首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of our study was to test the feasibility and reliability of personal dosimetry. Twenty-four hour exposure assessment was carried out in 42 children, 57 adolescents, and 64 adults using the Maschek dosimeter prototype. Self-reported exposure to mobile phone frequencies were compared with the dosimetry results. In addition, dosimetry readings of the Maschek device and those of the Antennessa DSP-090 were compared in 40 subjects. Self-reported exposures were not associated with dosimetry readings. The measurement results of the two dosimeters were in moderate agreement (r(Spearman) = 0.35; P = .03). Personal dosimetry for exposure to mobile phone base station might be feasible in epidemiologic studies. However, the consistency seems to be moderate.  相似文献   

2.
A potential association between socioeconomic status (SES) and self‐reported use of mobile phones has been investigated in a few studies. If measured exposure to mobile phone networks differs by SES in children, it has not yet been studied. Interview data of 1,481 children and 1,505 adolescents on participants' mobile phone use, socio‐demographic characteristics and potential confounders were taken from the German MobilEe‐study. Sociodemographic data was used to stratify participants into three “status groups” (low, middle, high). Using a personal dosimeter, we obtained an exposure profile over 24 h for each of the participants. Exposure levels during waking hours were expressed as mean percentage of the reference level. Children with a low SES were more likely to own a mobile phone (OR 2.1; 95% CI: 1.1–3.9) and also reported to use their mobile phone longer per day (OR 2.4; 95% CI: 1.1–5.4) than children with a high SES. For adolescents, self‐reported duration of mobile phone use per day was also higher with a low SES (OR: 3.4; 95% CI: 1.4–8.4) compared with a high SES. No association between SES and measured exposure to mobile telecommunication networks was seen for children or adolescents. Mobile phone use may differ between status groups with higher use among disadvantaged groups. However, this does not result in higher overall exposure to mobile telecommunication networks. Whether short duration of own mobile phone use or the small numbers of participants with a low SES are causal, have to be investigated in further studies. Bioelectromagnetics 31:20–27, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Children are more and more using wireless communication systems. This growth has strengthened public concern and has highlighted the need to assess the radio frequency (RF) exposure of children. In dosimetry, taking advantage of the improvement of High Performance Calculation systems, great efforts have been carried out to improve the numerical tools and human models used to assess the Specific Absorption Rate (SAR). This paper analyses progress in building child and foetus models for numerical dosimetry purpose. The simulation results, in terms of Specific Absorption Rate over 1 and 10 g of tissues, in specific organs such as brain and averaged over the whole body, are reported and analysed. The results show that compliance methods used nowadays to certify phones are valid for children. The studies also show that specific tissues such as peripheral brain tissues can have higher exposure with children than with adults. Studies performed with plane waves as sources and whole body children models show that the whole body SAR of children can be higher than the WBSAR of adults and that the compliance to ICNIRP reference levels does not guarantee the compliance to ICNIRP basic restrictions. Dealing with the foetus models and dielectric properties great efforts have been made. Preliminary results show that the foetus exposure is often lower than the mother exposure, with an important influencing parameter: the foetus position in the uterus.  相似文献   

4.
The safety guidelines of ICNIRP on bio-effects of low energy fields are based absorption and transformation into thermal effects. These guidelines are much higher than for acute reactions and long time exposure. It is pointed out that the guidelines for cordless telephone and mobile phone should correspond to long time exposure to low energetic electromagnetic fields.  相似文献   

5.

Background

Concerns have developed for the possible negative health effects of radiofrequency electromagnetic field (RF-EMF) exposure to children’s brains. The purpose of this longitudinal study was to investigate the association between mobile phone use and symptoms of Attention Deficit Hyperactivity Disorder (ADHD) considering the modifying effect of lead exposure.

Methods

A total of 2,422 children at 27 elementary schools in 10 Korean cities were examined and followed up 2 years later. Parents or guardians were administered a questionnaire including the Korean version of the ADHD rating scale and questions about mobile phone use, as well as socio-demographic factors. The ADHD symptom risk for mobile phone use was estimated at two time points using logistic regression and combined over 2 years using the generalized estimating equation model with repeatedly measured variables of mobile phone use, blood lead, and ADHD symptoms, adjusted for covariates.

Results

The ADHD symptom risk associated with mobile phone use for voice calls but the association was limited to children exposed to relatively high lead.

