首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 851 毫秒
1.

Background and aims

South America and Oceania possess numerous floristic similarities, often confirmed by morphological and molecular data. The carnivorous Drosera meristocaulis (Droseraceae), endemic to the Neblina highlands of northern South America, was known to share morphological characters with the pygmy sundews of Drosera sect. Bryastrum, which are endemic to Australia and New Zealand. The inclusion of D. meristocaulis in a molecular phylogenetic analysis may clarify its systematic position and offer an opportunity to investigate character evolution in Droseraceae and phylogeographic patterns between South America and Oceania.

Methods Drosera meristocaulis

was included in a molecular phylogenetic analysis of Droseraceae, using nuclear internal transcribed spacer (ITS) and plastid rbcL and rps16 sequence data. Pollen of D. meristocaulis was studied using light microscopy and scanning electron microscopy techniques, and the karyotype was inferred from root tip meristem.

Key Results

The phylogenetic inferences (maximum parsimony, maximum likelihood and Bayesian approaches) substantiate with high statistical support the inclusion of sect. Meristocaulis and its single species, D. meristocaulis, within the Australian Drosera clade, sister to a group comprising species of sect. Bryastrum. A chromosome number of 2n = approx. 32–36 supports the phylogenetic position within the Australian clade. The undivided styles, conspicuous large setuous stipules, a cryptocotylar (hypogaeous) germination pattern and pollen tetrads with aperture of intermediate type 7–8 are key morphological traits shared between D. meristocaulis and pygmy sundews of sect. Bryastrum from Australia and New Zealand.

Conclusions

The multidisciplinary approach adopted in this study (using morphological, palynological, cytotaxonomic and molecular phylogenetic data) enabled us to elucidate the relationships of the thus far unplaced taxon D. meristocaulis. Long-distance dispersal between southwestern Oceania and northern South America is the most likely scenario to explain the phylogeographic pattern revealed.  相似文献   

2.
Holocentric chromosomes have evolved in various plant and animal taxa, which suggests they may confer a selective advantage in certain conditions, yet their adaptive potential has scarcely been studied. One of the reasons may reside in our insufficient knowledge of the phylogenetic distribution of holocentric chromosomes across eukaryotic phylogeny. In the present study, we focused on Droseraceae, a carnivorous plant family with an unknown chromosomal structure in monotypic genera Dionaea and Aldrovanda, and a closely related monotypic family Drosophyllaceae. We used flow cytometry to detect holocentric chromosomes by measuring changes in the ratio of the number of G2 nuclei to the number of G1 nuclei in response to gamma irradiation and determined chromosomal structures in Aldrovanda vesiculosa, Dionaea muscipula, Drosera tokaiensis, and Drosera ultramafica from Droseraceae and Drosophyllum lusitanicum from Drosophyllaceae. We confirmed monocentric chromosomes in D. lusitanicum and detected holocentric chromosomes in all four Droseraceae. Our novel finding of holocentric chromosomes in monotypic genera Aldrovanda and Dionaea suggests that all Droseraceae may be holocentric, but to confirm that further research is needed due to previously reported conflicting results in Drosera rotundifolia.  相似文献   

3.
KONDO, K. & LAVARACK, P. S., 1984. A cytotaxonomic study of some Australian species of Drosera L. (Droseraceae). Karyomorphological comparisons of 15 species of Australian Drosera are presented along with 11 new chromosome counts. In Australia the genus forms an extensive aneuploid series. The species which have chromosome numbers from n =10 to n = 19 show large chromosomes, while those which have chromosome numbers more than 20 show small chromosomes. Drosera paleacca shows the lowest chromosome number in the genus, 2 n = 10, with 10 large chromosomes, indicating a new basic number, x = 5. The non-staining gap between the chromatids of each chromosome is rather wide and their centromeric region is not seen throughout prophase, prometaphase, and metaphase. The C-banding and silver-staining analyses in Drosera petiolaris chromosomes suggest that Drosera chromosomes could have diffuse centromeres and simplified C-segments. Some taxonomic implications are considered, notably the possible removal of Drosera banksii from Drosera section Ergaleium to Drosera section Lasiocephala and the reduction to synonymy of Drosera section Prolifera .  相似文献   

