首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C A Keim  D W Mosbaugh 《Biochemistry》1991,30(46):11109-11118
Spinach chloroplast DNA polymerase was shown to copurify with a 3' to 5' exonuclease activity during DEAE-cellulose, hydroxylapatite, and heparin-agarose column chromatography. In addition, both activities comigrated during nondenaturing polyacrylamide gel electrophoresis and cosedimented through a glycerol gradient with an apparent molecular weight of 105,000. However, two forms of exonuclease activity were detected following velocity sedimentation analysis. Form I constituted approximately 35% of the exonuclease activity and was associated with the DNA polymerase, whereas the remaining activity (form II) was free of DNA polymerase and exhibited a molecular weight of approximately 26,500. Resedimentation of form I exonuclease generated both DNA polymerase associated and DNA polymerase unassociated forms of the exonuclease, suggesting that polymerase/exonuclease dissociation occurred. The exonuclease activity (form I) was somewhat resistant to inhibition by N-ethylmaleimide, whereas the DNA polymerase activity was extremely sensitive. Using in situ detection following SDS-polyacrylamide activity gel electrophoresis, both form I and II exonucleases were shown to reside in a similar, if not identical, polypeptide of approximately 20,000 molecular weight. Both form I and II exonucleases were equally inhibited by NaCl and required 7.5 mM MgCl2 for optimal activity. The 3' to 5' exonuclease excised deoxyribonucleoside 5'-monophosphates from both 3'-terminally matched and 3'-terminally mismatched primer termini. In general, the exonuclease preferred to hydrolyze mismatched 3'-terminal nucleotides as determined from the Vmax/Km ratios for all 16 possible combinations of matched and mismatched terminal base pairs. These results suggest that the 3' to 5' exonuclease may be involved in proofreading errors made by chloroplast DNA polymerase.  相似文献   

2.
The vaccinia virus-induced DNA polymerase has been purified about 500-fold from a cytoplasmic extract of vaccinia-infected HeLa cells. Analysis of the purified fraction by sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals a single polypeptide of 110,000 daltons, which is greater than 95% pure. This polypeptide co-sediments with polymerase activity through a glycerol gradient. The sedimentation coefficient of the enzyme is 6.3 S, and its Stokes radius is 4.6 nm. The molecular weight of the native enzyme derived from these values is 115,000. Vaccinia polymerase is therefore a single large polypeptide of 110,000 to 115,000 daltons. The purified fraction has no significant endonuclease activity, but a strong exonuclease activity co-purifies with polymerase activity through every step in the isolation. The polymerase and exonuclease activities are inactivated at 45 degrees C at the same rate. It is likely, therefore, that both activities are catalyzed by the same polypeptide. The exonuclease hydrolyzes DNA predominantly in the 3' leads to 5' direction, to produce 5' mononucleotides. The exonuclease degrades single-stranded DNA more rapidly than duplex DNA, and the rate of digestion of both single-stranded and double-stranded DNA increases as the size of the substrate decreases. Single-stranded circular DNA is a potent inhibitor of the exonuclease activity, but duplex circular DNA has no significant effect on its activity.  相似文献   

