共查询到20条相似文献,搜索用时 15 毫秒
1.
The dose response for adaption to radiation at low doses was compared in normal human fibroblasts (AG1522) exposed to either (60)Co gamma rays or (3)H beta particles. Cells were grown in culture to confluence and exposed at either 37 degrees C or 0 degrees C to (3)H beta-particle or (60)Co gamma-ray adapting doses ranging from 0.1 mGy to 500 mGy. These cells, and unexposed control cells, were allowed to adapt during a fixed 3-h, 37 degrees C incubation prior to a 4-Gy challenge dose of (60)Co gamma rays. Adaption was assessed by measuring micronucleus frequency in cytokinesis-blocked, binucleate cells. No adaption was detected in cells exposed to (60)Co gamma radiation at 37 degrees C after a dose of 0.1 mGy given at a low dose rate or to 500 mGy given at a high dose rate. However, low-dose-rate exposure (1-3 mGy/min) to any dose between 1 and 500 mGy from either radiation, delivered at either temperature, caused cells to adapt and reduced the micronucleus frequency that resulted from the subsequent 4-Gy exposure. Within this dose range, the magnitude of the reduction was the same, regardless of the dose or radiation type. These results demonstrate that doses as low as (on average) about one track per cell (1 mGy) produce the same maximum adaptive response as do doses that deposit many tracks per cell, and that the two radiations were not different in this regard. Exposure at a temperature where metabolic processes, including DNA repair, were inactive (0 degrees C) did not alter the result, indicating that the adaptive response is not sensitive to changes in the accumulation of DNA damage within this range. The results also show that the RBE for low doses of tritium beta-particle radiation is 1, using adaption as the end point. 相似文献
2.
J H Hendry 《International journal of radiation biology and related studies in physics, chemistry, and medicine》1979,36(6):631-637
The split-dose effect for survival of colony-forming units (CFU-S) in mouse bone-marrow increases with increasing total dose. This is compatible with the shape of the survival curve, since detailed measurements at doses lower than 200 rad show the presence of a marked initial slope, followed by a tendency towards an increased sensitivity at higher doses. The magnitude of the increase in the split-dose effect is quantitatively similar to values observed by others at comparable low doses in skin, intestine and lung, as deduced from multifraction experiments. It is concluded that these cells do not differ markedly, as has been generally believed, from many other cell types in the ability to demonstrate split-dose effects, when the doses used in the experiments are strictly comparable. 相似文献
3.
Many studies have shown the importance of altered cellular proto-oncogene expression in contributing to changes in cell survival, cell transformation, and cell cycle progression. In these experiments we examined the effects of total-body exposure of BCF1 mice to gamma rays (3 Gy) in modulating expression of cellular oncogenes in both gut and liver tissues. We selected specific cellular oncogenes (c-fos, c-myc, c-src, and c-H-ras), based on their normal expression in liver and gut tissues from untreated mice. As early as 5 min following whole-body exposure of BCF1 mice to gamma rays we detected induction of mRNA specific for c-src and c-H-ras in both liver and gut tissues. Accumulation of c-fos-RNA was slightly decreased in gut but was unaffected in liver tissue from irradiated mice relative to untreated controls. Accumulation of c-myc mRNA was unaffected in all tissues examined. These experiments document that modulation of cellular proto-oncogene expression can occur as an early event in tissues following irradiation and suggest that this modulation may play a role in radiation-induced cellular changes. 相似文献
4.
5.
