首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The reactive site of human alpha 2-antiplasmin   总被引:3,自引:0,他引:3  
Human alpha 2-antiplasmin rapidly forms a stable, equimolar complex with either its target enzyme, plasmin, or with trypsin. Perturbation of the inhibitor-trypsin complex results in peptide bond cleavage at the reactive site of the inhibitor with the concomitant release of a small peptide fragment which apparently represents the carboxyl-terminal segment of the inhibitor. Sequence analysis of this fragment, together with that of an overlapping peptide obtained by treatment of native inhibitor with either Staphylococcus aureus V8 proteinase or human neutrophil elastase, yields data which indicate that the reactive site of alpha 2-antiplasmin encompasses a P1-P'1 Arg-Met sequence. However, unlike alpha 1-1-proteinase inhibitor which has a Met residue in the P1-position, oxidation of alpha 2-antiplasmin has no effect on its inhibitory activity toward either plasmin, trypsin, or chymotrypsin, indicating the lesser mechanistic importance of the P'1-residue during enzyme inactivation by this inhibitor.  相似文献   

2.
Annexin II, a major cytoplasmic substrate of the src tyrosine kinase, is a member of the annexin family of Ca2+/phospholipid-binding proteins. It is composed of a short N-terminal tail (30 residues) followed by four so-called annexin repeats (each 70-80 residues in length) which share sequence homologies and are thought to form (a) new type(s) of Ca(2+)-binding site(s). We have produced wild-type and site specifically mutated annexin II molecules to compare their structure and biochemistry. The recombinant wild-type annexin II displays biochemical and spectroscopical properties resembling those of the authentic protein purified from mammalian cells. In particular, it shows the Ca(2+)-induced blue shift in fluorescence emission which is typical for this annexin. Replacement of the single tryptophan in annexin II (Trp-212) by a phenylalanine abolishes the fluorescence signal and allows the unambiguous assignment of the Ca(2+)-sensitive spectroscopic properties to Trp-212. This residue is located in the third annexin repeat in a highly conserved stretch of 17 amino acids which are also found in the other repeats and known as the endonexin fold. To study the precise architecture of the Ca2+ site which must reside in close proximity to Trp-212, we changed several residues of the endonexin fold in repeat 3 by site-directed mutagenesis. An analysis of these mutants by fluorescence spectroscopy and Ca(2+)-dependent phospholipid binding reveals that Gly-206 and Thr-207 seem indispensible for a correct folding of this Ca(2+)-binding site.  相似文献   

3.
The principal transport protein for T4 in human blood, thyroxine-binding globulin (TBG), binds T4 with an exceptionally high affinity (Ka = 10(10) M(-1)). Its homology to the superfamily of the serpins has recently been used in the design of chimeric proteins, providing experimental evidence that an eight-stranded beta-barrel domain encompasses the ligand-binding site. We have now characterized the T4 binding site by site-directed mutagenesis. Sequence alignment of TBG from several species revealed a phylogenetically highly conserved stretch of amino acids comprising strands 2B and 3B of the beta-barrel motif. Mutations within this region (Val228Glu, Cys234Trp, Thr235Trp, Thr235Gln, Lys253Ala, and Lys253Asp), designed to impose steric hindrance or restriction of its mobility, had no significant influence on T4 binding. However, binding affinity was 20-fold reduced by introduction of an N-linked glycosylation site at the turn between strands 2B and 3B (Leu246Thr) without compromising the proper folding of this mutant as assessed by immunological methods. In most other serpins, this glycosylation site is highly conserved and has been shown to be crucial for cortisol binding of corticosteroid-binding globulin, the only other member of the serpins with a transport function. The ligand-binding site could thus be located to a highly aromatic environment deep within the beta-barrel. The importance of the binding site's aromatic character was investigated by exchanging phenylalanines with alanines. Indeed, these experiments revealed that substitution of Phe249 in the middle of strand 3B completely abolished T4 binding, while the substitution of several other phenylalanines had no effect.  相似文献   