3.
M J Longley  D W Mosbaugh 《Biochemistry》1991,30(10):2655-2664
We have detected the in situ activities of DNA glycosylase, endonuclease, exonuclease, DNA polymerase, and DNA ligase using a novel polyacrylamide activity gel electrophoresis procedure. DNA metabolizing enzymes were resolved through either native or SDS-polyacrylamide gels containing defined 32P-labeled oligonucleotides annealed to M13 DNA. After electrophoresis, these enzymes catalyzed in situ reactions and their [32P]DNA products were resolved from the gel by a second dimension of electrophoresis through a denaturing DNA sequencing gel. Detection of modified (degraded or elongated) oligonucleotide chains was used to locate various enzyme activities. The catalytic and physical properties of Novikoff hepatoma DNA polymerase beta were found to be similar under both in vitro and in situ conditions. With 3'-terminally matched and mismatched [32P]DNA substrates in the same activity gel, DNA polymerase and/or 3' to 5' exonuclease activities of Escherichia coli DNA polymerase I (large fragment), DNA polymerase III (holoenzyme), and exonuclease III were detected and characterized. In addition, use of matched and mismatched DNA primers permitted the uncoupling of mismatch excision and chain extension steps. Activities first detected in nondenaturing activity gels as either multifunctional or multimeric enzymes were also identified in denaturing activity gels, and assignment of activities to specific polypeptides suggested subunit composition. Furthermore, DNA substrates cast within polyacrylamide gels were successfully modified by the exogenous enzymes polynucleotide kinase and alkaline phosphatase before and after in situ detection of E. coli DNA ligase activity, respectively. Several restriction endonucleases and the tripeptide (Lys-Trp-Lys), which acts as an apurinic/apyrimidinic endonuclease, were able to diffuse into gels and modify DNA. This ability to create intermediate substrates within activity gels could prove extremely useful in delineating the steps of DNA replication and repair pathways.  相似文献   

4.
Porcine liver DNA polymerase gamma was shown previously to copurify with an associated 3' to 5' exonuclease activity (Kunkel, T. A., and Mosbaugh, D. W. (1989) Biochemistry 28, 988-995). The 3' to 5' exonuclease has now been characterized, and like the DNA polymerase activity, it has an absolute requirement for a divalent metal cation (Mg2+ or Mn2+), a relatively high NaCl and KCl optimum (150-200 mM), and an alkaline pH optimum between 7 and 10. The exonuclease has a 7.5-fold preference for single-stranded over double-stranded DNA, but it cannot excise 3'-terminal dideoxy-NMP residues from either substrate. Excision of 3'-terminally mismatched nucleotides was preferred approximately 5-fold over matched 3' termini, and the hydrolysis product from both was a deoxyribonucleoside 5'-monophosphate. The kinetics of 3'-terminal excision were measured at a single site on M13mp2 DNA for each of the 16 possible matched and mismatched primer.template combinations. As defined by the substrate specificity constant (Vmax/Km), each of the 12 mismatched substrates was preferred over the four matched substrates (A.T, T.A, C.G, G.C). Furthermore, the exonuclease could efficiently excise internally mismatched nucleotides up to 4 residues from the 3' end. DNA polymerase gamma was not found to possess detectable DNA primase, endonuclease, 5' to 3' exonuclease, RNase, or RNase H activities. The DNA polymerase and exonuclease activities exhibited dissimilar rates of heat inactivation and sensitivity to N-ethylmaleimide. After nondenaturing activity gel electrophoresis, the DNA polymerase and 3' to 5' exonuclease activities were partially resolved and detected in situ as separate species. A similar analysis on a denaturing activity gel identified catalytic polypeptides with molecular weights of 127,000, 60,000, and 32,000 which possessed only DNA polymerase gamma activity. Collectively, these results suggest that the polymerase and exonuclease activities reside in separate polypeptides, which could be derived from separate gene products or from proteolysis of a single gene product.  相似文献   

5.
The DNase that is associated with a multiprotein form of HeLa cell DNA polymerase alpha (polymerase alpha 2) has two distinct exonuclease activities: the major activity initiates hydrolysis from the 3' terminus and the other from the 5' terminus of single-stranded DNA. The two exonuclease activities show identical rates of thermal inactivation and coincidental migration during chromatofocusing, glycerol gradient centrifugation, and nondenaturing polyacrylamide gel electrophoresis of the DNase. Moreover, the purified DNase shows a single protein band of Mr 69,000 following nondenaturing polyacrylamide and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The 3'----5' exonuclease activity hydrolyzes only single-stranded DNA substrates and the products are 5' mononucleotides. This activity recognizes and excizes mismatched bases at the 3' terminus of double-stranded DNA substrates. The 3'----5' exonuclease does not hydrolyze 3' phosphoryl terminated single-stranded DNA substrates. The 5'----3' exonuclease activity also only hydrolyzes single-stranded DNA substrates. The rate of hydrolysis, however is only about 1/25th the rate of the 3'----5' exonuclease. This exonuclease activity requires a 5' single-stranded terminus in order to initiate hydrolysis and does not proceed into double-stranded regions. The products of hydrolysis by 5'----3' exonuclease are also 5' nucleoside monophosphates.  相似文献   

