as high-strength industrial wastewaters susceptible to reactor autoheating. Thermophilic systems, however, generally support a nonflocculating biomass that resists conventional methods of cell separation from the treated wastewater. MBRs were applied to thermophilic treatment systems because bacterial cells can be retained regardless of cell aggregation. Thermophilic aerobic MBRs were successfully operated at high levels of biocatalyst and produced a better effluent quality than analogous thermophilic bioreactors without cell recycle. At a hydraulic residence time (HRT) of 13.1 h, the chemical oxygen demand (COD) of the membrane eluate improved from 760 mg l−1 (without cell recycle) to 160 mg l−1 (with cell recycle). Bacterial community shifts were detected by denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR) -amplified 16S rRNA gene fragments — 6 of 13 bands disappeared within 2 days of MBR operation. A concomitant 40–50% reduction in physiological indicators of cell reactivity (RNA:protein; ATP:protein) was also observed. The specific activity of β-galactosidase and aminopeptidase, however, increased by 10–25%, indicating that there is a definite advantage to MBR operation at the highest biomass level possible. Nucleotide sequence analysis of 16S rDNA clones identified phylotypes from the low-G+C Gram-positive division and the β- and γ-subdivisions of Proteobacteria. Journal of Industrial Microbiology & Biotechnology (2001) 26, 203–209. Received 18 March 2000/ Accepted in revised form 26 January 2001  相似文献   

9.
Wang W  Ma W  Han H  Li H  Yuan M 《Bioresource technology》2011,102(3):2441-2447
Lurgi coal gasification wastewater (LCGW) is a refractory wastewater, whose anaerobic treatment has been a severe problem due to its toxicity and poor biodegradability. Using a mesophilic (35 ± 2 °C) reactor as a control, thermophilic anaerobic digestion (55 ± 2 °C) of LCGW was investigated in a UASB reactor. After 120 days of operation, the removal of COD and total phenols by the thermophilic reactor could reach 50-55% and 50-60% respectively, at an organic loading rate of 2.5 kg COD/(m3 d) and HRT of 24 h; the corresponding efficiencies were both only 20-30% in the mesophilic reactor. After thermophilic digestion, the wastewater concentrations of the aerobic effluent COD could reach below 200 mg/L compared with around 294 mg/L if mesophilic digestion was done and around 375 mg/L if sole aerobic pretreatment was done. The results suggested that thermophilic anaerobic digestion improved significantly both anaerobic and aerobic biodegradation of LCGW.  相似文献   

10.
Abstract

The present study aimed to evaluate the aquatic macrophyte Savinia auriculata in post-treatment of wastewater from a dairy industry. The experiment was carried out in a greenhouse between February and March 2015. A batch system was used, each reactor was composed of polyethylene and had capacity of 250 liters of post-treated effluent. Every seven days, pH, turbidity, temperature, dissolved oxygen, chemical oxygen demand and series of solids (total, fixed and volatile) were determined in the wastewater. Besides that, the concentration of macro and micronutrients (P, N, K, Ca, Mg, Cu, Zn, Mn, and Fe) were determined in the wastewater and in plant tissue before and after the experiment. The results showed efficiency in the decrease of N, P, turbidity, pH, solids (ST, SF) and inefficiency in the reduction of volatile solids in the wastewater. The concentration of COD, Ca, Mn, Mg, and Fe increased at the end of the experiment. Due to the absorption of some nutrients such as N and P it is possible to conclude that Salvinia auriculata is a good option for the post-treatment of the wastewater from dairy industry. However, plant senescence promotes the elevation of some elements in the effluent because in this process, nutrients that were previously retained in the plant tissue are inserted into the wastewater again. Because of this it is necessary to remove plants of the reactor in the beginning of the process of senescence.  相似文献   

11.
【目的】为开发高效的高浓度木质纤维素燃料乙醇蒸馏废水厌氧处理及资源化利用工艺,以活性炭为载体,在实验室规模上对高温厌氧流化床反应器处理木质纤维素燃料乙醇蒸馏废水进行研究。【方法】反应器经65 d梯度驯化后启动,对工艺参数进行一系列优化,并通过基于16S rRNA基因的分子生态学技术分析厌氧污泥中的优势菌群。【结果】实验获得了最优的反应条件和处理效果:厌氧流化床反应器(Anaerobic fluidized bed reactor,AFBR)在温度55±1°C、有机负荷率(OLR)13.8 g COD/(L·d)及水力停留时间(HRT)48 h操作时,COD去除率达到90%以上,同时甲烷产率达到290 mL/g COD;菌群鉴定分析结果显示高温厌氧活性污泥中Clostridia所占比例最大,产甲烷菌属以Methanoculleus和Methanosarcina为主,其它功能菌群主要为Alphaproteobacteria等。【结论】AFBR反应器可高效降解木质纤维素燃料乙醇蒸馏废水并产生生物能源甲烷,其反应体系内微生物种类丰富。  相似文献   