Conclusions

The results suggest that simultaneous exposure to lead and RF from mobile phone use was associated with increased ADHD symptom risk, although possible reverse causality could not be ruled out.  相似文献   

6.
The model biological organisms Drosophila melanogaster and Drosophila virilis have been utilized to assess effects on apoptotic cell death of follicles during oogenesis and reproductive capacity (fecundity) decline. A total of 280 different experiments were performed using newly emerged flies exposed for short time daily for 3–7?d to various EMF sources including: GSM 900/1800?MHz mobile phone, 1880–1900?MHz DECT wireless base, DECT wireless handset, mobile phone-DECT handset combination, 2.44?GHz wireless network (Wi-Fi), 2.44?GHz blue tooth, 92.8?MHz FM generator, 27.15?MHz baby monitor, 900?MHz CW RF generator and microwave oven’s 2.44?GHz RF and magnetic field components. Mobile phone was used as a reference exposure system for evaluating factors considered very important in dosimetry extending our published work with D. melanogaster to the insect D. virilis. Distance from the emitting source, the exposure duration and the repeatability were examined. All EMF sources used created statistically significant effects regarding fecundity and cell death-apoptosis induction, even at very low intensity levels (0.3?V/m blue tooth radiation), well below ICNIRP’s guidelines, suggesting that Drosophila oogenesis system is suitable to be used as a biomarker for exploring potential EMF bioactivity. Also, there is no linear cumulative effect when increasing the duration of exposure or using one EMF source after the other (i.e. mobile phone and DECT handset) at the specific conditions used. The role of the average versus the peak E-field values as measured by spectrum analyzers on the final effects is discussed.  相似文献   

7.
The number of people complaining about different symptoms that may be associated with exposure to electromagnetic fields (EMF) has increased rapidly during past years. Students use both mobile phones and video display terminals frequently. The purpose of this study was to investigate the association of mobile phone use and EMF health hazards. Basic demographic data and self-reported symptoms were sought using a questionnaire administered to all apparently healthy students at Rafsanjan University of Medical Sciences (RUMS) and Vali-e-Asr University (VAU). Questions about some major confounding factors such as age, gender, amount of video display terminal work were also included. Exact Fischer Test was used for data analysis. Among self-reported symptoms, headache (53.5%), fatigue (35.6%), difficulties in concentration (32.5%), vertigo/dizziness (30.4%), attention disorders (28.8%), nervousness (28.1%), palpitation (14.7%), low back pain (14.3%), myalgia (12.4%), and tinnitus (9.9%) were the main self-reported symptoms. No significant differences in the prevalence of these symptoms were found between CRT users and those who did not use CRTs. A significant association was found between cordless phone use and difficulties in concentration (P < .05) or attention disorders (P < .05). However, after correction of the gender role, these differences were not significant. No association was found between mobile phone use and the above-mentioned symptoms. No significantly higher prevalence of self-reported symptoms was found in individuals who had used mobile phones, video display terminals or cordless phones more frequently than others. Mass-media's lack of interest in the possible hazards of exposure to EMF in developing countries can explain the difference observed between the results of this study and those of other researchers in some developed countries who have shown an association between EMF exposure and the prevalence of self-reported subjective symptoms. This finding can confirm the results obtained in provocative studies which indicated the role of psychological factors in electromagnetic hypersensitivity. More research is needed to clarify whether daily environmental EMF may cause health problems.  相似文献   

8.
There is widespread public concern about the potential adverse health effects of mobile phones in general and their associated base stations in particular. This study was designed to investigate the acute effects of radio frequency (RF) electromagnetic fields (EMF) emitted by the Universal Mobile Telecommunication System (UMTS) mobile phone base stations on human cognitive function and symptoms. Forty adolescents (15-16 years) and 40 adults (25-40 years) were exposed to four conditions: (1) sham, (2) a Continuous Wave (CW) at 2140 MHz, (3) a signal at 2140 MHz modulated as UMTS and (4) UMTS at 2140 MHz including all control features in a randomized, double blinded cross-over design. Each exposure lasted 45 min. During exposure the participants performed different cognitive tasks with the Trail Making B (TMB) test as the main outcome and completed a questionnaire measuring self reported subjective symptoms. No statistically significant differences between the UMTS and sham conditions were found for performance on TMB. For the adults, the estimated difference between UMTS and sham was -3.2% (-9.2%; 2.9%) and for the adolescents 5.5% (-1.1%; 12.2%). No significant changes were found in any of the cognitive tasks. An increase in 'headache rating' was observed when data from the adolescents and adults were combined (P = 0.027), an effect that may be due to differences at baseline. In conclusion, the primary hypothesis that UMTS radiation reduces general performance in the TMB test was not confirmed. However, we suggest that the hypothesis of subjective symptoms and EMF exposure needs further research.  相似文献   