6.
Purified protein p2 of phage phi 29, characterized as a specific DNA polymerase involved in the initiation and elongation of phi 29 DNA replication, contains a 3'----5' exonuclease active on single-stranded DNA, but not on double-stranded DNA. No 5'----3' exonuclease activity was found. The 3'----5' exonuclease activity was shown to be associated with the DNA polymerase since 1) the two activities were heat-inactivated with identical kinetics and 2) both activities, present in purified protein p2, cosedimented in a glycerol gradient.  相似文献   

7.
Most DNA polymerases are multifunctional proteins that possess both polymerizing and exonucleolytic activities. For Escherichia coli DNA polymerase I and its relatives, polymerase and exonuclease activities reside on distinct, separable domains of the same polypeptide. The catalytic subunits of the alpha-like DNA polymerase family share regions of sequence homology with the 3'-5' exonuclease active site of DNA polymerase I; in certain alpha-like DNA polymerases, these regions of homology have been shown to be important for exonuclease activity. This finding has led to the hypothesis that alpha-like DNA polymerases also contain a distinct 3'-5' exonuclease domain. We have introduced conservative substitutions into a 3'-5' exonuclease active site homology in the gene encoding herpes simplex virus DNA polymerase, an alpha-like polymerase. Two mutants were severely impaired for viral DNA replication and polymerase activity. The mutants were not detectably affected in the ability of the polymerase to interact with its accessory protein, UL42, or to colocalize in infected cell nuclei with the major viral DNA-binding protein, ICP8, suggesting that the mutation did not exert global effects on protein folding. The results raise the possibility that there is a fundamental difference between alpha-like DNA polymerases and E. coli DNA polymerase I, with less distinction between 3'-5' exonuclease and polymerase functions in alpha-like DNA polymerases.  相似文献   

8.
A thermophilic DNA polymerase has been purified to near homogeneity from the archaebacterium Thermoplasma acidophilum. Analysis of the purified enzyme by sodium dodecyl sulfate gel electrophoresis revealed a single polypeptide of 88 kDa which co-sediments with the DNA polymerase activity on sucrose gradients. Combination of sedimentation and gel filtration analyses indicates that this DNA polymerase is an 88-kDa monomeric enzyme in its native form. The DNA polymerase is resistant to aphidicolin, slightly sensitive to 2',3'-dideoxyribosylthymine triphosphate and inhibited by N-ethylmaleimide when preincubation with this reagent is performed at 65 degrees C. We find that a 3'----5' exonuclease activity is associated with the purified DNA polymerase; the two activities of the enzyme are optimal at 65 degrees C but the exonuclease activity is active in a broader range of lower temperatures and is more thermostable than the DNA polymerase activity.  相似文献   

9.
Yeast cells from a wild type or protease-deficient strain were lysed in the absence or presence of protease inhibitors and the extracts analyzed by analytical high pressure liquid chromatography on diethylaminoethyl silica gel. Conditions that inhibited protease action caused elution of a novel DNA polymerase activity at a position in the gradient distinct from the elution positions of both DNA polymerase I and II. In large scale purifications, this DNA polymerase, called DNA polymerase III, copurified with a single-stranded DNA dependent 3'-5' exonuclease activity, exonuclease III, to near homogeneity. Glycerol gradient centrifugation partially dissociated the complex to yield two peaks of exonuclease III activity, one at 7.7 S together with the DNA polymerase, and one at 4.0 S without polymerase activity. Gel filtration indicated that the complex has a molecular mass greater than 400 kDa. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate indicated that the complex consists of several subunits: 140, 62, 55, and 53 kilodaltons, some of which may be proteolysis products. The exonuclease component of the complex can excise single nucleotide mismatches providing a base-paired primer-template which can be elongated by the DNA polymerase. Under replication conditions, the complex exhibits a measurable turnover rate of dTTP to dTMP and it contains no primase activity. The enzymatic activities of the 3'-5' exonuclease are consistent with a proofreading function during in vivo DNA replication. A second exonuclease activity, exonuclease IV, separated from the complex late in the purification scheme. It degrades both single-stranded and double-stranded DNA in the 5'----3' direction.  相似文献   