12.
Summary Concentrations of up to 10.2 g COD/L were applied to an horizontal anaerobic filter at 40°C, obtaining efficiencies in COD removal of 85%. The contents of the reactor are kept mixed by recycling and at a pH value of 6.9.The addition of alkali to the influent increases the production of biogas reaching a maximum of 250 L of methane per kg of COD removed.Career Investigator of the Consejo Nacional de Investigaciones Cientificas y Técnicas (R. Argentina).Fellow of the Consejo Nacional de Investigaciones Cientificas y Técnicas (R. Argentina).  相似文献   

13.
Recovery of phosphorus (P) from flushed dairy manure in an easily-dewatered form would enable farmers to manage P as a resource rather than land-apply it in excess at environmental risk. The purpose of this study was to evaluate (i) the feasibility of P recovery and (ii) the form of recovered P from flushed dairy manure wastewater using crystallization in a fluidized-bed reactor. Wastewater was pumped directly from a dairy farm reservoir and continuously fed in parallel through four bench-scale fluidized-bed reactors deployed on-site. Chemical additives (NaOH and MgSO4) required for recovery were injected directly into the zone of fluidization. Recovered P forms were assessed by X-ray diffraction, scanning electron microscopy, and micro-elemental analysis. Recovery of P as poorly-crystalline hydroxylapatite (HAP) was documented in coatings ultrasonically removed from quartz seed grains following fluidization at elevated pH in conjunction with MgSO4 injection. Addition of MgSO4 was required to prevent CaCO3 precipitation upon pH elevation and hence enable calcium phosphate precipitation. It is likely that MgSO4 inhibited CaCO3 via formation of MgCO3 (aq). Periclase (MgO), which also served as an effective seed material, generated sufficient alkalinity at grain surfaces to precipitate abundant CaCO3 and in some cases detectable Ca phosphate even without NaOH addition to elevate pH of bulk solution.  相似文献   

14.
The wastewater from the dairy industries usually contains high concentrations of contaminants and, since the volume generated is also high, the total contaminant load is very significant. Among the available options for treatment, biological degradation looks like the most promising one. Furthermore, the supplementation of the native microbial populations with external microorganisms with high specific degradation rates (bio-augmentation) has demonstrated to improve the performance of treatment. The main objective of this research was to select a combination of bacteria to improve the aerobic treatment of dairy processing wastewater. For this purpose, eleven fat/protein-degrading microorganisms belonging to the genera Bacillus, Serratia, Lactococcus, Enterococcus, Stenotrophomonas, Klebsiella and Escherichia, were evaluated as potential degrading bacteria using a Plackett-Burman design. Assays were carried out to select the strains that most significantly influenced the degradation of wastewater and biomass yield, in terms of COD removal. A simulated dairy industry effluent was used as culture medium. Four strains were selected as potential members of the microbial consortium: Lactococcus garvieae, Bacillus thuringiensis, Escherichia coli and Stenotrophomonas sp. The optimal operation temperature and pH range of the selected consortium were 32°C and 6 ~ 8, respectively. The degradation percentages reached with the selected consortium were 80.67 and 83.44% at 24 and 48 h, respectively. The selected consortium significantly improved the degradation of the dairy wastewater, and the degradation degree achieved by this consortium was higher than by using the strains individually.  相似文献   

15.
The liquid superficial up_ow velocity (Vup) and hydraulic retention time (HRT) on the thermophilic treatment of oleate in expanded granular sludge bed (EGSB) reactors were investigated. The highest methane conversion rate of oleate, 93 mg CH4-COD/g VSS.d, was attained in a reactor operating at a Vup of 1 m/h and an HRT of 24 h. The typical EGSB reactor hydrodynamics (Vup > 4 m/h and HRT < 10 h) inhibited the treatment performance, mainly due to biomass washout in particulate form. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

