首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The goal of this study was to assess the potential cross-regulation of cyclic nucleotides in human corpus cavernosum (HCC). Incubation of primary cultures of HCC smooth muscle cells with either the NO donor sodium nitroprusside (SNP, 10 μM) or the phosphodiesterase type 5 (PDE 5) inhibitor sildenafil (50 nM) produced little or no changes in the intracellular cGMP levels. Incubation with both SNP and sildenafil produced marked increases in cGMP. Interestingly, incubation of cells with 10 μM of forskolin or PGE1 produced significant enhancement of cGMP accumulation. These increases were not further enhanced by the addition of SNP and sildenafil. Kinetic analyses of cGMP hydrolysis by PDE 5 showed that high concentrations of cAMP reversibly inhibited the enzyme with a Ki of 258 ± 54 μM. The increase in cGMP levels in response to cAMP generating agents is not due to assay artifact since cAMP did not cross-react with cGMP antibody. Our data suggest that cAMP up-regulates intracellular levels of cGMP, in part, by inhibition of PDE 5. We also noted that cGMP down-regulates cAMP synthesis via a mechanism requiring G-protein coupling of adenylyl cyclase. These observations may have important implications in the utility of pharmacotherapeutic agents targeting cyclic nucleotide metabolism for the treatment of erectile dysfunction.  相似文献   

2.
Nitric oxide (NO) inhibits platelet aggregation primarily via a cyclic 3'5'-guanosine monophosphate (cGMP)-dependent process. Sildenafil is a phosphodiesterase type 5 (PDE5) inhibitor that potentiates NO action by reducing cGMP breakdown. We hypothesised that sildenafil would augment the inhibitory effects of NO on in vitro platelet aggregation. After incubation with sildenafil or the soluble guanylate cyclase inhibitor H-(1,2,4)oxadiazolo(4,3-a)quinoxallin-1-one (ODQ), collagen-mediated human platelet aggregation was assessed in the presence of two NO donors, the cGMP-dependent sodium nitroprusside (SNP) and the cGMP-independent diethylamine diazeniumdiolate (DEA/NO). SNP and DEA/NO caused a concentration-dependent inhibition of platelet aggregation. ODQ inhibited and sildenafil augmented the effect of SNP, and to a lesser extent the effect of DEA/NO. We conclude that sildenafil potentiates NO-mediated inhibition of platelet aggregation through blockade of cGMP metabolism and that PDE5 inhibitors may have important antiplatelet actions relevant to the prevention of cardiovascular disease.  相似文献   

3.
Human platelets contain the cyclic nucleotide-hydrolyzing phosphodiesterases (PDEs) 2, 3 and 5. The cGMP-PDE5 inhibitors Sildenafil and Zaprinast have been demonstrated to potentiate the anti-platelet aggregatory effect of NO donors like sodium nitroprusside (SNP) in vitro but the mechanisms of Sildenafil's action on the secretory function of human platelets have not been analysed in detail. In the present paper, we show (1) that both compounds potentiate the SNP-induced increase in cGMP in human platelets concentration-dependently. (2) However, whereas Sildenafil plus SNP treatment only partially inhibits thrombin-induced release of serotonin, the less selective Zaprinast plus SNP cause a complete inhibition. (3) The inhibition mediated by Sildenafil plus SNP is limited to low compound concentrations at which cAMP levels are increased, probably due to cGMP-mediated inhibition of PDE3. (4) High concentrations of Sildenafil (plus SNP) neither affect cAMP levels, likely due to the activation of PDE2, nor inhibits the release of serotonin. Thus, increases in both cyclic nucleotides seem to control platelet function. (5) Accordingly, treatment with increasing concentrations of Sildenafil plus SNP and a selective PDE2 inhibitor, which by its own has no effect, induced a concentration-dependent increase in cAMP and complete inhibition of platelet activation. In summary, our data indicate that Sildenafil inhibits secretory function of human platelets at least in part due to the cGMP-mediated effects on intracellular cAMP and that entire inhibition of serotonin release from thrombin-activated platelets is controlled by both cyclic nucleotides.  相似文献   

