首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tumor suppressor p53 is required for the maintenance of genomic integrity following DNA damage. One mechanism by which p53 functions is to induce a block in the transition between the G(1) and S phase of the cell cycle. Previous studies indicate that the Krüppel-like factor 4 (KLF4) gene is activated following DNA damage and that such activation depends on p53. In addition, enforced expression of KLF4 causes G(1)/S arrest. The present study examines the requirement of KLF4 in mediating the p53-dependent cell cycle arrest process in response to DNA damage. We show that the G(1) population of a colon cancer cell line, HCT116, that is null for the p53 alleles (-/-) was abolished following gamma irradiation compared with cells with wild-type p53 (+/+). Conditional expression of KLF4 in irradiated HCT116 p53-/- cells restored the G(1) cell population to a level similar to that seen in irradiated HCT116 p53+/+ cells. Conversely, treatment of HCT116 p53+/+ cells with small interfering RNA (siRNA) specific for KLF4 significantly reduced the number of cells in the G(1) phase following gamma irradiation compared with the untreated control or those treated with a nonspecific siRNA. In each case the increase or decrease in KLF4 level because of conditional induction or siRNA inhibition, respectively, was accompanied by an increase or decrease in the level of p21(WAF1/CIP1). Results of our study indicate that KLF4 is an essential mediator of p53 in controlling G(1)/S progression of the cell cycle following DNA damage.  相似文献   

2.
Cytoglobin (Cygb) is an emerging tumor suppressor gene silenced by promoter hypermethylation in many human tumors. So far, the precise molecular mechanism underlying its tumor suppressive function remains poorly understood. Here, we identified Cygb as a genotoxic stress-responsive hemoprotein upregulated upon sensing cellular DNA damage. Our studies demonstrated that Cygb physically associates with and stabilizes p53, a key cellular DNA damage signaling factor. We provide evidence that Cygb extends the half-life of p53 by blocking its ubiquitination and subsequent degradation. We show that, upon DNA damage, cells overexpressing Cygb displayed proliferation defect by rapid accumulation of p53 and its target gene p21, while Cygb knockdown cells failed to efficiently arrest in G1 phase in response to DNA insult. These results suggest a possible involvement of Cygb in mediating cellular response to DNA damage and thereby contributing in the maintenance of genomic integrity. Our study thus presents a novel insight into the mechanistic role of Cygb in tumor suppression.  相似文献   

3.
Human DNA mismatch repair (MMR) is involved in the removal of DNA base mismatches that arise either during DNA replication or are caused by DNA damage. In this study, we show that the activation of the MMR component hMLH1 in response to doxorubicin (DOX) treatment requires the presence of BRCA1 and that this phenomenon is mediated by an ATM/ATR dependent phosphorylation of the hMLH1 Ser-406 residue. BRCA1 is an oncosuppressor protein with a central role in the DNA damage response and it is a critical component of the ATM/ATR mediated checkpoint signaling. Starting from a previous finding in which we demonstrated that hMLH1 is able to bind to BRCA1, in this study we asked whether BRCA1 might be the bridge for ATM/ATR dependent phosphorylation of the hMLH1 molecular partner. We found that: (i) the negative modulation of BRCA1 expression is able to produce a remarkable reversal of hMLH1 stabilization, (ii) BRCA1 is required for post-translational modification produced by DOX treatment on hMLH1 which is, in turn, attributed to the ATM/ATR activity, (iii) the serine 406 phosphorylatable residue is critical for hMLH1 activation by ATM/ATR via BRCA1. Taken together, our data lend support to the hypothesis suggesting an important role of this oncosuppressor as a scaffold or bridging protein in DNA-damage response signaling via downstream phosphorylation of the ATM/ATR substrate hMLH1.  相似文献   

4.
5.
The mechanism of cell cycle arrest of tumor cells induced by ganoderic acid Me (GA-Me) is not understood. In this work, GA-Me was found to possess remarkable cytotoxicity on highly metastatic lung carcinoma 95-D cell line in both dose- and time-dependent manners. The effect of GA-Me on cell cycle arrest was found in 95-D, p53-null lung cancer cells H1299, HCT-116 p53+/+ and HCT-116 p53?/? human colon cancer cells. To obtain an insight into the role of p53 in cell cycle arrest by GA-Me, 95-D, H1299, HCT-116 p53+/+ and HCT-116 p53?/? cells were used for further investigation. GA-Me arrested cell cycle at G1 phase in 95-D and HCT-116 p53+/+ cells while S phase or G1/S transition arrest in H1299 and HCT-116 p53?/? cells. The results suggested that p53 may be a target of GA-Me, and it may be looked at as a new promising candidate for the treatment of carcinoma cells.  相似文献   