4.
Human C-reactive protein (CRP) can activate the classical pathway of complement and function as an opsonin only when it is complexed to an appropriate ligand. Most known CRP ligands bind to the phosphocholine (PCh)-binding site of the protein. In the present study, we used oligonucleotide-directed site-specific mutagenesis to investigate structural determinants of the PCh-binding site of CRP. Eight mutant recombinant (r) CRP, Y40F; E42Q; Y40F, E42Q; K57Q; R58G; K57Q, R58G; W67K; and K57Q, R58G, W67K were constructed and expressed in COS cells. Wild-type and all mutant rCRP except for the W67K mutants bound to solid-phase PCh-substituted bovine serum albumin (PCh-BSA) with similar apparent avidities. However, W67K rCRP had decreased avidity for PCh-BSA and the triple mutant, K57Q, R58G, W67K, failed to bind PCh-BSA. Inhibition experiments using PCh and dAMP as inhibitors indicated that both Lys-57 and Arg-58 contribute to PCh binding. They also indicated that Trp-67 provides interactions with the choline group. The Y40F and E42Q mutants were found to have increased avidity for fibronectin compared to wild-type rCRP. We conclude that the residues Lys-57, Arg-58, and Trp-67 contribute to the structure of the PCh-binding site of human CRP. Residues Tyr-40 and Glu-42 do not appear to participate in the formation of the PCh-binding site of CRP, however, they may be located in the vicinity of the fibronectin-binding site of CRP.  相似文献   

5.
E M Meiering  M Bycroft  A R Fersht 《Biochemistry》1991,30(47):11348-11356
Phosphate is a competitive inhibitor of transesterification of GpC by the ribonuclease barnase. Barnase is significantly stabilized in the presence of phosphate against urea denaturation. The data are consistent with the existence of a single phosphate binding site in barnase with a dissociation constant, Kd, of 1.3 mM. The 2D 1H NMR spectrum of wild-type barnase with bound phosphate is assigned. Changes in chemical shifts and NOEs for wild type with bound phosphate compared with free wild type indicate that phosphate binds in the active site and that only small conformational changes occur on binding. Site-directed mutagenesis of the active site residues His-102, Lys-27, and Arg-87 to Ala increases the magnitude of Kd for phosphate by more than 20-fold. The 2D 1H NMR spectra of the mutants His-102----Ala, Lys-27----Ala, and Arg-87----Ala are assigned. Comparison with the spectra of wild-type barnase reveals that His-102----Ala and Lys-27----Ala have essentially the same structure as weild type, while some structural changes occur in Arg-87----Ala. It appears that phosphate binding by barnase is effected mainly by positively charge residues including His-102, Lys-27, and Arg-87. This may have applications for the design of phosphate binding sites in other proteins.  相似文献   

6.
The 2.2-A X-ray structure for CCP(MI), a plasmid-encoded form of Saccharomyces cerevisiae cytochrome c peroxidase (CCP) expressed in Escherichia coli [Fishel, L.A., Villafranca, J. E., Mauro, J. M., & Kraut, J. (1987) Biochemistry 26, 351-360], has been solved, together with the structures of three specifically designed single-site heme-cleft mutants. The structure of CCP(MI) was solved by using molecular replacement methods, since its crystals grow differently from the crystals of CCP isolated from bakers' yeast used previously for structural solution. Small distal-side differences between CCP(MI) and bakers' yeast CCP are observed, presumably due to a strain-specific Thr-53----Ile substitution in CCP(MI). A Trp-51----Phe mutant remains pentacoordinated and exhibits only minor distal structural adjustments. The observation of a vacant sixth coordination site in this structure differs from the results of solution resonance Raman studies, which predict hexacoordinated high-spin iron [Smulevich, G., Mauro, J.M., Fishel, L. A., English, A. M., Kraut, J., & Spiro, T. G. (1988) Biochemistry 27, 5477-5485]. The coordination behavior of this W51F mutant is apparently altered in the presence of a precipitating agent, 30% 2-methyl-2,4-pentanediol. A proximal Trp-191----Phe mutant that has substantially diminished enzyme activity and altered magnetic properties [Mauro, J. M., Fishel, L. F., Hazzard, J. T., Meyer, T. E., Tollin, G., Cusanovich, M. A., & Kraut, J. (1988) Biochemistry 27, 6243-6256] accommodates the substitution by allowing the side chain of Phe-191, together with the segment of backbone to which it is attached, to move toward the heme. This relatively large (ca. 1 A) local perturbation is accompanied by numerous small adjustments resulting in a slight overall compression of the enzyme's proximal domain; however, the iron coordination sphere is essentially unchanged. This structure rules out a major alteration in protein conformation as a reason for the dramatically decreased activity of the W191F mutant. Changing proximal Asp-235 to Asn results in two significant localized structural changes. First, the heme iron moves toward the porphyrin plane, and distal water 595 now clearly resides in the iron coordination sphere at a distance of 2.0 A. The observation of hexacoordinated iron for the D235N mutant is in accord with previous resonance Raman results. Second, the indole side chain of Trp-191 has flipped over as a result of the mutation; the tryptophan N epsilon takes part in a new hydrogen bond with the backbone carbonyl oxygen of Leu-177.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Amino-acid sequence of human alpha 2-antiplasmin   总被引:4,自引:0,他引:4  
The amino-acid sequence of human alpha 2-antiplasmin was determined by Edman degradation of peptides purified from CNBr, tryptic and chymotryptic digests. Of the total sequence of 452 amino acids of mature alpha 2-antiplasmin, as deduced from the cDNA sequence [Holmes et al. (1987) J. Biol. Chem. 262, 1659-1664], 444 residues were identified by amino-acid sequencing. Two differences were found between the peptide and cDNA analyses (Gly instead of Leu at position 10 and Gly instead of Ser at position 369). alpha 2-Antiplasmin contains two disulfide bridges (Cys64-Cys104 and Cys31-Cys113) and four glucosamine-based carbohydrate chains attached to Asn87, Asn256, Asn270 and Asn277. alpha 2-Antiplasmin is homologous with 12 other proteins belonging to the serine protease inhibitor (serpin) superfamily.  相似文献   