9.
This paper reports the results of an exposure level survey of radiofrequency electromagnetic energy originating from mobile telephone base station antennas. Measurements of CDMA800, GSM900, GSM1800, and 3G(UMTS) signals were performed at distances ranging over 50 to 500 m from 60 base stations in five Australian cities. The exposure levels from these mobile telecommunications base stations were found to be well below the general public exposure limits of the ICNIRP guidelines and the Australian radiofrequency standard (ARPANSA RPS3). The highest recorded level from a single base station was 7.8 x 10(-3) W/m(2), which translates to 0.2% of the general public exposure limit.  相似文献   

10.
Findings from prior studies of possible health and physiological effects from mobile phone use have been inconsistent. Exposure periods in provocation studies have been rather short and personal characteristics of the participants poorly defined. We studied the effect of radiofrequency field (RF) on self-reported symptoms and detection of fields after a prolonged exposure time and with a well defined study group including subjects reporting symptoms attributed to mobile phone use. The design was a double blind, cross-over provocation study testing a 3-h long GSM handset exposure versus sham. The study group was 71 subjects age 18-45, including 38 subjects reporting headache or vertigo in relation to mobile phone use (symptom group) and 33 non-symptomatic subjects. Symptoms were scored on a 7-point Likert scale before, after 1(1/2) and 2(3/4) h of exposure. Subjects reported their belief of actual exposure status. The results showed that headache was more commonly reported after RF exposure than sham, mainly due to an increase in the non-symptom group. Neither group could detect RF exposure better than by chance. A belief that the RF exposure had been active was associated with skin symptoms. The higher prevalence of headache in the non-symptom group towards the end of RF exposure justifies further investigation of possible physiological correlates. The current study indicates a need to better characterize study participants in mobile phone exposure studies and differences between symptom and non-symptom groups.  相似文献   

11.
In this study, the extremely low frequency (ELF) fields induced in the human head by the battery currents of a mobile phone are considered. The magnetic field induced by the phone was measured, and this data was used to calculate the resulting currents induced in the human head and brain. Both the finite element method (FEM) and finite integration technique (FIT) were used for numerical computations. The computed current density values were then compared with the guidelines given by the International Commission on Non-Ionising Radiation Protection (ICNIRP). The comparison showed that the computed exposure is well within the limits of those guidelines.  相似文献   

12.
Mobile phones, heat shock proteins and cancer   总被引:7,自引:0,他引:7  
There are several reports which indicate that electromagnetic radiation (such as from mobile phones) at non-thermal levels may elicit a biological effect in target cells or tissues. Whether or not these biological effects lead to adverse health effects, including cancer, is unclear. To date there is limited scientific evidence of health issues, and no mechanism by which mobile phone radiation could influence cancer development. In this paper, we develop a theoretical mechanism by which radiofrequency radiation from mobile phones could induce cancer, via the chronic activation of the heat shock response. Upregulation of heat shock proteins (Hsps) is a normal defence response to a cellular stress. However, chronic expression of Hsps is known to induce or promote oncogenesis, metastasis and/or resistance to anticancer drugs. We propose that repeated exposure to mobile phone radiation acts as a repetitive stress leading to continuous expression of Hsps in exposed cells and tissues, which in turn affects their normal regulation, and cancer results. This hypothesis provides the possibility of a direct association between mobile phone use and cancer, and thus provides an important focus for future experimentation.  相似文献   

13.
A cochlear implant system is a device used to enable hearing in people with severe hearing loss and consists of an internal implant and external speech processor. This study considers the effect of scattered radiofrequency fields when these persons are subject to mobile phone type exposure. A worst-case scenario is considered where the antenna is operating at nominal full power, the speech processor is situated behind the ear using a metallic hook, and the antenna is adjacent to the hook and the internal ball electrode. The resultant energy deposition and thermal changes were determined through numerical modelling. With a 900 MHz half-wave dipole antenna producing continuous-wave (CW) 250 mW power, the maximum 10 g averaged SAR was 1.31 W/kg which occurred in the vicinity of the hook and the ball electrode. The maximum temperature increase was 0.33 degrees C in skin adjacent to the hook. For the 1800 MHz antenna, operating at 125 mW, the maximum 10 g averaged SAR was 0.93 W/kg in the pinna whilst the maximum temperature change was 0.16 degrees C. The analysis predicts that the wearer complies with the radiofrequency safety limits specified by the International Commission on Non-Ionizing Radiation Protection (ICNIRP), the Institute of Electrical and Electronics Engineers (IEEE), and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) for 900 and 1800 MHz mobile phone type exposure and thus raises no cause for concern. The resultant temperature increase is well below the maximum rise of 1 degrees C recommended by ICNIRP. Effects in the cochlea were insignificant.  相似文献   