4.
Molecular support for the monophyly of Droseraceae and its phylogenetic relationships to other dicot families was investigated using parsimony analysis of nucleotide sequences of the large subunit of ribulose-1,5-bisphosphate carboxylase (rbcL). Analysis of 100 species of plants including families of subclasses Rosidae, Hamamelidae, Dilleniidae, and Caryophyllidae (sensu Cronquist) placed monophyletic Droseraceae in the same clade as Caryophyllidae and Nepenthaceae (Dilleniidae). In a second analysis of 14 species of Droseraceae, 15 caryophyllids, one Nepenthaceae, and three Santalales, a single most-parsimonious tree was found in which Droseraceae are monophyletic, although the position of Drosophyllum as a member of Droseraceae is only weakly supported. The rbcL tree identified four major lineages within genus Drosera: 1) Dionaea; 2) the regia-clade that contains only Drosera regia; 3) the capensis-clade that contains the South African and temperate species outside of Australia; and 4) the peltata-clade that consists of principally Australian endemics. A separate analysis of 14 morphological and phytochemical characters is in general agreement with the rbcL tree except for the placement of Nepenthes, Drosophyllum, and Drosera burmanni. A combined analysis of both data sets places Drosophyllum in a clade with Triphyophyllum (Dioncophyllaceae).  相似文献   

5.
A comprehensive study based on gland and seed micromorphology in Euphorbia (Euphorbiaceae) for species distributed in Iranian highlands is presented. A total of 86 species were studied. The gland structure was examined by direct field observations. Taxonomically important characters of glands were observed and measured: size, texture, shape, color, and horns. For species out of Iran herbarium materials were studied. Seed characteristics were examined using scanning electron microscopy (SEM) as well as dissecting light microscopy. Significant features are: seed size, seed shape, presence of caruncle, shape of caruncle, and seed surface ornamentation. A phylogenetic study using Maximum Parsimony (MP) and Bayesian Inference (BI) was performed based on sequences of nuclear DNA internal transcribed spacers (ITS) for selected species representing the main clades known in Euphorbia and with special focus on the species distributed in Iranian highlands. ITS sequences for 20 accessions representing 19 species are provided for the first time, and 48 accessions of 47 species were used from GenBank. The topologies of both analyses were congruent. The results indicate: (1) four main clades with high supports in subgen. Esula which are appropriate to be recognized at sectional rank. (2) E. larica is nested within clade A including few members of subgen. Rhizanthium and is closely related to sect. Balsamis, which is suggested here to be transferred from subgen. Esula into subgen. Rhizanthium. (3) E. osyridea of the monotypic subsect. Osyrideae is closely related to E. buhsei and to the members of sect. Esula. Tracing morphological characters on the phylogenetic tree shows that several morphological characters, such as seed ornamentation applied in previous subgeneric classification of the subgen. Esula, are homoplasious, but the gland structure and capsule surface characters are more reliable for classification purposes.  相似文献   

6.
Cotyledonary nodal patterns of the Juglandaceae range from 1-gap, 2-trace to multi-gap, multi-trace. The development of increased nodal complexity is associated with at least two independent evolutionary shifts from epigeal to hypogeal germination. The taxa with epigeal germination such as Engelhardia sect. Engelhardia, Engelhardia sect. Psilocarpeae, Platycarya, and Pterocarya all have 1-gap, 2-trace nodes. The change to hypogeal germination in Engelhardia sect. Oreomunnea and Alfaroa is correlated with the development of 1-gap, 3-trace cotyledonary nodes. The second line has led to large, heavy-fruited members with hypogeal germination and complex cotyledonary nodes ranging from 2–6 gaps. The diversity of nodal patterns is the result of variation on a common theme; five basic vascular strands in the cotyledon, undergoing variations in dichotomy, fusion, and separation, are associated with one to many gaps. Presumably the complex development of the cotyledonary node is a response to increased functional demands of hypogeous cotyledons.  相似文献   

