首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Introgression lines (ILs) are useful tools for precise mapping of quantitative trait loci (QTLs) and the evaluation of gene action or interaction in theoretical studies. A set of 159 ILs carrying variant introgressed segments from Chinese common wild rice (Oryza rufipogon Griff.), collected from Dongxiang county, Jiangxi Province, in the background of Indica cultivar (Oryza sativa L.), Guichao 2, was developed using 126 polymorphic simple sequence repeats (SSR) loci. The 159 ILs represented 67.5% of the genome of O. rufipogon. All the ILs have the proportions of the recurrent parent ranging from 92.4 to 99.9%, with an average of 97.4%. The average proportion of the donor genome for the BC4F4 population was about 2.2%. The mean numbers of homozygous and heterozygous donor segments were 2 (ranging 0–8) and 1 (ranging 0–7), respectively, and the majority of these segments had sizes less than 10 cM. QTL analysis was conducted based on evaluation of yield-related traits of the 159 ILs at two sites, in Beijing and Hainan. For 6 out of 17 QTLs identified at two sites corresponding to three traits (panicles per plant, grains per panicle and filled grains per plant, respectively), the QTLs derived from O. rufipogon were usually associated with an improvement of the target trait, although the overall phenotypic characters of O. rufipogon were inferior to that of the recurrent parent. Of the 17 QTLs, 5 specific QTLs strongly associated with more than one trait were observed. Further analysis of the high-yielding and low-yielding ILs revealed that the high-yielding ILs contained relatively less introgressed segments than the low-yielding ILs, and that the yield increase or decrease was mainly due to the number of grain. On the other hand, low-yielding ILs contained more negative QTLs or disharmonious interactions between QTLs which masked trait-enchancing QTLs. These ILs will be useful in identifying the traits of yield, tolerance to low temperature and drought stress, and detecting favorable genes of common wild rice.  相似文献   

2.
Rice ( Oryza sativa) cultivar development currently faces the task of overcoming yield plateaus, which is difficult due to the narrow genetic base of breeding programs. Oryza glumaepatula is a diploid wild relative of cultivated rice, native to Central and South America, and is therefore a potential source of alleles of agronomic importance to rice breeding programs. We studied 11 agronomic traits in BC(2)F(2) families of the interspecific cross Oryza sativa x O. glumaepatula. Transgressive lines which are almost isogenic to the elite recurrent O. sativa parent were identified for most of these traits. Quantitative trait locus (QTL) analysis was performed by single-point and interval mapping using a molecular map based on 157 microsatellite and STS markers. Marker regions accounting for 14.5 to 72.9% of a phenotypic variation trait were identified in 9 of the 12 rice chromosomes. Positive QTL effects from O. glumaepatula were observed in chromosomal regions associated with tillering and panicle-number traits.  相似文献   

3.
Late season drought coinciding with the rice booting to heading stage affects the development of plant height,panicle exsertion,and flag leaf size,and causes significant yield loss.In this study,a recombinant inbred line population derived from a cross between paddy and upland cultivars was used for data collection of the morphologic traits under well water and drought stress conditions.bought stress was applied at the stage of panicle initiation in the field in 2002 and at the booting stage in PVC pipes in 2003.The data from stress con ditions and their ratios(tait measured under stress condition/trait measured under well water condition)or differences(trait measured under stress condition minus trait measured under well water condition)were used for OTL analysis.Totally,17 and 36 QTLs for these traits were identified in 2002 and 2003,respectively,which explained a range of 2.58%-29.82%Of the phenotypic variation.Among them,six QTLs were commonly identified in the two years,suggesting that the drought stress in the two years was different.The genetic basis of these traits will provide useful information for improving rice late season drought resistance,and their application as indirect indices in rice late season drought resistance screening was also discussed.  相似文献   

4.
We searched for SNPs in 417 regions distributed throughout the genome of three Oryza sativa ssp. japonica cultivars, two indica cultivars, and a wild rice (O. rufipogon). We found 2800 SNPs in approximately 250,000 aligned bases for an average of one SNP every 89 bp, or one SNP every 232 bp between two randomly selected strains. Graphic representation of the frequency of SNPs along each chromosome showed uneven distribution of polymorphism-rich and -poor regions, but little obvious association with the centromere or telomere. The 94 SNPs that we found between the closely related cultivars 'Nipponbare' and 'Koshihikari' can be converted into molecular markers. Our establishment of 213 co-dominant SNP markers distributed throughout the genome illustrates the immense potential of SNPs as molecular markers not only for genome research, but also for molecular breeding of rice.  相似文献   