BackgroundDespite their differences in physicochemical properties, both uranium (U) and fluoride (F) are nephrotoxicants at high doses but their adverse effects at low doses are still the subject of debate. METHODS: This study aims to improve the knowledge of the biological mechanisms involved through an adaptive response model of C57BL/6 J mice chronically exposed to low priming doses of U (0, 10, 20 and 40 mg/L) or F (0, 15, 30 and 50 mg/L) and then challenged with acute exposure of 5 mg/kg U or 7.5 mg/kg NaF.ResultsWe showed that an adaptive response occurred with priming exposures to 20 mg/L U and 50 mg/L F, with decreased levels of the biomarkers KIM-1 and CLU compared to those in animals that received the challenge dose only (positive control). The adaptive mechanisms involved a decrease in caspase 3/7 activities in animals exposed to 20 mg/L U and a decrease in in situ VCAM expression in mice exposed to 50 mg/L F. However, autophagy and the UPR were induced independently of priming exposure to U or F and could not be identified as adaptive mechanisms to U or F.ConclusionTaken together, these results allow us to identify renal adaptive responses to U and F at doses of 20 and 50 mg/L, probably through decrease apoptosis and inflammatory cell recruitment. 相似文献
6.
7.
8.
Osipov AN Grigor'ev MV Sypin VD Pomerantseva MD Ramaĭia LK Shevchenko VA 《Radiatsionnaia biologiia, radioecologiia / Rossi?skaia akademiia nauk》2000,40(4):373-377
The DNA-protein cross-links (DPC) in mouse thymocytes and spleen lymphocytes, the number of abnormal sperm heads (ASH) and the number of micronuclei (MN) in normochromatic erythrocytes (NCE) of peripheral blood were studied in mice exposed to long-term low-intensity gamma radiation (0.072 cGy/days) and/or cadmium with drinking water (0.01 mg Cd2+/l) for 20, 40 and 80 days. The dependence of DPC level on the total dose (exposure time) of gamma radiation and/or cadmium is nonlinear. The maximal level of DPC in cells of lymphoid organs upon exposure to gamma radiation or cadmium was recorded on the 40-th day, and under combined exposure on the 20-th day of the experiment. The long-term exposure to cadmium or gamma radiation causes an increase in the ASH frequency. The increase in frequencies of MN in NCE and reciprocal translocations in spermatocytes was not found. 相似文献
9.
Effects of exposure to low-dose-rate (60)co gamma rays on human tumor cells in vitro 总被引:2,自引:0,他引:2
Cells of three asynchronously growing human tumor cell lines, PC3 (human prostate carcinoma), T98G and A7 (human glioblastomas), which have been shown previously to demonstrate low-dose hyper-radiosensitivity to low acute single doses, were irradiated with (60)Co gamma rays at low dose rates (2 cGy-1 Gy h(-1)). Instead of a dose-rate sparing response, these cell lines demonstrated an inverse dose-rate effect on cell survival at dose rates below 1 Gy h(-1), whereby a decrease in dose rate resulted in an increase in cell killing per unit dose. A hyper-radiosensitivity-negative cell line, U373MG, did not demonstrate an inverse dose-rate effect. Analysis of the cell cycle indicated that this inverse dose-rate effect was not due to accumulation of cells in G(2)/M phase or to other cell cycle perturbations. T98G cells in reversible G(1)-phase arrest also showed an inverse dose-rate effect at dose rates below 30 cGy h(-1) but a sparing effect as the dose rate was reduced from 60 to 30 cGy h(-1). We conclude that this inverse dose-rate effect in continuous exposures reflects the hyper-radiosensitivity seen in the same cell lines in response to very small acute single doses. 相似文献
10.
Domaratskaia EI Starostin VI Tsetlin VV Bueverova EI Khrushchov NG 《Radiatsionnaia biologiia, radioecologiia / Rossi?skaia akademiia nauk》2003,43(2):213-215
Effects of ten day long exposure to gamma-irradiation at low doses (mean dose rate of 1.5-2.0 m Gy/day, total dose of 15 m Gy) on hemopoietic (CFU-S) and stromal (CFU-F) progenitor cells from murine bone marrow were examined. The CFU-F content measured as in vitro fibroblastic colony number showed 1.5-4.5-fold increase. Additionally, the size of ectopic marrow transplants evaluated by counting myelokariocytes and CFU-S numbers also increased. No significant changes of CFU-S proliferation rate were found. 相似文献
11.