6.
Poly(ADP-ribose) polymerase-1 (PARP-1) and the p53 tumor suppressor protein are both involved in the cellular response to genotoxic stress. Upon binding to the site of DNA strand breakage, PARP-1 is activated, leading to rapid and transient poly(ADP-ribosyl)ation of nuclear proteins using NAD+ as substrate. To investigate the role of PARP-1 in the p53 response to ionizing radiation in human cells, PARP-1 function was disrupted in wild-type p53 expressing MCF-7 and BJ/TERT cells using two strategies: chemical inhibition with 1,5-dihydroxyisoquinoline, and trans-dominant inhibition by overexpression of the PARP-1 DNA-binding domain. Although a number of proteins can catalyze poly(ADP-ribosyl)ation in addition to PARP-1, we show that PARP-1 is the only detectable active species in BJ/TERT and MCF-7 cells. 1,5-Dihydroxyisoquinoline treatment prior to ionizing radiation delayed and attenuated the induction of two p53-responsive genes, p21 and mdm-2, and led to suppression of the p53-mediated G1-arrest response in MCF-7 and BJ/TERT cells. Trans-dominant inhibition of PARP-1 by overexpression of the PARP-1 DNA-binding domain in MCF-7 cells also led to a delay and attenuation in p21 induction and suppression of the p53-mediated G1 arrest response to ionizing radiation. Hence, inhibition of endogenous PARP-1 function suppresses the transactivation function of p53 in response to ionizing radiation. This study establishes PARP-1 as a critical regulator of the p53 response to DNA damage.  相似文献   

7.

Background

Major genomic surveillance mechanisms regulated in response to DNA damage exist at the G1/S and G2/M checkpoints. It is presumed that these delays provide time for the repair of damaged DNA. Cells have developed multiple DNA repair pathways to protect themselves from different types of DNA damage. Oxidative DNA damage is processed by the base excision repair (BER) pathway. Little is known about the BER of ionizing radiation-induced DNA damage and putative heterogeneity of BER in the cell cycle context. We measured the activities of three BER enzymes throughout the cell cycle to investigate the cell cycle-specific repair of ionizing radiation-induced DNA damage. We further examined BER activities in G2 arrested human cells after exposure to ionizing radiation.

Results

Using an in vitro incision assay involving radiolabeled oligonucleotides with specific DNA lesions, we examined the activities of several BER enzymes in the whole cell extracts prepared from synchronized human HeLa cells irradiated in G1 and G2 phase of the cell cycle. The activities of human endonuclease III (hNTH1), a glycosylase/lyase that removes several damaged bases from DNA including dihydrouracil (DHU), 8-oxoguanine-DNA glycosylase (hOGG1) that recognizes 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxoG) lesion and apurinic/apyrimidinic endonuclease (hAPE1) that acts on abasic sites including synthetic analog furan were examined.

Conclusion

Overall the repair activities of hNTH1 and hAPE1 were higher in the G1 compared to G2 phase of the cell cycle. The percent cleavages of oligonucleotide substrate with furan were greater than substrate with DHU in both G1 and G2 phases. The irradiation of cells enhanced the cleavage of substrates with furan and DHU only in G1 phase. The activity of hOGG1 was much lower and did not vary within the cell cycle. These results demonstrate the cell cycle phase dependence on the BER of ionizing radiation-induced DNA damage. Interestingly no evidence of enhanced BER activities was found in irradiated cells arrested in G2 phase.  相似文献   

