共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium-binding protein regucalcin mRNA expression in the kidney cortex is suppressed by saline ingestion in rats 总被引:2,自引:0,他引:2
Nobuko Shinya Hideyuki Kurota Masayoshi Yamaguchi 《Molecular and cellular biochemistry》1996,162(2):139-144
The effect of adrenalectomy (ADX) or saline ingestion, which is a hypertensive factor, on the expression of calcium-binding protein regucalcin mRNA in the kidney cortex of rats was investigated. The change of regucalcin mRNA levels was analyzed by Northern blotting using rat liver regucalcin complementary DNA (0.9 kb of open-reading frame). Regucalcin mRNA was expressed in the kidney cortex but not the medulla. Rats were adrenalectomized, and 48 h later they were sacrificed. ADX caused a reduction of regucalcin mRNA levels in the kidney cortex, suggesting that adrenal glands participate in the regulation of the mRNA expression. This reduction was not restored by the subcutaneous administration of dexamethasone with an effective dose (1 mg/kg body weight), which can stimulate kidney regucalcin mRNA expression. Regucalcin mRNA levels in the kidney cortex of rats were markedly suppressed by the ingestion of saline for 7 days. The ADX-induced decrease of renal cortex regucalcin mRNA levels was not appreciably restored by saline ingestion. Moreover, regucalcin mRNA levels in the kidney cortex of spontaneous hypertensive rats (SHR) were clearly decreased as compared with that of control (Wistar-Kyoto) rats. Meanwhile, calcium content in the kidney cortex was not significantly decreased by ADX or saline ingestion. The present study suggests that the expression of regucalcin mRNA in the kidney cortex of rats is suppressed by saline administration. 相似文献
2.
Expression of calcium-binding protein regucalcin mRNA in the kidney cortex of rats: The stimulation by calcium administration 总被引:1,自引:0,他引:1
The expression of calcium-binding protein regucalcin mRNA in the kidney cortex of rats was investigated. The change of regucalcin mRNA levels was analyzed by Northern blotting using liver regucalcin complementary DNA (0.9 kb of open-reading frame). Regucalcin mRNA was expressed in the kidney cortex, and this expression was clearly increased by a single intraperitoneal administration of calcium chloride solution (5–15 mg Ca/100 g body weight) in rats; this increase was remarkable at 60–120 min after the administration. Thyroparathyroidectomy (TPTX) caused a slight decrease of regucalcin mRNA levels in the kidney cortex. However, the administration of calcium (10 mg/100 g) in TPTX rats produced a clear increase of regucalcin mRNA levels in the kidney cortex. The subcutaneous administration of calcitonin (10–100 MRC mU/100 g) or parathyroid hormone [1–34] (1–10 U/100 g) in TPTX rats which received calcium (10 mg/100 g) administration did not cause an appreciable alteration of regucalcin mRNA levels in the kidney cortex, suggesting that the mRNA expression is not stimulated by calcium-regulating hormones. The administration of trifluoperazine (TFP; 5 mg/100 g), an inhibitor of Ca2+/calmodulin action, completely blocked the expression of regucalcin mRNA stimulated by calcium administration. Now, calcium content in the kidney cortex was significantly elevated by a single intraperitpneal administration of calcium (10 mg/100 g) in rats. The present study clearly demonstrates that the expression of regucalcin mRNA in the kidney cortex is stimulated by calcium administration in rats. This expression may be mediated through Ca2+/calmodulin action in the kidney cortex. 相似文献
3.