14.
The aim of this study was to evaluate thumb postures, thumb movements and muscle activity when using mobile phones for SMS messaging and to determine whether there were differences in these exposures (a) across various mobile phone tasks, (b) between gender and (c) between subjects with and without musculoskeletal symptoms in shoulders and upper extremities. Fifty-six young adults (15 healthy and 41 with musculoskeletal symptoms) performed a series of distinct tasks on a mobile phone. Muscular load in four forearm/hand muscles in the right arm and the right and left trapezius muscles were measured using electromyography (EMG). Thumb movements were registered using an electrogoniometer. The results showed that postures (sitting or standing) and the type of mobile phone task (holding the phone versus texting) affected muscle activity and thumb positions. Females compared to males had higher muscle activity in the extensor digitorum and the abductor pollicis longus when entering SMS messages and tended to have greater thumb abduction, higher thumb movement velocities and fewer pauses in the thumb movements. Subjects with symptoms had lower muscle activity levels in the abductor pollicis longus and tended to have higher thumb movement velocities and fewer pauses in the thumb movements compared to those without symptoms.  相似文献   

15.
We investigated whether the pulsed high frequency electromagnetic field (EMF) emitted by a mobile phone has short term effects on the human motor cortex. We measured motor evoked potentials (MEPs) elicited by single pulse transcranial magnetic stimulation (TMS), before and after mobile phone exposure (active and sham) in 10 normal volunteers. Three sites were stimulated (motor cortex (CTX), brainstem (BST) and spinal nerve (Sp)). The short interval intracortical inhibition (SICI) of the motor cortex reflecting GABAergic interneuronal function was also studied by paired pulse TMS method. MEPs to single pulse TMS were also recorded in two patients with multiple sclerosis showing temperature dependent neurological symptoms (hot bath effect). Neither MEPs to single pulse TMS nor the SICI was affected by 30 min of EMF exposure from mobile phones or sham exposure. In two MS patients, mobile phone exposure had no effect on any parameters of MEPs even though conduction block occurred at the corticospinal tracts after taking a bath. As far as available methods are concerned, we did not detect any short-term effects of 30 min mobile phone exposure on the human motor cortical output neurons or interneurons even though we can not exclude the possibility that we failed to detect some mild effects due to a small sample size in the present study. This is the first study of MEPs after electromagnetic exposure from a mobile phone in neurological patients.  相似文献   

16.
Existence of low level electromagnetic fields in the environment has been known since antiquity and their biological implications are noted for several decades. As such dosimetry of such field parameters and their emissions from various sources of mass utilization has been a subject of constant concern. Recent advancement in mobile communications has also drawn attention to their biological effects. Hand held children and adults alike generally use mobile sources as cordless phones in various positions with respect to the body. Further, an increasing number of mobile communication base stations have led to wide ranging concern about possible health effects of radiofrequency emissions. There are two distinct possibilities by which health could be affected as a result of radio frequency field exposure. These are thermal effects caused by holding mobile phones close to the body and extended conversations over a long period of time. Secondly, there could be possibly non thermal effects from both phones and base stations whereby the affects could also be cumulative. Some people may be adversely affected by the environmental impact of mobile phone base stations situated near their homes, schools or any other place. In addition to mobile phones, appliances like microwave oven etc are also in increasing use. Apart from the controversy over the possible health effects due to the non-thermal effect of electromagnetic fields the electromagnetic interaction of portable radio waves with human head needs to be quantitatively evaluated. Relating to this is the criteria of safe exposure to the population at large. While a lot of efforts have gone into resolving the issue, a clear picture has yet to emerge. Recent advances and the problems relating to the safety criteria are discussed.  相似文献   