8.
Study of the mechanism(s) of genomic instability induced by the c-myc proto-oncogene has the potential to shed new light on its well-known oncogenic activity. However, an underlying mechanism(s) for this phenotype is largely unknown. In the present study, we investigated the effects of c-Myc overexpression on the DNA damage-induced G(1)/S checkpoint, in order to obtain mechanistic insights into how deregulated c-Myc destabilizes the cellular genome. The DNA damage-induced checkpoints are among the primary safeguard mechanisms for genomic stability, and alterations of cell cycle checkpoints are known to be crucial for certain types of genomic instability, such as gene amplification. The effects of c-Myc overexpression were studied in human mammary epithelial cells (HMEC) as one approach to understanding the c-Myc-induced genomic instability in the context of mammary tumorigenesis. Initially, flow-cytometric analyses were used with two c-Myc-overexpressing, nontransformed immortal lines (184A1N4 and MCF10A) to determine whether c-Myc overexpression leads to alteration of cell cycle arrest following ionizing radiation (IR). Inappropriate entry into S phase was then confirmed with a bromodeoxyuridine incorporation assay measuring de novo DNA synthesis following IR. Direct involvement of c-Myc overexpression in alteration of the G(1)/S checkpoint was then confirmed by utilizing the MycER construct, a regulatable c-Myc. A transient excess of c-Myc activity, provided by the activated MycER, was similarly able to induce the inappropriate de novo DNA synthesis following IR. Significantly, the transient expression of full-length c-Myc in normal mortal HMECs also facilitated entry into S phase and the inappropriate de novo DNA synthesis following IR. Furthermore, irradiated, c-Myc-infected, normal HMECs developed a sub-G(1) population and a >4N population of cells. The c-Myc-induced alteration of the G(1)/S checkpoint was also compared to the effects of expression of MycS (N-terminally truncated c-Myc) and p53DD (a dominant negative p53) in the HMECs. We observed inappropriate hyperphosphorylation of retinoblastoma protein and then the reappearance of cyclin A, following IR, selectively in full-length c-Myc- and p53DD-overexpressing MCF10A cells. Based on these results, we propose that c-Myc attenuates a safeguard mechanism for genomic stability; this property may contribute to c-Myc-induced genomic instability and to the potent oncogenic activity of c-Myc.  相似文献   

9.
10.
11.
12.
13.
Targeting checkpoint kinases has been shown to have a potential chemosensitizing effect in cancer treatment. However, inhibitors of such kinases preferentially abrogate the DNA damage-induced G2 checkpoint in p53-/- as opposed to p53+/+ cells. The mechanisms by which p53 (TP53) can prevent abrogation of the G2 checkpoint are unclear. Using normal human diploid p53+/+ and p53-/- fibroblasts as model systems, we have compared the effects of three checkpoint inhibitors, caffeine, staurosporine and UCN-01, on gamma-radiation-induced G2 arrest. The G2 arrest in p53+/+ cells was abrogated by caffeine, but not by staurosporine and UCN-01, whereas the G2 arrest in p53-/- cells was sensitive to all three inhibitors. Chk2 (CHEK1) phosphorylation was maintained in the presence of all three inhibitors in both p53+/+ and p53-/- cells. Chk1 phosphorylation was maintained only in the presence of staurosporine and UCN-01 in p53+/+ cells. In the presence of caffeine Chk1 phosphorylation was inhibited regardless of p53 status. The pathway of Chk1 phosphorylation --> Cdc25A degradation --> inhibition of cyclin B1/Cdk1 activity --> G2 arrest is accordingly resistant to staurosporine and UCN-01 in p53+/+ cells. Moreover, sustained phosphorylation of Chk1 in the presence of staurosporine and UCN-01 is strongly related to phosphorylation of p53. The present study suggests the unique role of Chk1 in preventing abrogation of the G2 checkpoint in p53+/+ cells.  相似文献   

14.
15.
p53 can play a key role in response to DNA damage by activating a G1 cell cycle arrest. However, the importance of p53 in the cell cycle response to UV radiation is unclear. In this study, we used normal and repair-deficient cells to examine the role and regulation of p53 in response to UV radiation. A dose-dependent G1 arrest was observed in normal and repair-deficient cells exposed to UV. Expression of HPV16-E6, or a dominant-negative p53 mutant that inactivates wildtype p53, caused cells to become resistant to this UV-induced G1 arrest. However, a G1 to S-phase delay was still observed after UV treatment of cells in which p53 was inactivated. These results indicate that UV can inhibit G1 to S-phase progression through p53-dependent and independent mechanisms. Cells deficient in the repair of UV-induced DNA damage were more susceptible to a G1 arrest after UV treatment than cells with normal repair capacity. Moreover, no G1 arrest was observed in cells that had completed DNA repair prior to monitoring their movement from G1 into S-phase. Finally, p53 was stabilized under conditions of a UV-induced G1 arrest and unstable when cells had completed DNA repair and progressed from G1 into S-phase. These results suggest that unrepaired DNA damage is the signal for the stabilization of p53, and a subsequent G1 phase cell cycle arrest in UV-irradiated cells.  相似文献   