7.
We investigate the impact of past climates on plant diversification by tracking the "footprint" of climate change on a phylogenetic tree. Diversity within the cosmopolitan carnivorous plant genus Drosera (Droseraceae) is focused within Mediterranean climate regions. We explore whether this diversity is temporally linked to Mediterranean-type climatic shifts of the mid-Miocene and whether climate preferences are conservative over phylogenetic timescales. Phyloclimatic modeling combines environmental niche (bioclimatic) modeling with phylogenetics in order to study evolutionary patterns in relation to climate change. We present the largest and most complete such example to date using Drosera. The bioclimatic models of extant species demonstrate clear phylogenetic patterns; this is particularly evident for the tuberous sundews from southwestern Australia (subgenus Ergaleium). We employ a method for establishing confidence intervals of node ages on a phylogeny using replicates from a Bayesian phylogenetic analysis. This chronogram shows that many clades, including subgenus Ergaleium and section Bryastrum, diversified during the establishment of the Mediterranean-type climate. Ancestral reconstructions of bioclimatic models demonstrate a pattern of preference for this climate type within these groups. Ancestral bioclimatic models are projected into palaeo-climate reconstructions for the time periods indicated by the chronogram. We present two such examples that each generate plausible estimates of ancestral lineage distribution, which are similar to their current distributions. This is the first study to attempt bioclimatic projections on evolutionary time scales. The sundews appear to have diversified in response to local climate development. Some groups are specialized for Mediterranean climates, others show wide-ranging generalism. This demonstrates that Phyloclimatic modeling could be repeated for other plant groups and is fundamental to the understanding of evolutionary responses to climate change.  相似文献   

8.
The systematic position of Astragalus semnanensis is studied. Morphological and micromorphological features of this species are not in accordance with the old position of this species as a member of A. sect. Leucocercis. Within A. subgen. Astragalus this species is intermediate between A. sect. Acanthophace and A. sect. Megalocystis , but it shows critical differences from them. Therefore, a new section, A. sect. Semnanenses is described.  相似文献   

9.
The sundew genus Drosera consists of carnivorous plants with active flypaper traps and includes nearly 150 species distributed mainly in Australia, Africa, and South America, with some Northern Hemisphere species. In addition to confused intrageneric classification of Drosera, the intergeneric relationships among the Drosera and two other genera in the Droseraceae with snap traps, Dionaea and Aldrovanda, are problematic. We conducted phylogenetic analyses of DNA sequences of the chloroplast rbcL gene for 59 species of Drosera, covering all sections except one. These analyses revealed that five of 11 sections, including three monotypic sections, are polyphyletic. Combined rbcL and 18S rDNA sequence data were used to infer phylogenetic relationships among Drosera, Dionaea, and Aldrovanda. This analysis revealed that all Drosera species form a clade sister to a clade including Dionaea and Aldrovanda, suggesting that the snap traps of Aldrovanda and Dionaea are homologous despite their morphological differences. MacClade reconstructions indicated that multiple episodes of aneuploidy occurred in a clade that includes mainly Australian species, while the chromosome numbers in the other clades are not as variable. Drosera regia, which is native to South Africa, and most species native to Australia, were clustered basally, suggesting that Drosera originated in Africa or Australia. The rbcL tree indicates that Australian species expanded their distribution to South America and then to Africa. Expansion of distribution to the Northern Hemisphere from the Southern Hemispere occurred in a few different lineages.  相似文献   

10.
Beschorneria yuccoides (Agavaceae) microspores are arranged mostly in planar tetrads. Later on, the pollen grains of the tetrad usually fall apart, but sometimes remain loosely connected by ektexine elements. The ektexine consists of a tectum, of short columellae, and of a thin, discontinuous foot layer. An endexine is absent. The bilayered intine is without any additional thickening that would usually indicate an aperture region. From this point of view the pollen grain might be considered as omniaperturate. The pollen ornamentation is reticulate with wide lumina and robust, smooth muri.

The pollen grains show an indistinct sulcus characterised by a loose reticulate ornamentation. The sulcus is not exactly at the distal pole, but shifted towards the equator. No pollen tubes are formed regularly at the sulcus. Instead, pollen tubes are normally formed at the proximal pollen face. The proximal area, indicating a large germination field, is morphologically and functionally clearly an aperture (a germination zone); however, it does not represent a sulcus. The proximal face of all pollen grains appears as ornamented, with some exine lumps.

Asimina triloba (Annonaceae) pollen is shed in permanent planar or decussate tetrads. The distal sides are microreticulate to foveolate, and do not show an aperture; the psilate proximal sides are the germination areas of A. triloba.