Stimulatory effect of regucalcin on proteolytic activity is impaired in the kidney cortex cytosol of rats with saline ingestion 总被引:1,自引:0,他引:1
The effect of regucalcin (RC) on neutral proteolytic activity in the cytosol of rat kidney cortex was investigated. Proteolytic activity was significantly increased by the presence of RC (0.01 + 0.10 M) in the enzyme reaction mixture. This increase was completely abolished by the addition of anti-RC monoclonal antibody (150 ng/ml). When the renal cortex cytosol was incubated without RC addition, the degradation of globin of substrate was demonstrated by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. This degradation was clearly inhibited by the addition of anti-RC antibody (150 ng/ml), indicating that protein degradation results partly from the cytosolic endogenous RC. Meanwhile, proteolytic activity was significantly decreased in the renal cortex cytosol of rats with saline ingestion for 2, 7, and 14 days. The effect of RC (0.1 M) in increasing proteolytic activity was weakened in the kidney cortex cytosol of saline-ingested rats. The present study suggests that endogenous RC plays a role in the activation of proteases in the renal cortex cytosol, and that the RC effect is impaired in saline-ingested rats. 相似文献
4.
Suppressed expression of calcium-binding protein regucalcin mRNA in the renal cortex of rats with chemically induced kidney damage 总被引:2,自引:0,他引:2
The alteration of Ca2+-binding protein regucalcin mRNA expression in the kidney cortex of rats administered cisplatin and cephaloridine, which can induce kidney damage, was investigated. Cisplatin (0.25, 0.5 and 1.0 mg/100 g body weight) or cephaloridine (25, 50 and 100 mg/100 g) was intraperitoneally administered in rats, and 1, 2 and 3 days later they were sacrificed. The alteration in serum findings after the administration of cisplatin (1.0 mg/100 g) or cephaloridine (50 and 100 mg/100 g) demonstrated chemically induced kidney damage; blood urea nitrogen (BUN) concentration increased markedly and serum inorganic phosphorus or calcium concentration decreased significantly. Moreover, the administration of cisplatin (1.0 mg/100 g) or cephaloridine (100 mg/100 g) caused a remarkable increase of calcium content in the kidney cortex of rats, indicating kidney damage. The expression of regucalcin mRNA in the kidney cortex was markedly reduced by the administration of cisplatin or cephaloridine in rats, when the mRNA levels were analyzed by Northern blotting using rat liver regucalcin cDNA (0.9 kb). The mRNA decreases were seen with the used lowest dose of cisplatin or cephaloridine. The present study clearly demonstrates that the mRNA expression of Ca2+-binding protein regucalcin in the kidney cortex of rats is decreased by chemically induced kidney damage. 相似文献
5.
Inhibitory effect of regucalcin on Ca2+/calmodulin-dependent protein kinase activity in rat renal cortex cytosol 总被引:1,自引:0,他引:1
The effect of regucalcin on Ca2+/calmodulin-dependent protein kinase activity in the cytosol of rat renal cortex was investigated. Regucalcin is a calcium-binding protein which exists in rat liver and renal cortex. Protein kinase activity in renal cortex cytosol was markedly increased by the addition of CaCl2 (0.5 mM) plus calmodulin (10 µg/ml) in the enzyme reaction mixture. This increase was completely prevented by the addition of trifluoperazine (25 µM), an antagonist of calmodulin. The cytosolic Ca2+/calmodulin- dependent protein kinase activity was clearly inhibited by the addition of regucalcin; an appreciable effect of regucalcin was seen at 0.01 µM. The cytosolic Ca2+/calmodulin-dependent protein kinase activity was fairly increased by increasing concentrations of added Ca2+ (100-1000 µM). This increase was markedly blocked by the presence of regucalcin (0.1 µM). The inhibitory effect of regucalcin on the protein kinase activity was also seen with varying concentrations of calmodulin (2-20 µg/ml). These results demonstrate that regucalcin can regulate Ca2+/calmodulin-dependent protein kinase activity in renal cortex cells. 相似文献
6.