17.
We assessed a new approach for evaluating the glioma risk among users of mobile phones to focus on the part of the brain most heavily exposed to radiofrequency electromagnetic fields from mobile phones. The tumor midpoint was defined from radiological imaging. A case–case analysis with 99 gliomas was performed using logistic regression. The exposed cases were those with the tumor mid‐point within 4.6 cm from the line between the mouth and the external meatus of the ear, representing the most likely location of the mobile phone (the source of exposure). Alternative analyses based on various indicators of mobile phone use as the outcome were also carried out. The majority of cases were regular mobile phone users. A slightly higher proportion of gliomas among mobile phone users than non‐users occurred within 4.6 cm from the presumed location of the mobile phone (28% vs. 14%). Modestly elevated odds ratios were observed for several indicators of mobile phone use, but without an exposure gradient. The highest odds ratios were found for contralateral and short‐term use. Our results, though limited by the small sample size, demonstrate that detailed information on tumor location allows evaluation of the risk related to the most heavily exposed part of the brain, representing direct evaluation of the possible local carcinogenic effects of the radiofrequency fields. However, field strength varies between users and over time also within a given anatomic site, due to the output power of the phone. Collaborative analysis of a larger sample is planned. Bioelectromagnetics 30:176–182, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
In this work, the numerical dosimetry in human exposure to the electromagnetic fields from antennas of wireless devices, such as those of wireless local area networks (WLAN) access points or phone and computer peripherals with Bluetooth antennas, is analyzed with the objective of assessing guidelines compliance. Several geometrical configurations are considered to simulate possible exposure situations of a person to the fields from WLAN or Bluetooth antennas operating at 2400 MHz. The exposure to radiation from two sources of different frequencies when using a 1800 MHz GSM mobile phone connected via Bluetooth with a hands-free car kit is also considered. The finite-difference time-domain (FDTD) method is used to calculate electric and magnetic field values in the vicinity of the antennas and specific absorption rates (SAR) in a high-resolution model of the human head and torso, to be compared with the limits from the guidelines (reference levels and basic restrictions, respectively). Results show that the exposure levels in worst-case situations studied are lower than those obtained when analyzing the exposure to mobile phones, as could be expected because of the low power of the signals and the distance between the human and the antennas, with both field and SAR values being far below the limits established by the guidelines, even when considering the combined exposure to both a GSM and a Bluetooth antenna.  相似文献   

19.
The aim of this study was to examine whether a modulated radiofrequency of the type used in cellular phone communications at a specific absorption rate (SAR) higher than International Commission on Non-ionizing Radiation Protection (ICNIRP) reference level for occupational exposure, could elicit alterations on proliferation, differentiation, and apoptosis processes in a neuroblastoma cell line. The cell line was exposed for 24, 48, and 72 h to 900 MHz radiofrequency and proliferation and differentiation were tested by WST-I assay and by a molecular analysis of specific markers, two oncogenes and a cytoskeleton protein, in exponential growth phase and in synchronized cell cultures. Apoptosis was evaluated by caspase activation analysis and by molecular detection of Poly (ADP-ribose) polimerase (PARP) cleavage. Combined exposures to radiofrequency and to the differentiative agent retinoic acid or to the apoptotic inducer camptothecin were carried out to test possible interference between electromagnetic field and chemical agents. Overall our data suggest that 900 MHz radiofrequency exposure up to 72 h does not induce significant alterations in the three principal cell activities in a neuroblastoma cell line.  相似文献   

20.
The European multicenter project named GUARD involved nine centers and aimed to assess potential changes in auditory function as a consequence of exposure to low-intensity electromagnetic fields (EMFs) produced by GSM cellular phones. Participants were healthy young adults without any evidence of hearing or ear disorders. Auditory function was assessed immediately before and after exposure to EMFs, and only the exposed ear was tested. The procedure was conducted twice in a double blinded design, once with a genuine EMF exposure and once with a sham exposure (at least 24 h apart). Tests for assessment of auditory function were hearing threshold level (HTL), transient otoacoustic emissions (TEOAE), distortion product otoacoustic emissions (DPOAE), and auditory brainstem response (ABR). The exposure consisted of speech at a typical conversational level delivered via an earphone to one ear, plus genuine or sham EMF exposure. The EMF exposure used the output of a software-controlled consumer cellular phone at full power for 10 min. A system of phone positioning that allowed participants to freely move their heads without affecting exposure was used. Analysis of the data showed there were no effects of exposure to GSM mobile phone signals on the main measures of the status of the auditory system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号