5.
Many rice breeding programs have currently reached yield plateaus as a result of limited genetic variability in parental strains. Dongxiang common wild rice (Oryza rufipogon Griff.) is the progenitor of cultivated rice (Oryza sativa L.) and serves as an important gene pool for the genetic improvement of rice cultivars. In this study, heterotic loci (HLs) associated with six yield-related traits were identified in wild and cultivated rice and investigated using a set of 265 introgression lines (ILs) of O. rufipogon Griff. in the background of the Indica high-yielding cultivar Guichao 2 (O. sativa L.). Forty-two HLs were detected by a single point analysis of mid-parent heterosis values from test cross F1 offspring, and 30 (71.5%) of these HLs showed significantly positive effects, consistent with the superiority shown by the F1 test cross population in the six yield-related traits under study. Genetic mapping of hsp11, a locus responsible for the number of spikelets per panicle, confirmed the utility of these HLs. The results indicate that favorable HLs capable of improving agronomic traits are available. The identification of HLs between wild rice and cultivated rice could lead to a new strategy for the application of heterosis in rice breeding.  相似文献   

6.
Plant-mediated transport is the primary route of methane (CH(4)) emission from the reduced paddy field to the aboveground atmosphere. Experiments were conducted at North Bank Plain Agro-climatic Zone of Assam, India, during monsoon rice-growing season (July to December 2006) to elucidate the influences of anatomical and morphophysiological characteristics of rice (Oryza sativa L.) cultivars on methane emission from submerged agroecosystem. Ten rice cultivars were grown in light-textured loamy soil under rainfed uniform field condition. Among the 10 cultivars, 5 were traditional rice genotypes commonly grown in the agroclimatic zone and the other 5 were improved high-yielding varieties. Wide variation in CH(4) flux was recorded among the rice cultivars, which may be regulated by the difference in anatomical and morphophysiological characteristics of rice plant. Microscopic analysis of stem portion showed that high- and medium-CH(4)-emitting cultivars recorded higher size of the medullary cavity. Leaf area and transpirational rates were also found to be higher in high-CH(4)-emitting varieties. Scanning electron microscopic analysis revealed higher stomatal frequencies in high-methane-emitting cultivars. Data presented in this study suggest that variation in anatomical and morphophysiological characteristics among different rice genotypes may influence CH(4) emission from paddy fields.  相似文献   

7.
Li C  Zhou A  Sang T 《The New phytologist》2006,170(1):185-194
With a small and sequenced genome, rice provides an excellent system for studying the genetics of cereal domestication. We conducted a quantitative trait locus (QTL) analysis of key domestication traits using an F2 population derived from a cross between the cultivated rice, Oryza sativa, and the annual wild species, O. nivara. We found that the QTL of large phenotypic effects were targeted by domestication selection for effective harvest and planting, including a reduction in seed shattering and seed dormancy and the synchronization of seed maturation. Selection for higher yield was probably responsible for the fixation of mutations at a cluster of QTL on chromosome 7 and a few other chromosomal locations that could have substantially improved plant architecture and panicle structure, resulting in fewer erect tillers and longer and more highly branched panicles in cultivated rice. In comparison with the wild perennial species, O. rufipogon, rice domestication from O. nivara would have involved QTL with a greater degree of chromosomal co-localization and required little genetic change associated with life history or mating system transitions. The genetic analyses of domestication traits with both wild relatives will open opportunities for the improvement of rice cultivars utilizing natural germplasm.  相似文献   