8.
Three cysteines in human recombinant folylpoly-gamma-glutamate synthetase (FPGS) that were reactive with iodoacetamide were located in peptides that were highly conserved across species; the functions of two of these peptides, located in the C-terminal domain, were studied by site-directed mutagenesis. When cDNAs containing mutations in each conserved ionic residue on these peptides were transfected into AUXB1 cells, which lack endogenous FPGS activity, one mutant (D335A) did not complement the auxotrophy, and another (R377A) allowed only minimal growth. FPGS activity could not be detected in insect cells expressing abundant levels of these two mutant proteins from recombinant baculoviruses nor from a virus encoding an H338A mutant FPGS. Kinetic analysis of the purified proteins demonstrated that each of these three mutants was quite different from the others. The major kinetic change detected for the H338A mutation was a 600-fold increase in the K(m) for glutamic acid. For the D335A mutation, the binding of all three substrates (aminopterin, ATP, and glutamic acid) was affected. For R377A, the K(m) for glutamic acid was increased by 1500-fold, and there was an approximately 20-fold decrease in the k(cat) of the reaction. The binding of the K(+) ion, a known activator of FPGS, was affected by the D335A and H338A mutations. We conclude that these three amino acids participate in the alignment of glutamic acid in the active site and that Arg-377 is also involved in the mechanism of the reaction.  相似文献   

9.
Rouhier N  Gelhaye E  Jacquot JP 《FEBS letters》2002,511(1-3):145-149
Six mutants (Y26A, C27S, Y29F, Y29P, C30S and Y26W/Y29P) have been engineered in order to explore the active site of poplar glutaredoxin (Grx) (Y26CPYC30). The cysteinic mutants indicate that Cys 27 is the primary nucleophile. Phe is a good substitute for Tyr 29, but the Y29P mutant was inactive. The Y26A mutation caused a moderate loss of activity. The YCPPC and WCPPC mutations did not improve the reactivity of Grx with the chloroplastic NADP-malate dehydrogenase, a well known target of thioredoxins (Trxs). The results are discussed in relation with the known biochemical properties of Grx and Trx.  相似文献   

10.
A number of inhibitors of kinesin spindle protein (KSP) have been described, which are known from X-ray crystallography studies to bind to an induced fit pocket defined by the L5 loop. We describe the characterization of eight mutant forms of KSP in which six residues that line this pocket have been altered. Mutants were analyzed by measuring rates of enzyme catalysis, in the presence and absence of six KSP inhibitors of four diverse structural classes and of varied ATP-competition status. Our analysis was in agreement with the model of binding established by the structural studies and suggests that binding energy is well distributed across functional groups in these molecules. The majority of the mutants retained significant enzymatic activity while diminishing inhibitor binding, indicating potential for the development of drug resistance. These data provide detailed information on interactions between inhibitor and binding pocket at the functional group level and enable the development of novel KSP inhibitors.  相似文献   