16.
The kinase ATR is activated by RPA-coated single-stranded DNA generated at aberrant replicative structures and resected double strand breaks. While many hundred candidate ATR substrates have been identified, the essential role of ATR in the replicative stress response has impeded the study of ATR kinase-dependent signalling. Using recently developed selective drugs, we show that ATR inhibition has a significantly more potent effect than ATM inhibition on ionizing radiation (IR)-mediated cell killing. Transient ATR inhibition for a short interval after IR has long-term consequences that include an accumulation of RPA foci and a total abrogation of Chk1 S345 phosphorylation. We show that ATR kinase activity in G1 phase cells is important for survival after IR and that ATR colocalizes with RPA in the absence of detectable RPA S4/8 phosphorylation. Our data reveal that, unexpectedly, ATR kinase inhibitors may be more potent cellular radiosensitizers than ATM kinase inhibitors, and that this is associated with a novel role for ATR in G1 phase cells.  相似文献   

17.
We have previously described a novel DNA repair response that is induced in cells irradiated with ionizing radiation at the G1/S-phase border and is characterized by the formation of very long repair patches (VLRP) containing at least 150 nucleotides. In the current study, we examined whether there is a requirement for TP53 in this induced repair process. We find that in normal cells, the endogenous levels of TP53 are elevated at the G1/S-phase border, and that these levels are not further increased after irradiation with 5 Gy. In cells expressing the E6 oncoprotein of human papillomavirus, which inactivates TP53 function, there is a greatly accentuated induction of the VLRP that nearly masks the constitutive repair response. Incubation of cells in the presence of cycloheximide, which inhibits the induced repair, reveals the presence of the constitutive repair patches. All cells examined continue to replicate their DNA after exposure to ionizing radiation. In contrast, cells irradiated with UV radiation at the G1/S-phase border show an induction of TP53 protein and halt DNA synthesis, but do not induce the VLRP. Our results show that TP53 is not required for the constitutive or induced repair of DNA damage induced by ionizing radiation. In addition, these results suggest that TP53 may suppress the formation of VLRP and that the progression of cells through S phase after exposure to ionizing radiation signals the induced repair response.  相似文献   

18.
Growing evidence indicates a central role for p53 in mediating cell cycle arrest in response to mitotic spindle defects so as to prevent rereplication in cells in which the mitotic division has failed. Here we report that a transient inhibition of spindle assembly induced by nocodazole, a tubulin-depolymerizing drug, triggers a stable activation of p53, which can transduce a cell cycle inhibitory signal even when the spindle-damaging agent is removed and the spindle is allowed to reassemble. Cells transiently exposed to nocodazole continue to express high levels of p53 and p21 in the cell cycle that follows the transient exposure to nocodazole and become arrested in G(1), regardless of whether they carry a diploid or polyploid genome after mitotic exit. We also show that p53 normally associates with centrosomes in mitotic cells, whereas nocodazole disrupts this association. Together these results suggest that the induction of spindle damage, albeit transient, interferes with the subcellular localization of p53 at specific mitotic locations, which in turn dictates cell cycle arrest in the offspring of such defective mitoses.  相似文献   

19.
20.
53BP1 is a p53 binding protein of unknown function that binds to the central DNA-binding domain of p53. It relocates to the sites of DNA strand breaks in response to DNA damage and is a putative substrate of the ataxia telangiectasia-mutated (ATM) kinase. To study the biological role of 53BP1, we disrupted the 53BP1 gene in the mouse. We show that, similar to ATM(-/-) mice, 53BP1-deficient mice were growth retarded, immune deficient, radiation sensitive, and cancer prone. 53BP1(-/-) cells show a slight S-phase checkpoint defect and prolonged G(2)/M arrest after treatment with ionizing radiation. Moreover, 53BP1(-/-) cells feature a defective DNA damage response with impaired Chk2 activation. These data indicate that 53BP1 acts downstream of ATM and upstream of Chk2 in the DNA damage response pathway and is involved in tumor suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号