4.
The side group of an invariant Gln in cGMP- and cAMP-specific phosphodiesterases (PDE) is held in different orientations by bonds with other amino acids and purportedly discriminates between guanine and adenine in cGMP and cAMP. In cGMP-specific PDE5, Gln(775) constrains the orientation of the invariant Gln(817) side chain, which forms bidentate bonds with 5'-GMP, vardenafil, sildenafil, and 3-isobutyl-1-methylxanthine (IBMX) (Sung, B. J., Hwang, K. Y., Jeon, Y. H., Lee, J. I., Heo, Y. S., Kim, J. H., Moon, J., Yoon, J. M., Hyun, Y. L., Kim, E., Eum, S. J., Park, S. Y., Lee, J. O., Lee, T. G., Ro, S., and Cho, J. M. (2003) Nature 425, 98-102; Huai, Q., Liu, Y., Francis, S. H., Corbin, J. D., and Ke, H. (2004) J. Biol. Chem. 279, 13095-13101; Zhang, K. Y., Card, G. L., Suzuki, Y., Artis, D. R., Fong, D., Gillette, S., Hsieh, D., Neiman, J., West, B. L., Zhang, C., Milburn, M. V., Kim, S. H., Schlessinger, J., and Bollag, G. (2004) Mol. Cell 15, 279-286). PDE5(Q817A) and PDE5(Q775A) were generated to test the hypotheses that Gln(817) is critical for cyclic nucleotide or inhibitor affinity and that Gln(775) immobilizes the Gln(817) side chain to provide cGMP/cAMP selectivity. Allosteric cGMP binding and the molecular mass of the mutant proteins were unchanged compared with PDE5(WT). For PDE5(Q817A), K(m) for cGMP or cAMP was weakened 60- or 2-fold, respectively. For PDE5(Q775A), K(m) for cGMP was weakened approximately 20-fold but was unchanged for cAMP. For PDE5(Q817A), vardenafil, sildenafil, and IBMX inhibitory potencies were weakened 610-, 48-, and 60-fold, respectively, indicating that Gln(817) is a major determinant of potency, especially for vardenafil, and that binding of vardenafil and sildenafil differs substantially. Sildenafil and vardenafil affinity were not significantly affected in PDE5(Q775A). It is concluded that Gln(817) is a positive determinant for PDE5 affinity for cGMP and several inhibitors; Gln(775), which perhaps restricts rotation of Gln(817) side chain, is critical for cGMP affinity but has no measurable effect on affinity for cAMP, sildenafil, or vardenafil.  相似文献   

5.
Inhibition of phosphodiesterase type 5 (PDE5) can relax systemic and coronary vessels by causing accumulation of cGMP. Both the endothelial dysfunction with decreased nitric oxide production and increased natriuretic peptide levels in congestive heart failure (CHF) have the potential to alter cGMP production, thereby influencing the response to PDE5 inhibition. Consequently, this study examined the effects of PDE5 inhibition with sildenafil in dogs with CHF produced by rapid ventricular pacing. CHF resulted in decreases of left ventricular (LV) systolic pressure, coronary blood flow, and the maximal first time derivative of LV pressure (LV dP/dt(max)) at rest and during treadmill exercise compared with normal, whereas resting LV end-diastolic pressure increased from 10 +/- 1.4 to 23 +/- 1.4 mmHg. Sildenafil (2 and 10 mg/kg per os) caused a 5- to 6-mmHg decrease of aortic pressure (P < 0.05), with no change of heart rate, LV systolic pressure, or LV dP/dt(max). Sildenafil caused no change in coronary flow or myocardial oxygen consumption in animals with CHF at rest or during exercise. In contrast to findings in normal animals, sildenafil did not augment endothelium-dependent coronary vasodilation in response to acetylcholine in animals with CHF. Furthermore, Western blotting showed decreased PDE5 protein expression in myocardium from failing hearts. These findings demonstrate that PDE5 contributes little to regulation of coronary hemodynamics in CHF.  相似文献   