The presence of apertures placed at the proximal pole was reported for distinct taxa of several angiosperm families. For Drosera, Dionaea (Droseraceae) and most probably for the diaperturate Cuphea species (Lythraceae) the existence of polar germination areas can be excluded. However, in some Annonaceae taxa with permanent tetrads (Annona cherimola, Asimina triloba) a situation similar to Beschorneria might be present, and indeed a proximal polar pollen tube is formed. Beschorneria yuccoides, Annona cherimola and Asimina triloba are unequivocal examples of angiosperm pollen with an exactly proximal aperture (germination area).  相似文献   

11.
The genus Hypecoum (Papaveraceae) is subdivided into five sections. Two of them (sect. Chiazospermum and sect. Leptocarpae sect, nov.) are comprised in subgen. Chiazospermum , and three in subgen. Hypecoum (sect. Hypecoum , sect Pendulae sect. nov., and sect. Mnemosilla comb, et stat. nov.). The morphology of the sections is discussed, and a hypothesis of the possible course of evolution within the genus is presented. Chromosome numbers are given for seven taxa.  相似文献   

12.
Astragalus porphyrogrammus , occurring in the Zarin-Abad of Zanjan (Iran), is described and illustrated. This species belongs to A. sect. Malacothrix and seems to be distinct and interesting among the Iranian species. In this research, A. sect. Grammocalyx which was very artificial placed in A. subgen. Calycophysa transferred to A. subgen. Hypoglottis. Moreover, relationships between A. subgen. Hypoglottis and the closely related subgenera in genus Astragalus are discussed. Also A. lineatus is recorded for Iran.  相似文献   

13.
Eighty-four pollen samples were obtained for 80 taxa, of which, 13 species and one variety are from sect. Brachycalyx Sweet, 58 species and two varieties from sect. Tsutsusi Sweet, and six species from subgen. Pentanthera (G. Don) Pojarkova, respectively. Pollen morphology of all samples was observed using LM and SEM. Pollen grains are revealed to be spheroidal and tetrahedral with tricolporate apertures. Pollen sizes of sub-gen. Tsutsusi (Sweet) Pojarkova range from 37.67 μm to 61.06 μm, and the exine sculptures are more or less compactly granulated. Pollen sizes are significantly different between sect. Brachycalyx and sect. Tsutsusi of subgen. Tsutsusi. Rhododendron tashiroi Maxim. of sect. Tsusiopsis Sleumer shows a close affinity to sect. Brachycalyx. Pollen size and exine are consistent with general morphology in differentiating species in sect. Tsutsusi. Rhododendron huadingense B. Y. Ding & Y. Y. Fang, once placed as a member of sect. Brachycalyx, should be considered as a species in subgen. Pentanthera.  相似文献   

14.
果皮和种皮微形态特征在杜鹃花属系统学研究中的应用   总被引:12,自引:0,他引:12  
采用扫描电子显微镜对国产杜鹃花属Rhododendron6个亚属的代表种和近缘类群杜香属Ledum杜香L.palustre的果皮和种皮微形态特征进行观察,对杜鹃花属植物果皮微形态特征进行了系统描述,并通过比较现存杜鹃花属植物和种子化石,新发现一些居间的种子类型。结果表明,果皮和种皮微形态特征具有一定的系统学意义。叶状苞亚属subgen.Therorhodion的叶状苞杜鹃R.redowskianum的果实有短而疏的刺毛,无气孔,种子为无翅类,扁平,外围轮廓长椭圆形。杜鹃亚属subgen.Rhododendron植物果皮为百合花杜鹃型,具有鳞片,气孔器散生于指状突起之间,与叶表皮的微形态特征一致,其种子为百合花杜鹃型,表面具宽而浅的沟,呈脑纹状,有别于无鳞类杜鹃花。常绿杜鹃亚属subgen.Hymenanthes果皮为云锦杜鹃型,其角质层表面不规则,无表皮毛,偶见气孔;种子为云锦杜鹃型。映山红亚属subgen.Tsutsusi果皮为岭南杜鹃型,密生长表皮毛,角质层致密;种子为南边杜鹃型和岭南杜鹃型。微形态特征与“常绿杜鹃亚属和(国产)映山红亚属均为内部支持率很高的单系类群”的分子系统发育研究结果一致。马银花亚属subgen.Azaleastrum的马银花组sect.Azaleastrum和长蕊杜鹃组sect.Choniastrum微形态区别明显,支持各自为独立的单系类群。羊踯躅亚属subgen.Pentanthera的羊踯躅R.molle果皮特征明显,可与其他亚属区分,但种子类型更接近常绿杜鹃亚属。本研究结合分子系统发育资料和叶表皮微形态特征讨论了一些近缘类群的系统发育关系;研究结果支持将腺萼马银花处理为独立的种。  相似文献   