8.
Wild germplasm of domesticated crops is a source of genetic variation little utilized in breeding programs. Interspecific crosses can potentially uncover novel gene combinations that can be important for quantitative trait analysis. The combined use of wide crosses and genetic maps of chromosomal regions associated with quantitative traits can be used to broaden the genetic basis of rice breeding programs. Oryza glumaepatula is a diploid (AA genome) wild rice species native from South and Central America. A genetic map was constructed with 162 PCR-based markers (155 microsatellite and 7 STS markers) using a backcross population derived from the cross O. glumaepatula, accession RS-16 from the Brazilian Amazon Region x O. sativa BG-90-2, an elite rice inbred line. The map included 47 new SSR markers developed from an O. glumaepatula genomic library enriched for AG/TC sequences. All SSR markers were able to amplify the O. sativa genome, indicating a high degree of SSR flanking region conservation between O. glumaepatula and O. sativa species. The map covered 1500.4 cM, with an average of one marker every 10 cM. Despite some chromosomes being more densely mapped, the overall coverage was similar to other maps developed for rice. The advantage to construct a SSR-based map is to permit the combination of the speed of the PCR reaction, and the codominant nature of the SSR marker, facilitating the QTL analysis and marker assisted selection for rice breeding programs.  相似文献   

9.
Fu JD  Yan YF  Kim MY  Lee SH  Lee BW 《Génome》2011,54(3):235-243
The functional stay-green trait gives leaves a longer duration of greenness and photosynthetic capacity during the grain-filling period. We developed two independent recombinant inbred line populations from the intra- and intersubspecific crosses of Oryza sativa L. subsp. japonica 'Suweon490' (japonica) × O. sativa subsp. japonica 'SNU-SG1' (japonica) and O. sativa subsp. indica 'Andabyeo' (indica) × O. sativa subsp. japonica 'SNU-SG1' (japonica), respectively. The common parental line 'SNU-SG1' was the functional source for the stay-green trait. Quantitative trait locus (QTL) mapping based on simple sequence repeat markers identified a total of six QTLs associated with two stay-green traits across two populations. The two traits were cumulative chlorophyll content (SPAD value) of flag leaf (CSFL) and total cumulative SPAD value of the four upper leaves (TCS). Four QTLs, tcs4, csfl6, csfl9 (or tcs9), and csfl12, located on chromosomes 4, 6, 9, and 12, respectively, were detected simultaneously in both populations. The remaining two QTLs, csfl2 (or tcs2) and tcs5, on chromosomes 2 and 5, respectively, were found to be population specific. Moreover, the functional stay-green trait of 'SNU-SG1' positively correlated with grain yield performance. Two yield QTLs, yld6 and yld9, on chromosomes 6 and 9 found in both populations were positioned at the same locations with the csfl6 and tcs9 QTLs for stay-green traits. Thus, the identified chromosomal regions can be promising targets of marker-assisted introgression of the functional stay-green trait into breeding materials for improvement of rice yield.  相似文献   

10.
Several diazotrophic species of Azoarcus spp. occur as endophytes in the pioneer plant Kallar grass. The purpose of this study was to screen Asian wild rice and cultivated Oryza sativa varieties for natural association with these endophytes. Populations of culturable diazotrophs in surface-sterilized roots were characterized by 16S rDNA sequence analysis, and Azoarcus species were identified by genomic fingerprints. A. indigens and Azoarcus sp. group C were detected only rarely, whereas Azoarcus sp. group D occurred frequently in samples of flooded plants: in 75% of wild rice, 80% of land races of O. sativa from Nepal and 33% of modern cultivars from Nepal and Italy. The putatively endophytic populations of diazotrophs differed with the rice genotype. The diversity of cultured diazotrophs was significantly lower in wild rice species than in modern cultivars. In Oryza officinalis (from Nepal) and O. minuta (from the Philippines), Azoarcus sp. group D were the predominant diazotrophic putative endophytes in roots. In contrast, their number was significantly lower in modern cultivars of O. sativa, whereas numbers and diversity of other diazotrophs, such as Azospirillum spp., Klebsiella sp., Sphingomonas paucimobilis, Burkholderia sp. and Azorhizobium caulinodans, were increased. In land races of O. sativa, the diazotrophic diversity was equally high; however, Azoarcus sp. was found in high apparent numbers. Similar differences in populations were also observed in a culture-independent approach comparing a wild rice (O. officinalis) and a modern-type O. sativa plant: in clone libraries of root-associated nitrogenase (nifH) gene fragments, the diazotrophic diversity was lower in the wild rice species. New lineages of nifH genes were detected, e.g. one deeply branching cluster within the anf (iron) nitrogenases. Our studies demonstrate that the natural host range of Azoarcus spp. extends to rice, wild rice species and old varieties being preferred over modern cultivars.  相似文献   

