首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Tight control of apoptosis is required for proper development and maintenance of homeostasis in multicellular organisms. Cells can protect themselves from potentially lethal stimuli by expressing antiapoptotic factors, such as inhibitors of apoptosis, FLICE (caspase 8)-inhibitory proteins, and members of the Bcl2 family. Here, we describe a mechanism that allows cells to survive once executioner caspases have been activated. This mechanism relies on the partial cleavage of RasGAP by caspase 3 into an amino-terminal fragment called fragment N. Generation of this fragment leads to the activation of the antiapoptotic Akt kinase, preventing further amplification of caspase activity. Partial cleavage of RasGAP is required for cell survival under stress conditions because cells expressing an uncleavable RasGAP mutant cannot activate Akt, cannot prevent amplification of caspase 3 activity, and eventually undergo apoptosis. Executioner caspases therefore control the extent of their own activation by a feedback regulatory mechanism initiated by the partial cleavage of RasGAP that is crucial for cell survival under adverse conditions.  相似文献   

2.
RasGAP, a regulator of Ras GTPase family members, is cleaved at low levels of caspase activity into an N-terminal fragment (fragment N) that generates potent anti-apoptotic signals. At higher levels of caspase activity, fragment N is further cleaved into two fragments that strongly potentiate apoptosis. RasGAP could thus function as a sensor of caspase activity to determine whether a cell should survive or not. Here we show that fragment N protects cells by activating the Ras-PI3K-Akt pathway. Surprisingly, even though nuclear factor kappaB (NFkappaB) can be activated by Akt, it plays no role in the anti-apoptotic functions of fragment N. This indicates that Akt effectors are differentially regulated when fragment N is generated.  相似文献   

3.
Yeast cells approach a mating partner by polarizing along a gradient of mating pheromones that are secreted by cells of the opposite mating type. The Bar1 protease is secreted by a-cells and, paradoxically, degrades the α-factor pheromones which are produced by cells of the opposite mating type and trigger mating in a-cells. This degradation may assist in the recovery from pheromone signaling but has also been shown to play a positive role in mating. Previous studies suggested that widely diffusing protease can bias the pheromone gradient towards the closest secreting cell. Here, we show that restricting the Bar1 protease to the secreting cell itself, preventing its wide diffusion, facilitates discrimination between equivalent mating partners. This may be mostly relevant during spore germination, where most mating events occur in nature.  相似文献   

4.
Many enzymes, represented by yeast glutamine synthetase, are inactivated and degraded in the presence of dithiothreitol (DTT), oxygen, and catalytic amounts of iron salts. The roles of DTT and iron can be replaced by ascorbate and copper, respectively. Experimental data suggest that reactive oxygen species, likely hydroxyl radicals, are generated locally around irons bound at specific sites on enzymes, and these species are responsible for the inactivation and degradation. Since many biochemicals are contaminated with metal salts in quantities sufficient for some hydroxyl radical formation to occur, the possibility of oxidative modification and degradation should be considered when an enzyme is exposed to DTT.  相似文献   

5.
《Cellular signalling》2014,26(12):2992-2997
The caspase-3/p120 RasGAP module acts as a stress sensor that promotes pro-survival or pro-death signaling depending on the intensity and the duration of the stressful stimuli. Partial cleavage of p120 RasGAP generates a fragment, called fragment N, which protects stressed cells by activating Akt signaling. Akt family members regulate many cellular processes including proliferation, inhibition of apoptosis and metabolism. These cellular processes are regulated by three distinct Akt isoforms: Akt1, Akt2 and Akt3. However, which of these isoforms are required for fragment N mediated protection have not been defined. In this study, we investigated the individual contribution of each isoform in fragment N-mediated cell protection against Fas ligand induced cell death. To this end, DLD1 and HCT116 isogenic cell lines lacking specific Akt isoforms were used. It was found that fragment N could activate Akt1 and Akt2 but that only the former could mediate the protective activity of the RasGAP-derived fragment. Even overexpression of Akt2 or Akt3 could not rescue the inability of fragment N to protect cells lacking Akt1. These results demonstrate a strict Akt isoform requirement for the anti-apoptotic activity of fragment N.  相似文献   