15.
Pollen morphology of 19 species of Allium representing six subgenera and 12 sections, were studied. The following characters were recognized as important for separating taxa at different taxonomic ranks: the sulcus, presence or absence of perforations on the pollen surface, density of perforations, size of perforations and size of the pollen grains. Rugulate, rugulate–striate, and simple–perforate exine ornamentation were distinguished. The type of sulcus is very characteristic in A. subgen. Allium sect. Allium . The extended sulcus was not observed in any species the other sections of subgen. Allium studied here, such as sect. Caerulea ( A. capitellatum ), sect. Codonprasum ( A. lenkoranicum and A. stamineum ) and sect. Avulsea ( A. rubellum and A. umblicatum ). Imperforated pollen grains were observed in representatives of A. subgen. Reticulatobulbosa and subgen. Polyprason .  相似文献   

16.
Seed samples of eighteen taxa from four sections in Linum were examined for diagnostic and taxonomic utility of the surface microstructures. Considerably different patterns were distinguished at specific and infraspecific levels. Similar sculpturings in closely related taxa and some common surface features for sectional groupings were observed. Smooth surface textures in sect. Linastrum, granulate-ruminate in sect. Dasylinum and rugulose structure in sect. Linum were typical characteristics. Sect. Syllinum exhibited miscellaneous patterns. Seed coat sculptures may be utilized as additional consistent parameters in the infrageneric delimitations and taxonomical association of Linum.  相似文献   

17.
A phylogenetic study of the Plantaginaceae   总被引:3,自引:0,他引:3  
In a study based on morphological, embryological and chemical data of the Plantaginaceae, within the subclass Sympetalae or Asteridae, the superorder Lamianae is shown to be monophyletic. However, it was not possible to reconstruct the phylogeny within Lamianae or to find a sister-group for the monophyletic Plantaginaceae – Hydrostachyaceae for the latter is rejected. Three or rarely four genera have previously been recognized within Plantaginaceae, but in both cases Plantago appears as polyphyletic, which is considered unacceptable. Six clades are recognized as subgenera within Plantago: subgen. Plantago (c. 131 species), subgen. Coronopus (c. 11 species), subgen. Littorella (three species), subgen. Psyllium (c. 16 species), subgen. Bougueria (one species), and subgen. Albicans (51 species). Within P. subgen. Plantago, the paraphyletic sect. Plantago (c. 42 species) is found in all parts of the world except South America, New Zealand, Australia, and New Guinea, where sect. Oliganthos and sect. Mesembryniae vicariate. It is not possible to infer the phylogeny within sect. Plantago, for example between the endemic species from distant Pacific Islands; their common ancestor might be a species that once had a very wide distribution. Keys to genera, subgenera, sections and series are given. Only one genus, Plantago L., is recognized. The following proposals are made in the Appendix: P. ser. Oliganthos Rahn, ser. nov.; P. ser. Carpophorae (Rahn) Rahn, stat. nov. (= sect. C.); P. ser. Microcalyx (Pilg.) Rahn, stat. nov. (= sect. M.); P. unibrackteata Rahn, nom. nov. (=P. uniflora Hook.f. non L.); P. subgen. Littorella (P. J. Bergius) Rahn, stat. nov. (=Littorella P. J. Bergius); P. araucana Rahn, nom. nov. (=Littorella australis Griseb. non Plantago australis Lam.); P. americana (Fernald) Rahn, comb. nov.(=Littorella a.); P. subgen. Bougueria (Decne.) Rahn, stat. nov. (=Bougueria Decne.); P. nubicola (Decne.) Rahn, comb. nov. (=Bougueria n. Decne.); P. subgen. Albicans Rahn, subgen. nov. Ten lectotypes are selected.  相似文献   