11.
In addition to rice (Oryza sativa L.) cultivars, there are three wild rice species, namely O.rufipogon Griff, O. officinalis Wall and O. granulata Baill, in Yunnan Province, China. Each species has different subtypes and ecological distributions. Yunnan wild rice species are excellent genetic resources for developing new rice cultivars. The nutritional components of the husked seeds of wild rice have not been investigated thus far. Herein, we report on the contents of total protein, starch, amylose, 17 amino acids, and five macro and five trace mineral elements in husked seeds from three wild rice species and six O. sativa cultivars. The mean (± SD) protein content in the husked rice of O. rufipogon, O. officinalis, and O. granulata was (14.5 ± 0.6)%, (16.3 ± 1. 1)%, and (15.3 ± 0.5)%, respectively. O. officinalis Ⅲ originating from Gengma had the highest protein content (19.3%). In contrast, the average protein content of six O. sativa cultivars was only 9.15%. The total content of 17 amino acids of three wild rice species was 30%-50% higher than that of the six cultivars. Tyrosine, lysine, and valine content in the three wild rice species was 34%-209% higher than that of the cultivars. However, the difference in total starch content among different O. sativa varieties or types of wild rice species was very small. The average amylose content of O. rufipogon, O. officinalis,and O. granulata was 12.0%, 9.7%, and 11.3%, respectively, much lower than that of the indica and japonica varieties (14.37%-17.17%) but much higher than that of the glutinous rice cultivars (3.89%). The sulfur, phosphorus, magnesium, zinc, and ferrite content in the three wild rice species was 30%-158% higher than that of the six cultivars. The considerable difference in some nutritional components among wild rice species and O. sativa cultivars represents a wide biodiversity of Yunnan Oryza species. Based on the results of the present study, it is predicted that some good genetic traits, especially high protein and ideal amylose content, of Yunnan wild rice species may be useful in improving the nutritional value of rice. This is the first report regarding the amino acid, mineral element, protein and amylose content of husked seeds of some Yunnan wild rice species that have important genetic characteristics for rice quality and nutritional value.  相似文献   

12.
An interspecific advanced backcross population derived from a cross between Oryza sativa "V20A" (a popular male-sterile line used in Chinese rice hybrids) and Oryza glaberrima (accession IRGC No. 103544 from Mali) was used to identify quantitative trait loci (QTL) associated with grain quality and grain morphology. A total of 308 BC3F1 hybrid families were evaluated for 16 grain-related traits under field conditions in Changsha, China, and the same families were evaluated for RFLP and SSR marker segregation at Cornell University (Ithaca, N.Y.). Eleven QTL associated with seven traits were detected in six chromosomal regions, with the favorable allele coming from O. glaberrima at eight loci. Favorable O. glaberrima alleles were associated with improvements in grain shape and appearance, resulting in an increase in kernel length, transgressive variation for thinner grains, and increased length to width ratio. Oryza glaberrima alleles at other loci were associated with potential improvements in crude protein content and brown rice yield. These results suggested that genes from O. glaberrima may be useful in improving specific grain quality characteristics in high-yielding O. sativa hybrid cultivars.  相似文献   

13.
Leveraging natural diversity: back through the bottleneck   总被引:3,自引:0,他引:3  
Plant breeders have long recognized the existence of useful genetic variation in the wild ancestors of our domesticated crop species. In cultivated rice (Oryza sativa), crosses between high-yielding elite cultivars and low-yielding wild accessions often give rise to superior offspring, with wild alleles conferring increased performance in the context of the elite cultivar genetic background. Because the breeding value of wild germplasm cannot be determined by examining the performance of wild accessions, a phylogenetic approach is recommended to determine which interspecific combinations are most likely to be useful in a breeding program. As we deepen our understanding of how genetic diversity is partitioned within and between cultivated and wild gene pools of Oryza, breeders will have increased power to make predictions about the most efficient strategies for utilizing wild germplasm for rice improvement.  相似文献   