6.
The effects of somatostatin on plasma renin activity (PRA) and blood pressure were evaluated in patients with essential hypertension (EH) and in normotensive subjects. All subjects examined were hospitalized and placed on a diet containing 7-8 g/day sodium chloride and received an intravenous infusion of somatostatin (500 microgram/20 ml of saline, for 60 min) in the basal condition. During somatostatin infusion, the mean blood pressure (MBP) remained unaffected in all patients with EH and the normotensive subjects, while the PRA decreased slightly in the EH group. When the patients with EH were classified according to their renin levels (low, normal and high), parallel significant decreases in MBP and PRA were found only in the high renin group during the somatostatin infusion. No significant change in MBP and PRA was observed in the other groups including the normotensive subjects. To assess the activity of synthetic somatostatin, the plasma levels of growth hormone (GH) and cyclic AMP were measured. These levels were lowered significantly during the infusion and the GH levels showed a rebound 15 min after cessation of the infusion. The cyclic AMP returned to the basal levels, but no rebound was observed. The above data indicate that the fall in blood pressure in the high renin group in the basal condition was probably due in part to reduced renin release by somatostatin, and the maintenance of high blood pressure especially in high renin EH.  相似文献   

7.
Sildenafil, a phosphodiesterase-5 inhibitor is FDA approved drug against erectile dysfunction. It is currently undergoing many clinical trials, alone or in combinations against different diseases. Treatment of neural progenitor cells with sildenafil is known to regulate their basal cGMP levels and enhance neurogenesis and differentiation. cGMP as well as cAMP are known to play a central role in the maintenance, repair and remodelling of the nervous system. In the present study, we report the neurodifferentiation property of sildenafil in neuroblastoma cancer cell line IMR-32. Sildenafil was found to induce the formation of neurite outgrowths that were found expressing neuronal markers, such as NeuN, NF-H and βIII tubulin. IS00384, a recently discovered PDE5 inhibitor by our laboratory, was also found to induce neurodifferentiation of IMR-32 cells. The effect of IS00384 on differentiation was even more profound than sildenafil. Both the compounds were found to elevate and activate the Guanine nucleotide exchange factor C3G, which is a regulator of differentiation in IMR-32 cells. They were also found to elevate the levels of cGMP and activate the AMPK-ACC and PI3K-Akt signalling pathways. These pathways are known to play important role in cytoskeletal rearrangements necessary for differentiation. This study highlights the role of phosphodiesterases-5 in neurodifferentiation and use of sildenafil and IS00384 as small molecule tools to study the process of cellular differentiation.  相似文献   

8.
Sustained cardiac pressure overload induces hypertrophy and pathological remodeling, frequently leading to heart failure. Genetically engineered hyperstimulation of guanosine 3',5'-cyclic monophosphate (cGMP) synthesis counters this response. Here, we show that blocking the intrinsic catabolism of cGMP with an oral phosphodiesterase-5A (PDE5A) inhibitor (sildenafil) suppresses chamber and myocyte hypertrophy, and improves in vivo heart function in mice exposed to chronic pressure overload induced by transverse aortic constriction. Sildenafil also reverses pre-established hypertrophy induced by pressure load while restoring chamber function to normal. cGMP catabolism by PDE5A increases in pressure-loaded hearts, leading to activation of cGMP-dependent protein kinase with inhibition of PDE5A. PDE5A inhibition deactivates multiple hypertrophy signaling pathways triggered by pressure load (the calcineurin/NFAT, phosphoinositide-3 kinase (PI3K)/Akt, and ERK1/2 signaling pathways). But it does not suppress hypertrophy induced by overexpression of calcineurin in vitro or Akt in vivo, suggesting upstream targeting of these pathways. PDE5A inhibition may provide a new treatment strategy for cardiac hypertrophy and remodeling.  相似文献   