Mitsutaka Isogai Kimiko Oishi Noriaki Shimokawa Masayoshi Yamaguchi 《Molecular and cellular biochemistry》1994,141(1):15-19
The effect of phenobarbital on the expression of calcium-binding protein regucalcin mRNA in rat liver was investigated. The change of regucalcin mRNA levels was analyzed by Northern blotting using liver regucalcin cDNA (0.9 kb of open reading frame). Phenobarbital (4, 8 and 12 mg/ 100 g body weight) was intraperitoneally administered to rats 3 times with 24 h intervals, and the animals were sacrificed by bleeding at 24 h after the last administration. The hepatic regucalcin mRNA levels were markedly reduced by phenobarbital administration. This decrease was about 50% of control level with the 12 mg/100 g dose. Moreover, the hepatic regucalcin concentration was significantly decreased by the administration of phenobarbital (12 mg/100 g), although the serum regucalcin concentration was not altered appreciably. Meanwhile, serum transaminases (GOT and GPT) activities were not increased by the administration of phenobarbital (4 and 12 mg/100 g). The present study demonstrates that the expression of hepatic regucalcin mRNA is decreased by phenobarbital administration in rats, suggesting that regucalcin does not have a role in drug metabolism related to phenobarbital. 相似文献
7.
The expression of hepatic calcium-binding protein regucalcin mRNA in fetal rats was investigated. The alteration in regucalcin mRNA levels was analyzed by Northern blotting using liver regucalcin cDNA (0.9 kb with complete open reading frame). Hepatic regucalcin mRNA levels were progressively increased with fetal development; the mRNA was clearly expressed at 15 and 21 days of pregnancy but only slightly at the 8 days. Meanwhile, -actin mRNA levels in the fetal liver were remarkable at 8 and 15 days of pregnancy. The fetal liver regucalcin mRNA levels at 15 days of pregnancy were significantly decreased by overnight-fasting of maternal rats. The oral administration of calcium chloride (50 mg Ca/100 g body weight) to maternal rats at 15 days of pregnancy caused a remarkable elevation (about 2 fold) of regucalcin mRNA levels in the fetal liver; this increase was seen 60 and 180 min after the calcium administration. After birth, regucalcin mRNA was increasingly expressed in the livers of newborn and weanling rats, while hepatic -actin mRNA expression was not appreciably altered with increasing ages. These findings demonstrate that the expression of hepatic regucalcin mRNA is increased with fetal development, and that the gene expression may be stimulated by the ingestion of dietary calcium. 相似文献
8.
Expression of calcium-binding protein regucalcin mRNA in rat liver is stimulated by calcitonin: The hormonal effect is mediated through calcium 总被引:1,自引:0,他引:1
Masayoshi Yamaguchi Yoshitaka Kanayama Noriaki Shimokawa 《Molecular and cellular biochemistry》1994,136(1):43-48
The involvement of a hypocalcemic hormone calcitonin (CT) in the expression of hepatic Ca2+-binding protein regucalcin mRNA was investigated. The change of regucalcin mRNA levels was analyzed by Northern blotting using liver regucalcin complementary DNA (0.9 kb). A single oral administration of calcium chloride (100 mg Ca/100 g body weight) to rats induced a remarkable increase in the serum calcium concentration and a corresponding elevation of the liver calcium content during 120 min after the administration. Thyroparathyroidectomy (TPTX) did not cause a significant increase in the liver calcium content after calcium administration. Hepatic regucalcin mRNA level was markedly elevated by calcium administration; the level was about 180% of controls at 60 min after the administration. This increase was completely abolished by TPTX. A single subcutaneous administration of CT (synthetic eel CT; 25–100 MRC mU/100 g) to TPTX rats received oral administration of calcium (100 mg/100 g) produced a remarkable increase in hepatic regucalcin mRNA levels; the level was about 280% of controls with the dose of 25 MRC mU CT/100 g. The present finding suggests that the expression of hepatic mRNA is stimulated by CT, and that the hormonal effect is mediated through Ca2+ in rat liver. 相似文献
9.