14.
In the genus Oryza, interspecific hybrids are useful bridges for transferring the desired genes from wild species to cultivated rice (Oryza sativa L.). In the present study, hybrids between O. sativa (AA genome) and three Chinese wild rices, namely O. rufipogon (AA genome), O. officinalis (CC genome), and O. meyeriana (GG genome), were produced. Agricultural traits of the F1 hybrids surveyed were intermediate between their parents and appreciably resembled wild rice parents. Except for the O. sativa × O. rufipogon hybrid, the other F1 hybrids were completely sterile. Genomic in situ hybridization (GISH) was used for hybrid verification. Wild rice genomic DNAs were used as probes and cultivated rice DNA was used as a block. With the exception of O. rufipogon chromosomes, this method distinguished the other two wild rice and cultivated rice chromosomes at the stage of mitotic metaphase with different blocking ratios. The results suggest that a more distant phylogenetic relationship exists between O. meyeriana and O. sativa and that O. rufipogon and O. sativa share a high degree of sequence homology. The average mitotic chromosome length of O. officinalis and O. meyeriana was 1.25- and 1.51-fold that of O. sativa, respectively. 4',6'-Diamidino- 2-phenylindole staining showed that the chromosomes of O. officinalis and O. meyeriana harbored more heterochromatin, suggesting that the C and G genomes were amplified with repetitive sequences compared with the A genome. Although chromocenters formed by chromatin compaction were detected with wild rice-specific signals corresponding to the C and G genomes in discrete domains of the F1 hybrid interphase nuclei, the size and number of O. meyeriana chromocenters were bigger and greater than those of O. officinalis. The present results provide an important understanding of the genomic relationships and a tool for the transfer of useful genes from three native wild rice species in China to cultivars.  相似文献   

15.
Oryza rufipogon Griff. is a wild progenitor of the Asian cultivated rice Oryza sativa. To better understand the genomic diversity of the wild rice, high-quality reference genomes of O. rufipogon populations are needed, which also facilitate utilization of the wild genetic resources in rice breeding. In this study, we generated a chromosome-level genome assembly of O. rufipogon using a combination of short-read sequencing, single-molecule sequencing, BioNano and Hi-C platforms. The genome sequence(399.8 Mb) was assembled into 46 scaffolds on the 12 chromosomes, with contig N50 and scaffold N50 of 13.2 Mb and 20.3 Mb,respectively. The genome contains 36,520 protein-coding genes, and 49.37% of the genome consists of repetitive elements. The genome has strong synteny with those of the O. sativa subspecies indica and japonica, but containing some large structural variations. Evolutionary analysis unveiled the polyphyletic origins of O. sativa, in which the japonica and indica genome formations involved different divergent O. rufipogon(including O. nivara) lineages, accompanied by introgression of genomic regions between japonica and indica. This high-quality reference genome provides insight on the genome evolution of the wild rice and the origins of the O. sativa subspecies, and valuable information for basic research and rice breeding.  相似文献   

16.
Introgression lines population was effectively used in mapping quantitative trait loci (QTLs), identifying favorable genes, discovering hidden genetic variation, evaluating the action or interaction of QTLs in multiple conditions and providing the favorable experimental materials for plant breeding and genetic research. In this study, an advanced backcross and consecutive selfing strategy was used to develop introgression lines (ILs), which derived from an accession of Oryza rufipogon Griff. collected from Yuanjiang County, Yunnan Province of China, as the donor, and an elite indica cultivar Teqing (O. sativa L.), as the recipient. Introgression segments from O. rufipogon were screened using 179 polymorphic simple sequence repeats (SSR) markers in the genome of each IL. Introgressed segments carried by the introgression lines population contained 120 ILs covering the whole O. rufipogon genome. The mean number of homozygous O. rufipogon segments per introgression line was about 3.88. The average length of introgressed segments was approximate 25.5 cM, and about 20.8% of these segments had sizes less than 10 cM. The genome of each IL harbored the chromosomal fragments of O. rufipogon ranging from 0.54% to 23.7%, with an overall average of 5.79%. At each locus, the ratio of substitution of O. rufipogon alleles had a range of 1.67-9.33, with an average of 5.50. A wide range of alterations in morphological and yield-related traits were also found in the introgression lines population. Using single-point analysis, a total of 37 putative QTLs for yield and yield components were detected at two sites with 7%-20% explaining the phenotypic variance. Nineteen QTLs (51.4%) were detected at both sites, and the alleles from O. rufipogon at fifteen loci (40.5%) improved the yield and yield components in the Teqing background. These O. rufipogon-O, sativa introgression lines will serve as genetic materials for identifying and using favorable genes from common wild rice.  相似文献   