16.
Performances of single-stage and two-stage sequencing batch reactor (SBR) systems were investigated for treating dairy wastewater. A single-stage SBR system was tested with 10,000 mg/l chemical oxygen demand (COD) influent at three hydraulic retention times (HRTs) of 1, 2, and 3 days and 20,000 mg/l COD influent at four HRTs of 1, 2, 3, and 4 days. A 1-day HRT was found sufficient for treating 10,000-mg/l COD wastewater, with the removal efficiency of 80.2% COD, 63.4% total solids, 66.2% volatile solids, 75% total Kjeldahl nitrogen, and 38.3% total nitrogen from the liquid effluent. Two-day HRT was believed sufficient for treating 20,000-mg/l COD dairy wastewater if complete ammonia oxidation is not desired. However, 4-day HRT needs to be used for achieving complete ammonia oxidation. A two-stage system consisting of an SBR and a complete-mix biofilm reactor was capable of achieving complete ammonia oxidation and comparable carbon, solids, and nitrogen removal while using at least 1/3 less HRT as compared to the single SBR system.  相似文献   

17.
Thermophilic aerobic wastewater treatment is reviewed. Thermophilic processes have been studied in laboratory and pilot-scale while full-scale applications are rare. The paper focuses on the microbiology of aerobic thermophiles, performance of the aerobic wastewater treatments, sludge yield, and alternatives to enhance performance of thethermophilic process. Thermophilic processes have been shown to operate under markedly high loading rates (30–180 kg COD m−3d−1).Reported sludge production values under thermophilic conditions vary between 0.05 and0.3 kg SS kg CODremoved, which are about the same or lower than generally obtained in mesophilic processes. Compared to analogous mesophilic treatment, thermophilic treatment commonly suffers from poorer effluent quality, measured by lower total COD and filtrated (GF-A) COD removals. However, in the removal of soluble (bacterial membrane filtered) COD both mesophilic and thermophilic treatments have produced similar results. Sludge settle ability in thermophilic processes have been reported to be better or poorer than in analogous mesophilic processes, although cases with better settling properties are rare. Combining thermophilic with mesophilic treatment or ultrafiltration may in some cases markedly improve effluent quality. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
The effect of dairy pond water quality on mosquito biology was studied under laboratory conditions during 2004. Due to high turbidity and larval toxicity of raw water samples from dairy ponds with no mosquito breeding, water samples from both mosquito breeding and non-breeding ponds were filtered and diluted 5X with distilled water prior to being tested for sublethal effects on mosquito development. The diluted pond waters showed no significant deleterious effects on the overall development of Culex quiquefasciatus Say at 23.9 degrees and 26.6 degrees C. However, the 3rd and 4th instar larvae were significantly shorter and lighter in weight when reared in diluted water samples from mosquito non-breeding ponds. Similar effects were found on the developmental stages of Cx. tarsalis Coquillette. Data on water quality parameters of filtered pond waters showed higher levels of hexavalent chromium (4X), nitrites (10X), nitrates (2X), sulfates (5X), and salinity (2X) in water samples from non-breeding ponds. Based on these data, the presence of high levels of hexavalent chromium and sulfate appear to be responsible for the absence of mosquito breeding in some dairy ponds.  相似文献   

19.
The present study emphasizes the importance of overcoming proton limitation in a microbial fuel cell operated on domestic wastewater. When the anode-treated effluent was allowed to trickle into the cathodic compartment (full-loop operation), high COD and suspended solids removal efficiencies over 75% and 84%, respectively, were achieved while ensuring substantial and sustainable power generation. Lower removal efficiencies resulted in decreased cell electromotive force caused by excess substrate crossover. By decreasing the pH in the cathodic compartment to values below 2, we were able to further increase the maximum power generation by 180% in batch mode and 380% in continuous mode as compared to a negative control (tap water of pH 7.6). Under the optimized conditions, the internal resistance and electromotive force were 11 Ω and 0.6 V, respectively, which correspond to the state of the art.  相似文献   

20.
Luo J  Ding L  Qi B  Jaffrin MY  Wan Y 《Bioresource technology》2011,102(16):7437-7442
A two-stage ultrafiltration and nanofiltration (UF/NF) process for the treatment of model dairy wastewater was investigated to recycle nutrients and water from the wastewater. Ultracel PLGC and NF270 membranes were found to be the most suitable for this purpose. In the first stage, protein and lipid were concentrated by the Ultracel PLGC UF membrane and could be used for algae cultivation to produce biodiesel and biofuel, and the permeate from UF was concentrated by the NF270 membrane in the second stage to obtain lactose in retentate and reusable water in permeate, while the NF retentate could be recycled for anaerobic digestion to produce biogas. With this approach, most of dairy wastewater could be recycled to produce reusable water and substrates for bioenergy production. Compared with the single NF process, this two-stage UF/NF process had a higher efficiency and less membrane fouling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号