Stimulatory effect of regucalcin on proteolytic activity in rat renal cortex cytosol: Involvement of thiol proteases 总被引:1,自引:0,他引:1
The effect of regucalcin, a calcium-binding protein, on neutral proteolytic activity in the cytosol of rat kidney cortex was investigated. Proteolytic activity was significantly increased by the presence of regucalcin (0. 01-0. 25 M) in the enzyme reaction mixture. This increase was not significantly altered by the addition of CaCl2 (0.01 and 1.0 mM) or EGTA (1.0 mM), indicating that the effect of regucalcin was independent on Ca2+. The effect of regucalcin to increase proteolytic activity was completely prevented in the presence of N-ethylmaleimide (5 mM), a modifying reagent of thiol groups. Proteolytic activity was clearly elevated by dithiothreitol (5 mM). This elevation was further enhanced by regucalcin (0.1 M). Meanwhile, the stimulatory effect of regucalcin on proteolytic activity was not significantly altered in the presence of diisopropylfluorophosphate (2.5 mM), an inhibitor of serine proteases. Also, the regucalcin effect was not appreciably changed by the addition of EDTA (2.5 mM), a chelator of metal ions, indicating that it is not involved in metal-related proteases. These results demonstrate that regucalcin can increase proteolytic activity in the cytosol of rat kidney cortex. Regucalcin may activate thiol proteases independent on Ca2+. 相似文献
10.
The molecular cloning of the cDNA coding for a Ca2+-binding proteinregucalcin and its mRNA expression in mouse liver were investigated. ThecDNA clone encoding a regucalcin was isolated from a mouse liver cDNAlibrary and sequenced. Analysis of the sequence of the cloned cDNA showedthat the cDNA encoded the complete amino acid sequence of the mouseregucalcin molecule; the cDNA had an open reading frame of 897 bp. Mouseregucalcin was composed of 299 amino acid residues, and its molecular weightwas estimated to be 33,406 Da. The amino acid sequence of mouse regucalcinhad 94% homology, as compared with that of rat regucalcin. Northernblot analysis with the mouse liver cDNA probe revealed that mouse regucalcinmRNA was mainly present in the liver but only slightly in the kidney with asize of 1.8 kb. Hepatic regucalcin mRNA level of male mouse was higher thanthat of female mouse. A single intraperitoneal administration of calciumchloride (5, 15, and 30 mg Ca2+/100 g body weight) to mice induced aremarkable increase in regucalcin mRNA in the liver; the increase inregucalcin mRNA levels at 30 min after calcium administration wasdose-dependent. The present results demonstrate that regucalcin mRNA in miceis uniquely expressed in the liver, and that its expression is stimulated bycalcium administration. 相似文献
11.
Masayoshi Yamaguchi Kimiko Oishi Mitsutaka Isogai 《Molecular and cellular biochemistry》1995,142(1):35-41
The effect of refeeding on the expression of Ca2+-binding protein regucalcin mRNA in the liver of fasted rats was investigated. When rats were fasted overnight, the hepatic regucalcin mRNA level was reduced about 70% of that in feeding rats. Refeeding produced a remarkable elevation of hepatic regucalcin mRNA level (about 150–170% of fasted rats). Liver regucalcin concentration was appreciably increased by refeeding, although it was not altered by fasting. The oral administration of glucose (2 g/kg body weight) to fasted rats caused a significant increase in hepatic regucalcin mRNA level. Moreover, hepatic regucalcin mRNA level was clearly elevated by a single subcutaneous administration of insulin (10 and 100 U/kg) to fasted rats. The hormonal effect was not further enhanced by the simultaneous administration of calcium chloride (250 mg Ca/kg) to fasted rats, although calcium administration stimulated regucalcin mRNA expression in the liver. The present study suggests that the expression of hepatic regucalcin mRNA stimulated by refeeding is significantly involved in the action of insulin and/or calcium as stimulating factors. 相似文献
12.
13.