11.
Human plasma alpha1-antitrypsin inhibits human pancreatic trypsin, chymotrypsin and elastase, which are massively released into the blood stream during acute pancreatitis. To examine whether the plasma proteins of individuals with genetic deficiency of alpha1-antitrypsin are protected against the deleterious action of these enzymes by other inhibitors, we have tested their inhibition by alpha2-antiplasmin and antithrombin. We have determined the inhibition rate constants kass and calculated d(t), the in vivo inhibition time. Surprisingly, trypsin is inhibited faster by alpha2-antiplasmin [kass=2.5 x 10(6) M(-1)S(-1), d(t)=2.3 s] and antithrombin [kass=1.7 x 10(5) M(-1)s(-1), d(t)=5.8 s] than by alpha1-antitrypsin [d(t)=17 s or 116 s in alpha1-antitrypsin-sufficient or alpha1-antitrypsin-deficient individuals, respectively]. Low molecular weight heparin accelerates the inhibition of trypsin by antithrombin by a factor of 16 [d(t)=0.36 s]. Antithrombin and alpha2-antiplasmin are not physiological inhibitors of chymotrypsin and elastase. These enzymes are, however, physiologically inhibited by alpha1-antitrypsin and alpha1-antichymotrypsin even in alpha1-antitrypsin-deficient individuals. We conclude that (i) low molecular weight heparin may be helpful in the management of acute pancreatitis, and (ii) genetically determined alpha1-antitrypsin deficiency probably does not lead to a significantly increased risk of plasma protein degradation during this disease.  相似文献   

12.
13.

Background

Vanabins are a unique protein family of vanadium-binding proteins with nine disulfide bonds. Possible binding sites for VO2+ in Vanabin2 from a vanadium-rich ascidian Ascidia sydneiensis samea have been detected by nuclear magnetic resonance study, but the metal selectivity and metal-binding ability of each site was not examined.

Methods

In order to reveal functional contribution of each binding site, we prepared several mutants of Vanabin2 by in vitro site-directed mutagenesis and analyzed their metal selectivity and affinity by immobilized metal-ion affinity chromatography and Hummel Dreyer method.

Results

Mutation at K10/R60 (site 1) markedly reduced the affinity for VO2+. Mutation at K24/K38/R41/R42 (site 2) decreased the maximum binding number, but only slightly increased the overall affinity for VO2+. Secondary structure of both mutants was the same as that of the wild type as assessed by circular dichroism spectroscopy. Mutation in disulfide bonds near the site 1 did not affect its high affinity binding capacity, while those near the site 2 decreased the overall affinity for VO2+.

General significance

These results suggested that the site 1 is a high affinity binding site for VO2+, while the site 2 composes a moderate affinity site for multiple VO2+.  相似文献   

14.
Affinity-chromatographic purification of human alpha 2-antiplasmin.   总被引:6,自引:4,他引:6       下载免费PDF全文
A new simple and efficient purification method for alpha 2-antiplasmin is described that is based on the interaction between alpha 2-antiplasmin and a fragment from elastase-digested plasminogen constituting the three N-terminal triple-loop structures in the plasmin A-chain (LBSI). After a single-step adsorption of the alpha 2-antiplasmin from plasminogen-depleted plasma to LBSI-Sepharose and elution with 6-aminohexanoic acid, an 80-90% pure preparation with a yield of 50-60% is obtained. The major impurity is fibrinogen, which can easily be removed by gel filtration, and, as a result, a homogeneous fully active alpha 2-antiplasmin preparation is obtained that has the same properties as previously described for alpha 2-antiplasmin. Evidence is put forward that a form of alpha 2-antiplasmin with less affinity for the lysine-binding sites in plasminogen may exist, even in unfractionated plasma.  相似文献   