9.
One of the key mediators of penile erectile function is nitric oxide (NO), which activates soluble guanylyl cyclase within the smooth muscle of erectile tissue and stimulates the production of cGMP. In addition to synthesis by cyclases, intracellular cGMP concentrations are tightly regulated by phosphodiesterases, which hydrolyze and inactivate cyclic nucleotides. In this study, we compared the inhibition of cGMP hydrolysis by vardenafil and sildenafil; two inhibitors selective for phosphodiesterase type 5 (PDE5). Vardenafil is a novel, high affinity PDE5 inhibitor currently under clinical development. In soluble extracts of human corpus cavernosum smooth muscle cells, vardenafil and sildenafil effectively inhibited cGMP hydrolysis at substrate concentrations of 1, 5 and 10 microM cGMP. The IC50 values for vardenafil were approximately 5-fold lower than for sildenafil at the substrate concentrations tested. Dixon plot analyses of the inhibition data demonstrated that vardenafil had a smaller inhibition constant (Ki = 4.5 nM) than sildenafil (Ki = 14.7 nM) in the same cellular extracts. In intact cells, 10 microM of the nitric oxide donor sodium nitroprusside resulted in a minimal (17%) increase in cGMP, relative to basal levels (321 +/- 65 fmol/mg prot). Treatment of cells with 10, 50 or 100 nM vardenafil, in the presence of 10 microM sodium nitroprusside, elevated cGMP levels in a dose dependent fashion, from 63% to 137% of basal levels. Equimolar concentrations of sildenafil also caused dose dependent increases in intracellular cGMP, but to a lesser extent (27-60%). These observations suggest that vardenafil is a more potent PDE5 inhibitor, than sildenafil in vitro. The more pronounced increase of cGMP in the presence of NO in intact cells suggests that vardenafil will be effective at lower doses than sildenafil under clinical conditions.  相似文献   

10.
The relationship between plasma renin activity (PRA) at rest and physical fitness was studied in 40 normal young subjects on a liberal sodium intake. Plasma renin activity was measured in arterial blood withdrawn at the end of a 30-min period of rest in recumbency, while physical fitness was expressed by the highest oxygen uptake achieved during an uninterrupted graded exercise test performed in the sitting position on an electromagnetically braked ergometer bicycle (peak VO2). Log PRA correlated significantly and inversely with peak VO2 adjusted for body weight (r = -0.34; P less than 0.05) in single regression analysis. Using multiple regression and adjusted peak VO2, age, urinary sodium excretion and mean intra-arterial pressure as independent variables, no combination of two or more independent variables yielded significant partial correlation coefficients with log PRA. This correlation suggests that PRA at rest is inversely related to the subject's physical fitness.  相似文献   

11.
Blood pressure, plasma renin activity, plasma sodium concentration, plasma potassium concentration, dietary sodium intake, and duration of dialysis have been measured under standard conditions in 89 patients on maintenance haemodialysis. No significant relation was found between plasma renin activity and blood pressure. Statistically significant correlations were found between plasma renin activity and plasma sodium concentration and between plasma renin activity and dietary sodium intake.Only one patient was found to have uncontrollable hypertension associated with a markedly raised plasma renin activity. Reasons are given for not performing bilateral nephrectomy in this patient. We believe the low incidence of uncontrollable hypertension and hyperreninaemia in our patients to be due to their slow introduction to haemodialysis, thus preventing violent swings in body weight, blood pressure, and renin secretion.Although plasma renin activity did fall with duration of dialysis, all 15 patients who have been on maintenance dialysis for longer than five years have normal levels.  相似文献   