10.
A Diaz  M E Pons  S A Lacks    P Lopez 《Journal of bacteriology》1992,174(6):2014-2024
The Streptococcus pneumoniae polA gene was altered at various positions by deletions and insertions. The polypeptides encoded by these mutant polA genes were identified in S. pneumoniae. Three of them were enzymatically active. One was a fused protein containing the first 11 amino acid residues of gene 10 from coliphage T7 and the carboxyl-terminal two-thirds of pneumococcal DNA polymerase I; it possessed only polymerase activity. The other two enzymatically active proteins, which contained 620 and 351 amino acid residues from the amino terminus, respectively, lacked polymerase activity and showed only exonuclease activity. These two polymerase-deficient proteins and the wild-type protein were hyperproduced in Escherichia coli and purified. In contrast to the DNA polymerase I of Escherichia coli but similar to the corresponding enzyme of Thermus aquaticus, the pneumococcal enzyme appeared to lack 3'-to-5' exonuclease activity. The 5'-to-3' exonuclease domain was located in the amino-terminal region of the wild-type pneumococcal protein. This exonuclease activity excised deoxyribonucleoside 5'-monophosphate from both double- and single-stranded DNAs. It degraded oligonucleotide substrates to a decameric final product.  相似文献   

11.
Pectinase and cellulase, which are used to macerate plant material, always show traces of DNase activities that result in DNA nicking. Moreover, the DNA polymerase I usually applied in the in situ nick translation techniques shows both 5' to 3' and 3' to 5' exonuclease activities. As a result, significant nonspecific labeling appears in control preparations that are not digested by a restriction endonuclease. Our procedure includes blocking nonspecific nick labeling before incubation with restriction enzymes (HpaII and HaeIII). This is achieved by incorporation of ddGTP into DNA by the Taq polymerase which lacks 3' to 5' exonuclease activity. This method gives satisfactory results because it eliminates nonspecific nick translation signals that are present after applying the methods described for animal material.  相似文献   

12.
An isogenic series of Escherichia coli strains deficient in various combinations of three 5' leads to 3' exonucleases (exonuclease V, exonuclease VII, and the 5' leads to 3' exonuclease of DNA polymerase I) was constructed and examined for the ability to excise pyrimidine dimers after UV irradiation. Although the recB and recC mutations (deficient in exonuclease V) proved to be incompatible with the polA(Ex) mutation (deficient in the 5' leads to 3' exonuclease of DNA polymerase I), it was possible to reduce the level of the recB,C exonuclease by the use of temperature-sensitive recB270 recC271 mutants. It was found that, by employing strains deficient in exonuclease V, postirradiation DNA degradation could be reduced and dimer excision measurements could be facilitated. Mutants deficient in exonuclease V were found to excise dimers at a rate comparable to that of the wild type. Mutants deficient in exonuclease V and the 5' leads to 3' exonuclease of DNA polymerase I are slightly slower than the wild type at removing dimers accumulated after doses in excess of 40 J/m2. However, although strains with reduced levels of exonuclease VII excised dimers at the same rate as the wild type, the addition of an exonuclease VII deficiency to a strain with reduced levels of exonuclease V and the 5' leads to 3' exonuclease of DNA polymerase I caused a marked decrease in the rate and extent of dimer excision. These observations support previous indications that the 5' leads to 3' exonuclease of DNA polymerase I is important in dimer removal and also suggest a role for exonuclease VII in the excision repair process.  相似文献   