15.
The cDNA encoding full-length single chain urokinase-type plasminogen activator (scu-PA) was cloned and sequenced, and the recombinant scu-PA (rscu-PA) was expressed in Chinese hamster ovary cells. Two mutants, constructed by in vitro site-specific mutagenesis of Lys158 in rscu-PA to Gly158 (rscu-PA-Gly158) or to Glu158 (rscu-PA-Glu158), were also expressed in Chinese hamster ovary cells. Wild type and mutant rscu-PAs were purified to homogeneity by immunoadsorption on an insolubilized monoclonal antibody raised against natural scu-PA (nscu-PA), followed by gel filtration. The specific activity of the mutant scu-PAs on fibrin plates is very low (less than 1,000 IU/mg) compared to that of the wild type rscu-PA (44,000 IU/mg). The mutants, in contrast to the wild type rscu-PA, are not converted to amidolytically active two chain u-PA (tcu-PA) by plasmin and do not cause lysis of a 125I-fibrin-labeled plasma clot immersed in citrated plasma. However, in a purified system, both rscu-PA-Gly158 and rscu-PA-Glu158 activate plasminogen following Michaelis-Menten kinetics, with a much lower affinity (Km = 60-80 microM) but with a higher turnover rate constant (k2 = 0.01 s-1) as compared to the wild type rscu-PA (Km = 1.0 microM, k2 = 0.002 s-1). We conclude that conversion of scu-PA to tcu-PA is not a prerequisite for the activation of plasminogen. Substitution of Lys158 by Gly158 or Glu158 does, however, markedly decrease the stability of the Michaelis complex.  相似文献   

16.
To probe the structure of the quinol oxidation site in loop VI/VII of the Escherichia coli cytochrome bd, we substituted three conserved residues (Gln249, Lys252, and Glu257) in the N-terminal region and three glutamates (Glu278, Glu279, and Glu280) in the first internal repeat. We found that substitutions of Glu257 by Ala or Gln, and Glu279 and Glu280 by Gln, severely reduced the oxidase activity and the expression level of cytochrome bd. In contrast, Lys252 mutations reduced only the oxidase activity. Blue shifts in the 440 and 630 nm peaks of the reduced Lys252 mutants and in the 561 nm peak of the reduced Glu257 mutants indicate the proximity of Lys252 to the heme b(595)-d binuclear center and Glu257 to heme b(558), respectively. Perturbations of reduced heme b(558) upon binding of aurachin D support structural changes in the quinol-binding site of the mutants. Substitutions of Lys252 and Glu257 caused large changes in kinetic parameters for the ubiquinol-1 oxidation. These results indicate that Lys252 and Glu257 in the N-terminal region of the Q-loop are involved in the quinol oxidation by bd-type terminal oxidase.  相似文献   

17.
Three subtypes of retinoic acid receptors (RAR), termed RAR alpha, RAR beta, and RAR gamma, have been described. They are composed of different structural domains, including distinct domains for DNA and ligand binding. RARs specifically bind all-trans-retinoic acid (RA), 9-cis-RA, and retinoid analogs. In this study, we examined the functional role of cysteine and arginine residues in the ligand-binding domain of hRAR alpha (hRAR alpha-LBD, amino acids 154 to 462). All conserved cysteine and arginine residues in this domain were mutated by site-directed mutagenesis, and the mutant proteins were characterized by blocking reactions, ligand-binding experiments, transactivation assays, and protease mapping. Changes of any cysteine residue of the hRAR alpha-LBD had no significant influence on the binding of all-trans RA or 9-cis RA. Interestingly, residue C-235 is specifically important in antagonist binding. With respect to arginine residues, only the two single mutations of R-276 and R-394 to alanine showed a dramatic decrease of agonist and antagonist binding whereas the R272A mutation showed only a slight effect. For all other arginine mutations, no differences in affinity were detectable. The two mutations R217A and R294A caused an increased binding efficiency for antagonists but no change in agonist binding. From these results, we can conclude that electrostatic interactions of retinoids with the RAR alpha-LBD play a significant role in ligand binding. In addition, antagonists show distinctly different requirements for efficient binding, which may contribute to their interference in the ligand-inducible transactivation function of RAR alpha.  相似文献   