12.
Labile hypertension is often associated with elevated cardiac output, increased plasma renin activity (PRA) and urinary cyclic AMP excretion in response to upright posture and to isoproterenol. The β-blocking agent propranolol was demonstrated to be an effective therapeutic agent in this condition. The effect of posture on cyclic AMP, PRA, pulse rate and blood pressure was therefore studied during the administration of propranolol and a placebo in patients with labile hypertension. With the patient on placebo, upright posture induced an increase in pulse rate, cyclic AMP excretion and PRA. Propranolol administration decreased the recumbent and upright blood pressures, pulse rate and PRA. Cyclic AMP excretion remained unchanged in the recumbent position but the postural increase was abolished. No appreciable changes in catecholamine excretion occurred during propranolol administration. Propranolol normalizes some humoral as well as hemodynamic abnormalities of labile hypertension and therefore may be of benefit in long-term treatment and possibly also in the prevention of stable hypertension.  相似文献   

13.
We utilized rat fetal lung fibroblasts (RFL-6) to evaluate our PDE5 inhibitors at cellular level and observed a decrease in cGMP accumulation induced by sodium nitroprusside (SNP) and PDE5 inhibitors with passage. To further investigate this observation, we examined cGMP synthesis via soluble guanylyl cyclase (sGC) and degradation via phosphodiesterases (PDEs) at different passages. At passage (p)4, p9, p14, major cGMP and cAMP degradation activities were contributed by PDE5 and PDE4, respectively. The PDE5 activity decreased 50% from p4 to p14, while PDE4 activity doubled. The cGMP accumulation was evaluated in the presence of sodium nitroprusside (SNP) and/or PDE inhibitors in p4 and p14 cells. SNP together with sildenafil, a PDE5 inhibitor, induced dose-dependent increase in cGMP levels in cells at p4, but showed little effect on cells at p14. The possible down regulation of sGC at mRNA level was explored using real-time RT-PCR. The result showed the mRNA level of the alpha1 subunit of sGC decreased about 98% by p9, while the change on beta1 mRNA was minimal. Consistently, sGC activities in cell lysate decreased by 94% at p9. Forskolin stimulated a dramatic increase in cAMP levels in cells at all passages examined. Our results show that sGC activity decreased significantly and rapidly with passage due to a down regulation of the alpha1 subunit mRNA, yet the adenylyl cyclase activity was not compromised. This study further emphasized the importance of considering passage number when using cell culture as a model system to study NO/cGMP pathway.  相似文献   

14.
Synthesis of new sildenafil analogues containing a phosphonate group in the 5(')-sulfonamide moiety of the phenyl ring, 12a-e, 13a-d, and 14a-d, and evaluation of their in vitro PDE5 inhibitory activity are disclosed. Enzyme assays revealed that maximum 10-fold increase in PDE5 inhibitory activity, compared with sildenafil, was achieved by introducing a phosphonate group in the 5(')-sulfonamide moiety. Docking model of (PDE5: 12d) complex shows that the PDE5-bound conformation of 12d matches completely with that of sildenafil, while 12d is partially overlapped with cGMP with ethyl phosphonate group of 12d superimposed onto the cyclic phosphate group of cGMP.  相似文献   