13.
Lamarche BJ  Tsai MD 《Biochemistry》2006,45(9):2790-2803
We recently demonstrated that African swine fever virus DNA polymerase X (Pol X) is extremely error-prone during single-nucleotide gap-filling and that the downstream ASFV DNA ligase seals 3' mismatched nicks with high efficiency. To further assess the credence of our hypothesis that these proteins may promote viral diversification by functioning within the context of an aberrant DNA repair pathway, herein we characterize the third protein expected to function in this system, a putative AP endonuclease (APE). Assays of the purified protein using oligonucleotide substrates unequivocally establish canonical APE activity, 3'-phosphatase and 3'-phosphodiesterase activities (in the context of a single-nucleotide gap), 3' --> 5' exonuclease activity (in the context of a nick), and nucleotide incision repair activity against 5,6-dihydrothymine. The 3' --> 5' exonuclease activity is shown to be highly dependent upon the identity of the nascent 3' base pair and to be inhibited when 2-deoxyribose-5-phosphate, rather than phosphate, constitutes the 5' moiety of the nick. ASFV APE retains activity when assayed in the presence of EDTA but is inactivated by incubation with 1,10-phenanthroline in the absence of a substrate, suggesting that it is an endonuclease IV homologue possessing intrinsic metal cofactors. The activities of ASFV APE, when considered alongside those of Pol X and ASFV DNA ligase, provide an enhanced understanding of (i) the types of damage that are likely to be sustained by the viral genome and (ii) the mechanisms by which the minimalist ASFV DNA repair pathway, consisting of just these three proteins, contributes to the fitness of the virus.  相似文献   

14.
Xenopus laevis DNA polymerase gamma co-purifies with a tightly associated 3'----5' exonuclease. The purified enzyme lacks 5'----3' exonuclease and endonuclease activity. The ratio of the 3'----5' exonuclease activity to DNA polymerase gamma activity remains constant over the final three chromatographic procedures. In addition, these activities co-sediment under partially denaturing conditions in the presence of ethylene glycol. The associated 3'----5' exonuclease activity removes a terminally mismatched nucleotide more rapidly than a correctly base-paired 3'-terminal residue, as expected if this exonuclease has a proofreading function. The 3'----5' exonuclease has the ability to release a terminal phosphorothioated nucleotide, a property shared with T4 DNA polymerase, but not with Escherichia coli DNA polymerase I.  相似文献   

15.
3'----5' Exonuclease specific for single-stranded DNA copurified with DNA polymerase of nuclear polyhedrosis virus of silkworm Bombyx mori (BmNPV Pol). BmNPV Pol has no detectable 5'----3' exonuclease activity on single-stranded or duplex DNA. Analysis of the products of 3'----5' exonucleolytic reaction showed that deoxynucleoside monophosphates were released during the hydrolysis of single-stranded DNA. The exonuclease activity cosedimented with the polymerase activity during ultracentrifugation of BmNPV Pol in glycerol gradient. The polymerase and the exonuclease activities of BmNPV Pol were inactivated by heat with nearly identical kinetics. The mode of the hydrolysis of single-stranded DNA by BmNPV Pol-associated exonuclease was strictly distributive. The enzyme dissociated from single-stranded DNA after the release of a single dNMP and then reassociated with a next polynucleotide being degradated.  相似文献   

16.
Three different mutations were introduced in the polA gene of Streptococcus pneumoniae by chromosomal transformation. One mutant gene encodes a truncated protein that possesses 5' to 3' exonuclease but has lost polymerase activity. This mutation does not affect cell viability. Other mutated forms of polA that encode proteins with only polymerase activity or with no enzymatic activity could not substitute for the wild-type polA gene in the chromosome unless the 5' to 3' exonuclease domain was encoded elsewhere in the chromosome. Thus, it appears that the 5' to 3' exonuclease activity of the DNA polymerase I is essential for cell viability in S. pneumoniae. Absence of the polymerase domain of DNA polymerase I slightly diminished the ability of S. pneumoniae to repair DNA lesions after ultraviolet irradiation. However, the polymerase domain of the pneumococcal DNA polymerase I gave almost complete complementation of the polA5 mutation in Escherichia coli with respect to resistance to ultraviolet irradiation.  相似文献   