Activatory effect of calcium-binding protein regucalcin on ATP-dependent calcium transport in the basolateral membranes of rat kidney cortex 总被引:1,自引:0,他引:1
The effect of regucalcin, a calcium-binding protein, on ATP-dependent Ca2+ transport in the basolateral membranes isolated from rat kidney cortex was investigated. The prepared membranes were in inside-out oriented and membrane vesicles. Ca2+-ATPase activity in the basolateral membranes was progressively elevated by increasing concentrations of regucalcin (10-8 to 10-6 M) in the reaction mixture. This increase was dependent on Ca2+ addition. The activatory effect of regucalcin on the enzyme is inhibited by the presence of digitonin (5 × 10-6%) which can solubilize the membranous lipids. Moreover, the regucalcin effect was clearly abolished by the presence of vanadate (0.1 mM) or N-ethylmaleimide (5.0 mM). However, the effect of calmodulin (6 × 10-7 M) to increase Ca2+-ATPase activity was not significantly inhibited by vanadate or N-ethylmaleimide, indicating that the action mode of regucalcin differs from that of calmodulin. Also, the activatory effect of regucalcin on Ca2+-ATPase was appreciably inhibited by addition of dibutyryl cAMP (10-5 and 10-3 M), while inositol 1,4,5-trisphosphate (10-7 and 10-5 M) had no effect. Dibutyryl cAMP itself did not have an effect on the enzyme activity. Furthermore, the 45Ca2+ uptake by the basolateral membranes was clearly increased by the presence of regucalcin (10-7 and 10-6 M). This increase was completely blocked by the presence of vanadate (0.1 mM), N-ethylmaleimide (5.0 mM) or dibutyryl cAMP (10-4 and 10-3 M) in the reaction mixture. These results clearly demonstrate that regucalcin, which is expressed in rat kidney cortex, can increase Ca2+-ATPase activity and Ca2+ uptake in the basolateral membranes. Regucalcin may play a cell physiologic role as an activator in the ATP-dependent Ca2+ pumps in the basolateral membranes from rat kidney cortex. 相似文献
14.
The alteration in calcium metabolism in rats ingested with saline was investigated. Rats were freely given saline as drinking water for 2 and 7 days. Calcium concentration in the serum was significantly elevated by saline ingestion for 2 and 7 days, while serum inorganic phosphorus concentration was not altered. Serum urea nitrogen concentration was significantly increased by saline ingestion for 7 days. Calcium content in the femoral-diaphyseal and metaphyseal tissues was not altered by saline ingestion for 7 days. Calcium content in the kidney cortex was significantly elevated by saline ingestion for 7 days. Ca2+-ATPase activity in the basolsateral membranes of kidney cortex was clearly increased by saline ingestion for 2 and 7 days. The enzyme activity was not altered by the addition of sodium chloride (10-3 and 10-2 M), parathyroid hormone (10-7 and 10-6 M), and calcitonin (3 × 10-8 and 3 × 10-7 M) in the enzyme reaction mixture. A calcium-binding protein regucalcin mRNA expression in the kidney cortex was markedly suppressed by saline ingestion for 7 days, although such a suppression was not seen for 2 days. These results suggest that saline ingestion causes the disturbance of calcium transport system in the kidney cortex of rats, and that the renal disorder may induce hypercalcemia. 相似文献
15.
Whether the gene expression of hepatic Ca2+-binding protein regucalcin is altered in hepatomas was investigated. The change in regucalcin mRNA levels was analyzed by Northern blotting using liver regucalcin complementary DNA (0.9 kb). Rat hepatoma was induced by continuous feeding of basal diet containing 0.06% 3-methyl-4-dimethylaminoazobenzene (3-Me-DAB). After 35 weeks feeding, rats were sacrificed, and the non-tumorous and tumorous tissues of the livers were removed. In individual rats, the regucalcin mRNA levels in the tumorous tissues were generally decreased in comparison with that of the non-tumorous tissues of the chemical-fed rats, although the chemical administration might decrease the mRNA expression in normal rat liver, suggesting that the chemical administration causes a suppresive effect on the mRNA expression. When the genomic DNA extracted from the liver tumorous tissues was digested with restriction enzymes (EcoRI, BamHI and HindIII) and analyzed by Southern blotting, no rear-ranged band was found in the regucalcin gene from the hepatoma. Interestingly, in the transplantable Morris hepatoma cells, the regucalcin mRNA was markedly expressed, while the albumin mRNA was expressed only slightly. The present study demonstrates that regucalcin mRNA is clearly expressed in the transformed cells (Morris hepatoma cells). 相似文献
16.