17.
Cao Q  Lu BR  Xia H  Rong J  Sala F  Spada A  Grassi F 《Annals of botany》2006,98(6):1241-1252
BACKGROUND AND AIMS: Weedy rice (Oryza sativa f. spontanea) is one of the most notorious weeds occurring in rice-planting areas worldwide. The objectives of this study are to determine the genetic diversity and differentiation of weedy rice populations from Liaoning Province in North-eastern China and to explore the possible origin of these weedy populations by comparing their genetic relationships with rice varieties (O. sativa) and wild rice (O. rufipogon) from different sources. METHODS: Simple sequence repeat (SSR) markers were used to estimate the genetic diversity of 30 weedy rice populations from Liaoning, each containing about 30 individuals, selected rice varieties and wild O. rufipogon. Genetic differentiation and the relationships of weedy rice populations were analysed using cluster analysis (UPGMA) and principle component analysis (PCA). KEY RESULTS: The overall genetic diversity of weedy rice populations from Liaoning was relatively high (H(e) = 0.313, I = 0.572), with about 35 % of the genetic variation found among regions. The Liaoning weedy rice populations were closely related to rice varieties from Liaoning and japonica varieties from other regions but distantly related to indica rice varieties and wild O. rufipogon. CONCLUSIONS: Weedy rice populations from Liaoning are considerably variable genetically and most probably originated from Liaoning rice varieties by mutation and intervarietal hybrids. Recent changes in farming practices and cultivation methods along with less weed management may have promoted the re-emergence and divergence of weedy rice in North-eastern China.  相似文献   

18.
为探讨茶陵野生稻苗期耐冷的生理机制,以耐冷性强弱不同的栽培稻及东乡野生稻为对照,研究了茶陵野生稻苗期冷胁迫后抗氧化系统的变化.结果表明,茶陵野生稻经冷胁迫后,超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性以及抗坏血酸(AsA)、还原型谷胱甘肽(GSH)含量增加幅度大于冷敏感对照,而稍小于或相当于耐冷对照;超氧阴离子(O2)产生速率和丙二醛(MDA)含量低于冷敏感对照品种,而稍高于或相当于耐冷对照.说明茶陵野生稻苗期耐冷性与其抗氧化系统冷胁迫后的适应性变化密切相关.  相似文献   

19.
普通野生稻和亚洲栽培稻线粒体DNA的RFLP分析   总被引:7,自引:0,他引:7  
通过7个探针、17种内切酶探针组合对118份普通野生稻和76份亚洲栽培稻的线粒体DNA(mtDNA)RFLP分析表明,籼粳分化是亚洲栽培稻线粒体基因组分化的主流,76个栽培稻中,36个品种mtDNA为籼型,40个品种mtDNA为粳型。普通野生稻mtDNA以籼型为主(86份),粳型较少(7份),1份类型难以确定,还有24份没有籼粳分化。  相似文献   

20.
We determined the complete nucleotide sequence of the chloroplast genome of wild rice, Oryza nivara and compared it with the corresponding published sequence of relative cultivated rice, Oryza sativa. The genome was 134,494 bp long with a large single-copy region of 80,544 bp, a small single-copy region of 12,346 bp and two inverted repeats of 20,802 bp each. The overall A+T content was 61.0%. The O. nivara chloroplast genome encoded identical functional genes to O. sativa in the same order along the genome. On the other hand, detailed analysis revealed 57 insertion, 61 deletion and 159 base substitution events in the entire chloroplast genome of O. nivara. Among substitutions, transversions were much higher than transitions with the former even more frequent than the latter in the coding region. Most of the insertions/deletions were single-base but a few large length mutations were also detected. The frequency of insertion/deletion events was more in the coding region within inverted repeats. In contrast, a very few substitution events were identified in the coding region. Polymorphism was observed among rice cultivars at loci of large insertion/deletion events. This is the first report describing comparative and genome wide chloroplast analysis between a wild and cultivated crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号