17.
18.
M Y Lee  N L Toomey 《Biochemistry》1987,26(4):1076-1085
DNA polymerase delta was isolated from human placenta and identified as such on the basis of its association with a 3'- to 5'-exonuclease activity. The association of the polymerase and exonuclease activities was maintained throughout purification and attempted separations by physical or electrophoretic methods. Moreover, ratios of the two activities remained constant during the purification steps, and both activities were inhibited by aphidicolin, oxidized glutathione, and N-ethylmaleimide. The purified enzyme had an estimated molecular weight of 172,000, on the basis of a Stokes radius of 53.6 A and a sedimentation coefficient of 7.8 S. On sodium dodecyl sulfate (SDS) gel electrophoresis, polymerase delta preparations contained a band of ca. 170 kilodaltons (kDa) as well as several smaller polypeptides. The 170-kDa polypeptide was identified as the largest polypeptide component in the preparation possessing DNA polymerase activity by an activity staining procedure following gel electrophoresis in the presence of SDS. Western blotting of DNA polymerase delta with polyclonal antisera also revealed a single 170-kDa immunoreactive polypeptide. Monoclonal antibodies to KB cell polymerase alpha inhibited placental polymerase alpha but did not inhibit DNA polymerase delta, while the murine polyclonal antisera to polymerase delta inhibited delta but not alpha. These findings establish the existence of DNA polymerase delta in a human tissue and support the view that both its polymerase and its exonuclease activities may be associated with a single protein.  相似文献   

19.
In this report we present the alignment of one of the most conserved segments (Exo III) of the 3'-5' exonuclease domain in 39 DNA polymerase sequences, including prokaryotic and eukaryotic enzymes. Site-directed substitutions of the two most conserved residues, which form the Exo III motif Tyr-(X)3-Asp of phi 29 DNA polymerase, did not affect single-stranded DNA binding, DNA polymerization, processivity or protein-primed initiation. In contrast, substitution of the highly conserved Tyr residue by Phe or Cys decreased the 3'-5' exonuclease activity to 7.5 and 4.1%, respectively, of the wild-type activity. Change of the highly conserved Asp residue into Ala resulted in almost complete inactivation (0.1%) of the 3'-5' exonuclease. In accordance with the contribution of the 3'-5' exonuclease to the fidelity of DNA replication, the three mutations in the Exo III motif (Y165F, Y165C and D169A) produced enzymes with an increased frequency of misinsertion and extension of DNA polymerization errors. Surprisingly, the three mutations in the Exo III motif strongly decreased (80- to 220-fold) the ability to replicate phi 29 DNA, this behaviour being due to a defect in the strand displacement activity, an intrinsic property of phi 29 DNA polymerase required for this process. Taking these results into account, we propose that the strand displacement activity of phi 29 DNA polymerase resides in the N-terminal domain, probably overlapping with the 3'-5' exonuclease active site.  相似文献   

20.
The extent and location of DNA repair synthesis in a double-stranded oligonucleotide containing a single dUMP residue have been determined. Gently prepared Escherichia coli and mammalian cell extracts were employed for excision repair in vitro. The size of the resynthesized patch was estimated by restriction enzyme analysis of the repaired oligonucleotide. Following enzymatic digestion and denaturing gel electrophoresis, the extent of incorporation of radioactively labeled nucleotides in the vicinity of the lesion was determined by autoradiography. Cell extracts of E. coli and of human cell lines were shown to carry out repair mainly by replacing a single nucleotide. No significant repair replication on the 5' side of the lesion was observed. The data indicate that, after cleavage of the dUMP residue by uracil-DNA glycosylase and incision of the resultant apurinic-apyrimidinic site by an apurinic-apyrimidinic endonuclease activity, the excision step is catalyzed usually by a DNA deoxyribophosphodiesterase rather than by an exonuclease. Gap-filling and ligation complete the repair reaction. Experiments with enzyme inhibitors in mammalian cell extracts suggest that the repair replication step is catalyzed by DNA polymerase beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号