Jing Hui Xue Hiroko Takahashi Masayoshi Yamaguchi 《Journal of cellular biochemistry》2001,80(2):285-292
The effect of regucalcin, which is a regulatory protein of Ca2+ signaling, on Ca2+‐ATPase activity in isolated rat renal cortex mitochondria was investigated. The presence of regucalcin (50, 100, and 250 nM) in the enzyme reaction mixture led to a significant increase in Ca2+‐ATPase activity. Regucalcin significantly stimulated ATP‐dependent 45Ca2+ uptake by the mitochondria. Ruthenium red (10−6 M) or lanthunum chloride (10−6 M), an inhibitor of mitochondrial Ca2+ uptake, markedly inhibited regucalcin (100 nM)‐increased mitochondrial Ca2+‐ATPase activity and 45Ca2+ uptake. The effect of regucalcin (100 nM) in elevating Ca2+‐ATPase activity was completely prevented by the presence of digitonin (10−2%), a solubilizing reagent of membranous lipids, vanadate, an inhibitor of phosphorylation of ATPase, or dithiothreitol (50 mM), a protecting reagent of the sulfhydryl (SH) group of the enzyme. The activating effect of regucalcin (100 nM) on Ca2+‐ATPase activity was not further enhanced by calmodulin (0.30 μM) or dibutyryl cyclic AMP (10−4 M), which could increase Ca2+‐ATPase activity. Trifluoperazine (TFP; 50 μM), an antagonist of calmodulin, significantly decreased Ca2+‐ATPase activity. The activating effect of regucalcin on the enzyme was also seen in the presence of TFP, indicating that regucalcin's effect is not involved in mitochondrial calmodulin. The present study demonstrates that regucalcin can stimulate Ca2+‐pump activity in rat renal cortex mitochondria, and that the protein may act on an active site (SH group) related to phosphorylation of mitochondrial Ca2+‐ATPase. J. Cell. Biochem. 80:285–292, 2000. © 2000 Wiley‐Liss, Inc. 相似文献
17.
Inhibitory effect of regucalcin on protein phosphatase activity in the nuclei of rat kidney cortex 总被引:2,自引:0,他引:2
The role of regucalcin, which is a regulatory protein of calcium signaling, in the regulation of protein phosphatase activity in the nuclei of rat kidney cortex was investigated. Protein phosphatase activity towards phosphotyrosine, phosphoserine, and phosphothreonine was found in the nuclei. The enzyme activity towards three phosphoamino acids was significantly increased by the addition of calcium chloride (10-50 microM) in the enzyme reaction mixture. This increase was significantly inhibited by trifluoperazine (25 or 50 microM), an antagonist of calmodulin. The presence of regucalcin (50 or 100 nM) in the enzyme reaction mixture caused a significant decrease in protein phosphatase activity towards three phosphoamino acids. This effect was also seen in the presence of calcium (25 microM) and/or calmodulin (5 microg/ml). Protein phosphatase activity towards three phosphoamino acids was significantly increased in the presence of anti-regucalcin monoclonal antibody (25 or 50 ng/ml) in the enzyme reaction mixture. This effect was completely blocked by the addition of regucalcin (100 nM). The effect of antibody (25 ng/ml) in increasing protein phosphatase activity towards phosphotyrosine was significantly inhibited by vanadate (10(-4) M). Also, the antibody's effect towards phosphoserine and phosphothreonine was significantly inhibited by cyclosporin A (10(-5) M). Endogenous regucalcin was found in the nuclei of rat kidney cortex using Western blot analysis. Nuclear regucalcin level was significantly reduced by the administration of saline (0.9% NaCl) for seven days in rats. Protein phosphatase activity towards three phosphoamino acids was significantly decreased by saline administration. The effect of anti-regucalcin monoclonal antibody (25 ng/ml) in increasing protein phosphatase activity towards three phosphoamino acids was weakened in the renal cortex nuclei of saline-administrated rats. The present study demonstrates that endogenous regucalcin plays a suppressive role in the regulation of protein phosphatase activity in the nuclei of rat kidney cortex cells. 相似文献
18.