18.
Fibronectin's RGD-mediated binding to the alpha5beta1 integrin is dramatically enhanced by a synergy site within fibronectin III domain 9 (FN9). Guided by the crystal structure of the cell-binding domain, we selected amino acids in FN9 that project in the same direction as the RGD, presumably toward the integrin, and mutated them to alanine. R1379 in the peptide PHSRN, and the nearby R1374 have been shown previously to be important for alpha5beta1-mediated adhesion (Aota, S., M. Nomizu, and K.M. Yamada. 1994. J. Biol. Chem. 269:24756-24761). Our more extensive set of mutants showed that R1379 is the key residue in the synergistic effect, but other residues contribute substantially. R1374A decreased adhesion slightly by itself, but the double mutant R1374A-R1379A was significantly less adhesive than R1379A alone. Single mutations of R1369A, R1371A, T1385A, and N1386A had negligible effects on cell adhesion, but combining these substitutions either with R1379A or each other gave a more dramatic reduction of cell adhesion. The triple mutant R1374A/P1376A/R1379A had no detectable adhesion activity. We conclude that, in addition to the R of the PHRSN peptide, other residues on the same face of FN9 are required for the full synergistic effect. The integrin-binding synergy site is a much more extensive surface than the small linear peptide sequence.  相似文献   

19.
The binding of penicillin to penicillin acylase was studied by X-ray crystallography. The structure of the enzyme-substrate complex was determined after soaking crystals of an inactive betaN241A penicillin acylase mutant with penicillin G. Binding of the substrate induces a conformational change, in which the side chains of alphaF146 and alphaR145 move away from the active site, which allows the enzyme to accommodate penicillin G. In the resulting structure, the beta-lactam binding site is formed by the side chains of alphaF146 and betaF71, which have van der Waals interactions with the thiazolidine ring of penicillin G and the side chain of alphaR145 that is connected to the carboxylate group of the ligand by means of hydrogen bonding via two water molecules. The backbone oxygen of betaQ23 forms a hydrogen bond with the carbonyl oxygen of the phenylacetic acid moiety through a bridging water molecule. Kinetic studies revealed that the site-directed mutants alphaF146Y, alphaF146A and alphaF146L all show significant changes in their interaction with the beta-lactam substrates as compared with the wild type. The alphaF146Y mutant had the same affinity for 6-aminopenicillanic acid as the wild-type enzyme, but was not able to synthesize penicillin G from phenylacetamide and 6-aminopenicillanic acid. The alphaF146L and alphaF146A enzymes had a 3-5-fold decreased affinity for 6-aminopenicillanic acid, but synthesized penicillin G more efficiently than the wild type. The combined results of the structural and kinetic studies show the importance of alphaF146 in the beta-lactam binding site and provide leads for engineering mutants with improved synthetic properties.  相似文献   

20.
To contribute to the understanding of glutamate synthase and of beta subunit-like proteins, which have been detected by sequence analyses, we identified the NADPH-binding site out of the two potential ADP-binding regions found in the beta subunit. The substitution of an alanyl residue for G298 of the beta subunit of Azospirillum brasilense glutamate synthase (the second glycine in the GXGXXA fingerprint of the postulated NADPH-binding site) yielded a protein species in which the flavin environment and properties are unaltered. On the contrary, the binding of the pyridine nucleotide substrate is significantly perturbed demonstrating that the C-terminal potential ADP-binding fold of the beta subunit is indeed the NADPH-binding site of the enzyme. The major effect of the G298A substitution in the GltS beta subunit consists of an approximately 10-fold decrease of the affinity of the enzyme for pyridine nucleotides with little or no effect on the rate of the enzyme reduction by NADPH. By combining kinetic measurements and absorbance-monitored equilibrium titrations of the G298A-beta subunit mutant, we conclude that also the positioning of its nicotinamide portion into the active site is altered thus preventing the formation of a stable charge-transfer complex between reduced FAD and NADP(+). During the course of this work, the Azospirillum DNA regions flanking the gltD and gltB genes, the genes encoding the GltS beta and alpha subunits, respectively, were sequenced and analyzed. Although the Azospirillum GltS is similar to the enzyme of other bacteria, it appears that the corresponding genes differ with respect to their arrangement in the chromosome and to the composition of the glt operon: no genes corresponding to E. coli and Klebsiella aerogenes gltF or to Bacillus subtilis gltC, encoding regulatory proteins, are found in the DNA regions adjacent to that containing gltD and gltB genes in Azospirillum. Further studies are needed to determine if these findings also imply differences in the regulation of the glt genes expression in Azospirillum (a nitrogen-fixing bacterium) with respect to enteric bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号