18.
Rhododendron is the largest genus within the subfamily Rhododendroideae, which has about 1000 known species in the world and more than 500 species in China. Since the genus was established by Linnaeus, its infrageneric relationships have been well studied by many taxonomists on the basis of morphological characters and molecular data. In 1996, Chamberlain et al. proposed a new system of Rhododendron with eight subgenera, i.e., Azaleastrum, Candidastrum, Hymenanthes, Mumeazalea, Pentanthera, Rhododendron, Therorhodion, and Tsutsusi. In this paper, micromorphological characters of leaf epidermis in 4 varieties, 48 species, 6 subgenera of Rhododendron from China were examined using light microscopy (LM) and scanning electron microscopy (SEM). Leaf epidermal features are described and micromorphological types are distinguished here according to morphological characters such as scale, gland, foliar trichome and stomatal apparatus of leaf epidermis. It is shown that the leaf epidermal cells are usually irregular or polygonal in shape. The patterns of anticlinal walls are straight, arched or undulate. The stomatal apparatuses are anomocytic and are usually found on abaxial, not adaxial, epidermis. The results also show that: (1) the lepidote rhododendron (i.e., subgen. Rhododendron), which has both scales and papillae on leaf epidermis, differs distinctly from the elepidote rhododendron; (2) three types of leaf epidermis are identified in subgen. Hymenanthes (i.e., R. fortunei-type, R. chihsinianum-type and R. simiarum-type), whereas four in subgen. Tsutsusi (i.e., R. mariesii-type, R. simsii-type, R. mariae-type and R. flosculum-type); (3) except for R. westlandii and R. henryi, the species of subgen. Azaleastrum show similar morphological characters, i.e., dense stomatal apparatuses surrounded by ringed or discontinuous striates; (4) R. molle of subgen. Pentanthera differs from the species of other subgenera on morphological characters such as foliar trichomes, dense stomatal apparatuses with asymmetrical outer stomatal rims surrounded by undulate-striates, and no gland; (5) only R. redowskianum is found with distinct T-pieces at the polar region of guard cells in Rhododendron. The results support the conclusion inferred from molecular systematic studies that subgen. Therorhodion is the basal clade of Rhododendron. Finally, the relationships between the closely related species are also discussed on the basis of leaf epidermal features.  相似文献   

19.
中国杜鹃花属的叶表皮特征及其系统学意义   总被引:15,自引:0,他引:15  
通过光学显微镜和扫描电镜对国产杜鹃花属Rhododendron6个亚属48种4变种植物的叶表皮特征进行观察,结果表明叶表皮的鳞片、腺体、表皮毛的有无和气孔器的类型具有一定的系统学意义。光学显微镜下可见:叶表皮细胞形状为多边形、不规则形,垂周壁式样为较平直、浅波状和波状.气孔器普遍存在于下表皮,上表皮未见气孔器分布,其类型均为无规则形。杜鹃亚属subgen.Rhododendron叶表皮具有鳞片,在扫描电镜下可见气孔器散生于指状突起之间,有别于无鳞类杜鹃花。常绿杜鹃亚属subgen.Hymenanthes和映山红亚属subgen.Tsutsusi有多种不同叶表皮类型;除了凯里杜鹃R.westlandii和弯蒴杜鹃R.henryi形态较特殊之外,马银花亚属subgen.Azaleastrum的马银花组sect.Azaleastrum和长蕊杜鹃组sect.Choniastrum微形态区别不明显。羊踯躅亚属subgen.Pentanthera的羊踯躅R.molle叶表皮有表皮毛,无腺体,气孔器密生,外拱盖形状不对称,外围有多层波形条纹突起可与其他亚属区分:而叶状苞亚属subgen.Therorhodion的叶状苞杜鹃R.redowskianum保卫细胞有明显的T型加厚,与其他亚属种类明显不同,与分子系统发育研究得到的“叶状苞亚属是杜鹃花属的基部类群”的结果吻合。本研究还依据叶表皮微形态特征讨论了一些近缘种类的关系。  相似文献   

20.
利用叶绿体DNA trnL-F序列初步探讨菊科风毛菊属的系统发育   总被引:14,自引:0,他引:14  
风毛菊属Saussurea DC.是菊科物种分化十分剧烈和分类处理十分困难的一个属。该属的单系起源性质、属下分类系统以及一些独特形态物种的系统位置尚不清楚,有待进一步验证。本文测定了代表该属5个亚属37种植物43个样品和川木香属Dolomiaea DC.的1种样品的叶绿体DNA trnL-F序列,并调取菜蓟族Cardueae Cass.与风毛菊属具有一定亲缘关系的13属的该序列,一起进行了分支分析,重点验证该属的属下形态分类系统以及形态特殊、青藏高原地区特有的雪兔子亚属subgen. Eriocoryne  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号