6.
Vanadyl ion (+4 oxidation state) has been shown to be an effective agent for chemoprotection of cancers in animals. For understanding the mechanism, distribution of vanadium was studied. More vanadium was found to accumulate in the nuclei of the liver of rats when it was given as vanadyl sulfate than when it was given as sodium vanadate (+5 oxidation state). The reactivity of vanadyl ion with DNA was investigated by the DNA cleavage technique and the reaction mechanism by ESR spectroscopy. Incubation of double-strand DNA with vanadyl ion and hydrogen peroxide resulted in marked concentration- and pH-dependent DNA cleavage. Studies by the ESR spin-trap method demonstrated that hydroxyl radicals are generated during the reactions of vanadyl ion with hydrogen peroxide. Thus the antineoplastic action of vanadyl ion is proposed to be due to DNA cleavage by hydroxyl radicals generated in the cells.  相似文献   

7.
p120-RasGAP (Ras GTPase activating protein) plays a key role in the regulation of Ras-GTP bound by promoting GTP hydrolysis via its C-terminal catalytic domain. The p120-RasGAP N-terminal part contains two SH2, SH3, PH (pleckstrin homology) and CaLB/C2 (calcium-dependent phospholipid-binding domain) domains. These protein domains allow various functions, such as anti-/pro-apoptosis, proliferation and also cell migration depending of their distinct partners. The p120-RasGAP domain participates in protein–protein interactions with Akt, Aurora or RhoGAP to regulate functions described bellow. Here, we summarize, in angiogenesis and cancer, the various functional roles played by p120-RasGAP domains and their effector partners in downstream signaling.  相似文献   

8.
Heparin-binding EGF-like growth factor (HB-EGF), a member of the EGF family, is synthesized as a membrane-anchored precursor (proHB-EGF) that is cleaved to release a soluble HB-EGF by specific metalloproteases. Proteolytic cleavage of proHB-EGF yields amino- and carboxy-terminal fragments (HB-EGF and HB-EGF-C). Recent studies indicate that the processing of proHB-EGF is strictly regulated and involved in a variety of biological processes and that not only HB-EGF but also HB-EGF-C functions as a signaling molecule. ProHB-EGF generates dual intracellular signaling molecules by its proteolytic cleavage.  相似文献   

9.
Uromodulin (or Tamm-Horsfall protein) is the most abundant protein in human urine under physiological conditions. Little is known about the molecular mechanism of uromodulin secretion. By extensive Mass Spectrometry analyses we mapped the C-termini of human and murine urinary proteins demonstrating that urinary uromodulin is generated by a conserved C-terminal proteolytic cleavage and retains its entire ZP domain.  相似文献   

10.
DNA-based antisense oligonucleotides (ASOs) elicit cleavage of the targeted RNA by the endoribonuclease RNase H1, whereas siRNAs mediate cleavage through the RNAi pathway. To determine the fates of the cleaved RNA in cells, we lowered the levels of the factors involved in RNA surveillance prior to treating cells with ASOs or siRNA and analyzed cleavage products by RACE. The cytoplasmic 5′ to 3′ exoribonuclease XRN1 was responsible for the degradation of the downstream cleavage products generated by ASOs or siRNA targeting mRNAs. In contrast, downstream cleavage products generated by ASOs targeting nuclear long non-coding RNA Malat 1 and pre-mRNA were degraded by nuclear XRN2. The downstream cleavage products did not appear to be degraded in the 3′ to 5′ direction as the majority of these products contained intact poly(A) tails and were bound by the poly(A) binding protein. The upstream cleavage products of Malat1 were degraded in the 3′ to 5′ direction by the exosome complex containing the nuclear exoribonuclease Dis3. The exosome complex containing Dis3 or cytoplasmic Dis3L1 degraded mRNA upstream cleavage products, which were not bound by the 5′-cap binding complex and, consequently, were susceptible to degradation in the 5′ to 3′ direction by the XRN exoribonucleases.  相似文献   

11.
12.
Cell death induction by apoptosis is an important process in the maintenance of tissue homeostasis as well as tissue destruction during various pathological processes. Consequently, detection of apoptotic cells in situ represents an important technique to assess the extent and impact of cell death in the respective tissue. While scoring of apoptosis by histological assessment of apoptotic cells is still a widely used method, it is likely biased by sensitivity problems and observed-based variations. The availability of caspase-mediated neo-epitope-specific antibodies offers new tools for the detection of apoptosis in situ. Here, we discuss the use of immunohistochemical detection of cleaved caspase 3 and lamin A for the assessment of apoptotic cells in paraffin-embedded liver tissue. Furthermore, we evaluate the effect of tissue pretreatment and antigen retrieval on the sensitivity of apoptosis detection, background staining and maintenance of tissue morphology.  相似文献   