Calcium administration increases calcium-binding protein regucalcin concentration in the liver of rats 总被引:1,自引:0,他引:1
The alteration of regucalcin concentrations in the liver and serum of rats administered orally calcium is investigated. Rats received a single oral administration of calcium chloride solution (25, 50 and 75 mg Ca/100 g body weight). The administration of calcium (50 mg/100 g) produced a significant increase in liver regucalcin concentration between 30 and 180 min after the administration, while serum regucalcin concentration was not altered appreciably. The effect of calcium administration increasing liver regucalcin concentration was also seen with the dose of 25 mg/100 g. When liver cytosol prepared from normal rats was incubated for 6 h in the presence of 10 M Ca2+, the cytosolic regucalcin concentration at 3 and 6 h of incubation was decreased about 20% (p<0.05) as compared with the value at zero time point, indicating that the presence of Ca2+ does not inhibit the decomposition of liver cytosolic regucalcin. Moreover, serum regucalcin concentration was not significantly altered by the incubation for 6 h at 37°C, indicating a stability of regucalcin in rat serum. This suggests that the calcium administration-induced in liver regucalcin concentration is not based on the inhibition of regucalcin release from liver to serum. The present study demonstrates that regucalcin in the liver is clearly increased by calcium administration, presumably due to stimulating the protein synthesis. 相似文献
19.
Specific species and tissue differences for the gene expression of calcium-binding protein regucalcin 总被引:1,自引:0,他引:1
Noriaki Shimokawa Mitsutaka Isogai Masayoshi Yamaguchi 《Molecular and cellular biochemistry》1995,143(1):67-71
The existence and expression of gene encoding the Ca2+-binding protein regucalcin in various species and tissues were investigated with Southern and Northern hybridization analyses using regucalcin cDNA (0.9 kb of open reading frame). Genomic Southern hybridization analysis demonstrated that regucalcin gene was widely conserved among higher animals including human, monkey, rat, mouse, dog, bovine, rabbit and chicken. The gene was not found in yeast. The Northern blot analysis of poly (A)+RNAs extracted from the liver of various species showed that regucalcin mRNA was predominantly expressed in rat and mouse, although the expression was also seen in human, bovine and chicken. Furthermore, the enzyme-linked immunoadsorbent assay (ELISA) with rabbit-anti-regucalcin IgG indicated that hepatic regucalcin concentration was most pronounced in rat as compared with that of guinea pig, mouse and chicken. These observations show that the gene expression of regucalcin and its protein synthesis is unique in the liver of rats, suggesting the existence of a specific mechanism in demonstrating regucalcin synthesis from gene. 相似文献
20.
The effect of Ca2+-binding protein regucalcin on protein kinase activity in the nuclei of normal and regenerating rat livers was investigated. Protein kinase activity in the nuclei isolated from normal rat liver was significantly increased by addition of Ca2+ (500 μM) and calmodulin (10 μg/ml) in the enzyme reaction mixture. Nuclear protein kinase activity was significantly decreased in the presence of EGTA (1.0 mM), trifluoperazine (TFP; 20 μM), dibucaine (10−4 M), or staurosporine (10−7 M), indicating that Ca2+-dependent protein kinases are present in the nuclei. Protein kinase activity was significantly elevated in the liver nuclei obtained at 6 to 48 h after a partial hepatectomy. Hepatectomy-increased nuclear protein kinase activity was significantly decreased in the presence of EGTA (1.0 mM), TFP (20 μM), or staurosporine (10−7 M) in the enzyme reaction mixture. The presence of regucalcin (0.1–0.5 μM) caused a significant decrease in protein kinase activity in the nuclei obtained from normal and regenerating rat livers. Meanwhile, the nuclear protein kinase activity from normal and regenerating livers was significantly elevated in the presence of anti-regucalcin monoclonal antibody (50–200 ng/ml). The present study suggests that regucalcin plays a role in the regulation of protein kinase activity in the nuclei of proliferative liver cells. J. Cell. Biochem. 71:569–576, 1998. © 1998 Wiley-Liss, Inc. 相似文献