15.
cGMP signaling regulates epithelial fluid transport by Drosophila Malpighian (renal) tubules. In order to directly evaluate the importance of cGMP-degrading phosphodiesterases (PDEs) in epithelial transport, bovine PDE5 (a bona fide cGMP-PDE), was ectopically expressed in vivo. Transgenic UAS-PDE5 Drosophila were generated, and PDE5 expression was driven in specified tubule cells in vivo by cell-specific GAL4 drivers. Targeted expression was verified by PCR and Western blotting. Immunolocalization of PDE5 in tubule confirmed specificity of expression and demonstrated localization to the apical plasma membrane. GAL4/UAS-PDE5 tubules exhibit increased cG-PDE activity and reduced basal cGMP levels compared with control lines. We show that wild-type and control tubules are sensitive to the PDE5-specific inhibitor sildenafil and that GAL4/UAS-PDE5 tubules display enhanced sensitivity to sildenafil, compared with controls. cGMP content in GAL4/UAS-PDE5 tubules is restored to control levels by treatment with sildenafil. Thus bovine PDE5 retains cGMP-degrading activity and inhibitor sensitivity when expressed in Drosophila. Expression of PDE5 in tubule principal cells results in an epithelial phenotype, reducing rates of basal and cGMP-/Cardioaccelatory peptide(2b)(CAP(2b))-stimulated fluid transport. Furthermore, inhibition of PDE5 activity by sildenafil restores basal and cGMP-stimulated fluid transport rates to control levels. However, corticotrophin releasing factor-like-stimulated transport, which is activated by cAMP signaling, was unaffected, confirming that only cGMP-stimulated signaling events in tubule are compromised by overexpression of PDE5. Successful ectopic expression of a vertebrate cG-PDE in Drosophila has shown that cG-PDE has a critical role in tubule function in vivo and that cG-PDE function is conserved across evolution. The transgene also provides a generic tool for the analysis of cGMP signaling in Drosophila.  相似文献   

16.
We examined the effect of oral contraceptive (OC) usage on the renin angiotensin system (RAS) in two related experiments. In the first experiment, subjects were 34 healthy, normotensive, premenopausal women, 15 OC users and 19 OC nonusers, mean age 25 +/- 1 yr, ingesting a controlled sodium diet. We assessed arterial pressure, glomerular filtration rate, effective renal plasma flow, renal vascular resistance (RVR), and filtration fraction (FF) using inulin and p-aminohippurate clearance techniques, both at baseline and in response to the ANG II receptor blocker losartan. In the second experiment, in similar subjects, 10 OC users and 10 nonusers, we examined circulating RAS components [angiotensinogen, ANG II, aldosterone, plasma renin activity (PRA), and active renin] in response to incremental lower body negative pressure (LBNP), to determine whether renin secretion is suppressed by OC usage. OC users exhibited elevations in systolic blood pressure, RVR, and FF compared with nonusers, which were partially corrected by losartan. In the LBNP phase of the study, baseline measures of PRA, angiotensinogen, ANG II, and aldosterone were all increased in the OC group compared with the control group. Active renin levels did not differ between groups. Incremental LBNP resulted in increased circulating levels of RAS components in both groups. We conclude that the RAS is activated in women using OCs. There was no evidence that decreases in renin secretion result in normalization of the RAS as a whole.  相似文献   

17.
The regulatory domain of the cGMP-binding cGMP-specific 3':5'-cyclic nucleotide phosphodiesterase (PDE5) contains two homologous segments of amino acid sequence that encode allosteric cyclic nucleotide-binding sites, referred to as site a and site b, which are highly selective for cGMP over cAMP. The possibility that the state of protonation in these sites contributes to cyclic nucleotide selectivity was investigated. The binding of cGMP or cAMP was determined using saturation and competition kinetics at pH values between 5.2 and 9.5. The total cGMP binding by PDE5 was unchanged by variation in pH, but the relative affinity for cGMP versus cAMP progressively decreased as the pH was lowered. Using site-directed mutagenesis, a conserved residue, Asp-289, in site a of PDE5 has been identified as being important for cyclic nucleotide discrimination in this site. It is proposed that deprotonation of Asp-289 enhances the number and strength of bonds formed with cGMP, while concomitantly decreasing the interactions with cAMP.  相似文献   