13.
BackgroundPosttranslational modification of chemokines is one of the mechanisms that regulate leukocyte migration during inflammation. Multiple natural NH2-terminally truncated forms of the major human neutrophil attractant interleukin-8 or CXCL8 have been identified. Although differential activity was reported for some CXCL8 forms, no biological data are available for others.ConclusionsIn terms of their ability to induce neutrophil recruitment in vivo, the multiple CXCL8 forms may be divided in three groups. The first group includes CXCL8 proteins consisting of 75 to 79 amino acids, cleaved by aminopeptidases, with intermediate activity on neutrophils. The second group, generated through proteolytic cleavage (e.g. by Ser proteases), contains 69 to 72 amino acid forms which are highly potent neutrophil attractants in vivo. A third category is generated through the modification of the arginine in the NH2-terminal region into citrulline by peptidylarginine deiminases and has weak potency to induce neutrophil extravasation.  相似文献   

14.
15.
The Rho family GTPases RhoA (Rho), Rac1, and Cdc42 are essential effectors of integrin-mediated cell attachment and spreading. Rho activity, which promotes formation of focal adhesions and actin stress fibers, is inhibited upon initial cell attachment to allow sampling of the new adhesive environment. The Abl-related gene (Arg) tyrosine kinase mediates adhesion-dependent inhibition of Rho through phosphorylation and activation of the Rho inhibitor p190RhoGAP-A (p190). p190 phosphorylation promotes its binding to p120RasGAP (p120). Here, we elucidate the mechanism by which p120 binding regulates p190 activation after adhesion. We show that p190 requires its p120-binding domain to undergo Arg-dependent activation in vivo. However, p120 binding does not activate p190RhoGAP activity in vitro. Instead, activation of p190 requires recruitment to the cell periphery. Integrin-mediated adhesion promotes relocalization of p190 and p120 to the cell periphery in wild-type fibroblasts, but not in arg(-/-) fibroblasts. A dominant-negative p120 fragment blocks p190:p120 complex formation, prevents activation of p190 by adhesion, and disrupts the adhesion-dependent recruitment of p190 to the cell periphery. Our results demonstrate that integrin signaling through Arg activates p190 by promoting its association with p120, resulting in recruitment of p190 to the cell periphery where it inhibits Rho.  相似文献   

16.
The small GTPase Ras plays an important role in many cellular signaling processes. Ras activity is negatively regulated by GTPase activating proteins (GAPs). It has been proposed that RasGAP may also function as an effector of Ras activity. We have identified and characterized the Drosophila homologue of the RasGAP-binding protein G3BP encoded by rasputin (rin). rin mutants are viable and display defects in photoreceptor recruitment and ommatidial polarity in the eye. Mutations in rin/G3BP genetically interact with components of the Ras signaling pathway that function at the level of Ras and above, but not with Raf/MAPK pathway components. These interactions suggest that Rin is required as an effector in Ras signaling during eye development, supporting an effector role for RasGAP. The ommatidial polarity phenotypes of rin are similar to those of RhoA and the polarity genes, e.g. fz and dsh. Although rin/G3BP interacts genetically with RhoA, affecting both photoreceptor differentiation and polarity, it does not interact with the gain-of-function genotypes of fz and dsh. These data suggest that Rin is not a general component of polarity generation, but serves a function specific to Ras and RhoA signaling pathways.  相似文献   

17.
18.
19.
The alkylation of cysteine residue by different classes of carbonium ions, derived from the cleavage of side chain protective groups in anhydrous HF, was investigated. It was found that side chain protection as beta-2,4-dimethylpent-3-yl ester (Dmp) or 2,4-dimethylpent-3-yloxycarbonyl (Doc) groups resulted in more than seven-fold lower level of alkylated byproducts. This makes Dmp and Doc protection of amino acid side chain during solid phase synthesis particularly valuable in the synthesis of peptides containing cysteine residues or other functional groups prone to alkylation by carbonium ions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号