18.
Vascular endothelial cells release proteinases that degrade the extracellular matrix (ECM), thus enabling cell migration during angiogenesis and vasculogenesis. Sildenafil citrate stimulates the nitric oxide-cyclic guanosine monophosphate pathway through inhibition of phosphodiesterase type V (PDE5). In this report, we examined the mechanisms underlying sildenafil citrate-induced cell migration using cultured mouse aortic endothelial cells (MAECs). Sildenafil citrate induced migration and proteinase secretion by murine endothelial cells. Sildenafil citrate induced the secretion of matrix metalloproteinase-2 (MMP-2) and MMP-9, which is inhibited by NF-κB inhibitors. Sildenafil citrate also induced the secretion of plasmin, which is inhibited by Pl 3′-kinase inhibitors. It is suggested that sildenafil citrate-induced migrating activity in endothelial cells may be accomplished by increased secretion of proteinases.  相似文献   

19.
The effect of prostaglandin E1 (PGE1) on plasma renin activity (PRA) and plasma aldosterone concentration (PAC) was studied in the hypertensive subjects treated with or without 75 mg indomethacin or 60 mg propranolol for a week. Subsequent to the treatment with indomethacin for a week, PRA and PAC levels were decreased as compared to the control, without changes in the blood pressure and heart rate. During the infusion of PGE1, the blood pressure was decreased and the pulse rate was increased. PRA and PAC levels were also elevated. These changes of parameters were not different between the control and the indomethacin-treated subjects. PRA and PAC were suppressed after the treatment with propranolol. With the infusion of PGE1, the level of PRA was not significantly elevated, while, PAC was significantly increased by the infusion of 100 ng/Kg/min of PGE1. During the infusion of PGE1, the blood pressure was decreased while the pulse rate was increased in the subjects treated with propranolol. However, the elevation of the pulse rate was less remarkable than the control. These data indicate that PGE1 have important roles in the regulation of the release of renin and aldosterone. These findings also suggest that PGE1 may act to stimulate the secretion of aldosterone in man.  相似文献   

20.
The interaction between nitric oxide (NO) and renin is controversial. cAMP is a stimulating messenger for renin, which is degraded by phosphodiesterase (PDE)-3. PDE-3 is inhibited by cGMP, whereas PDE-5 degrades cGMP. We hypothesized that if endogenous cGMP was increased by inhibiting PDE-5, it could inhibit PDE-3, increasing endogenous cAMP, and thereby stimulate renin. We used the selective PDE-5 inhibitor zaprinast at 20 mg/kg body wt ip, which we determined would not change blood pressure (BP) or renal blood flow (RBF). In thiobutabarbital (Inactin)-anesthetized rats, renin secretion rate (RSR) was determined before and 75 min after administration of zaprinast or vehicle. Zaprinast increased cGMP excretion from 12.75 +/- 1.57 to 18.67 +/- 1.87 pmol/min (P < 0.003), whereas vehicle had no effect. Zaprinast increased RSR sixfold (from 2.95 +/- 1.74 to 17.62 +/- 5.46 ng ANG I. h(-1) x min(-1), P < 0.024), while vehicle had no effect (from 4.08 +/- 2.02 to 3.87 +/- 1.53 ng ANG I x h(-1) x min(-1)). There were no changes in BP or RBF. We then tested whether the increase in cGMP could be partially due to the activity of the neuronal isoform of NO synthase (nNOS). Pretreatment with the nNOS inhibitor 7-nitroindazole (7-NI; 50 mg/kg body wt) did not change BP or RBF but attenuated the renin-stimulating effect of zaprinast by 40% compared with vehicle. In 7-NI-treated animals, zaprinast-stimulated cGMP excretion was attenuated by 48%, from 9.17 +/- 1.85 to 13.60 +/- 2.15 pmol/min, compared with an increase from 10.94 +/- 1.90 to 26.38 +/- 3.61 pmol/min with zaprinast without 7-NI (P < 0.04). This suggests that changes in endogenous cGMP production at levels not associated with renal hemodynamic changes are involved in a renin-stimulatory pathway. One source of this cGMP may be nNOS generation of NO in the kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号