The efficiency of ionizing photon radiation for inducing mutations, chromosome aberrations, neoplastic cell transformation, and cell killing depends on the photon energy. We investigated the induction and rejoining of DNA double-strand breaks (DSBs) as possible contributors for the varying efficiencies of different photon energies. A specialized pulsed-field gel electrophoresis assay based on Southern hybridization of single Mbp genomic restriction fragments was employed to assess DSB induction and rejoining by quantifying the restriction fragment band. Unrejoined and misrejoined DSBs were determined in dose fractionation protocols using doses per fraction of 2.2 and 4.4 Gy for CK characteristic X rays, 4 and 8 Gy for 29 kVp X rays, and 5, 10 and 20 Gy for 60Co gamma rays. DSB induction by CK characteristic X rays was about twofold higher than for 60Co gamma rays, whereas 29 kVp X rays showed only marginally elevated levels of induced DSBs compared with 60Co gamma rays (a factor of 1.15). Compared with these modest variations in DSB induction, the variations in the levels of unrejoined and misrejoined DSBs were more significant. Our results suggest that differences in the fidelity of DSB rejoining together with the different efficiencies for induction of DSBs can explain the varying biological effectiveness of different photon energies. 相似文献
12.
13.
14.
Characterization of the adaptive response to ionizing radiation induced by low doses of X rays to human lymphocytes 总被引:6,自引:0,他引:6
In previous studies we have shown that low doses of radiation from incorporated tritiated thymidine can make human lymphocytes less susceptible to the genetic damage manifested as chromatid breakage induced by a subsequent high dose of X rays. We have also shown that this adaptive response to ionizing radiation can be induced by very low doses of X rays (0.01 Gy; i.e., 1 rad) delivered during S phase of the cell cycle. To see if a low dose of X rays could induce this response in cells at other phases of the cell cycle, human lymphocytes were irradiated with 0.01 or 0.05 Gy before stimulation by phytohemagglutinin (G0) or with 0.01 Gy at various times after stimulation (G1), followed by 1.5 Gy (150 rad) at G2 phase. Although G0 lymphocytes failed to exhibit an adaptive response, G1 cells irradiated as early as 4 h after stimulation did show the response. Experiments were also carried out to determine how long the adaptive response induced by 0.01 Gy could persist. A 0.01-Gy dose was delivered to lymphocytes in the first S phase, followed by 1.5 Gy in the same or subsequent cell cycles. Lymphocytes receiving a 1.5-Gy dose at 40, 48, or 66 h after stimulation exhibited an adaptive response, whereas those receiving a 1.5-Gy dose at 90 or 114 h did not. Duplicate cultures containing bromodeoxyuridine showed that at 40 h all the lymphocytes were in their first cell cycle after stimulation, at 48 h half of the lymphocytes were in their first cell cycle and half in their second, and at 66 h 80% of the lymphocytes were in their third cell cycle. Thus the adaptive response persists for at least three cell cycles after it is induced by 0.01 Gy of X rays. In other experiments, the time necessary for maximal expression of the adaptive response was determined by delivering 0.01 Gy at hourly intervals 1-6 h before the 1.5-Gy dose. While a 4-h interval was enough for expression of the adaptive response, shorter intervals were not. 相似文献
15.
16.
《Mutation Research Letters》1990,243(1):67-73
C57BL/6 mice were whole-body irradiated with 5 cGy/day (‘adapting dose’) on 4 consecutive days and their spleens removed on day 1, 3, 7, 12, 19 or 26 after the last irradiation. In vitro UV-light-induced unscheduled DNA synthesis (UDS) and mitomycin C (MMC)-induced sister-chromatid exchanges (SCEs) were scored in lymphocytes (UV-light and MMC being the ‘challenging agents’), yielding higher UDS values and lower frequencies of induced SCEs than cells of non-adapted animals. On day 12 this effect could only be seen in half, on days 19 and 26 in none of the performed experiments. The results support those published by Tuschl et al. (1980, 1983) and Liu et al. (1987), showing that it is possible to induce the adaptive response in vivo. 相似文献
17.
Single-strand breaks induced in DNA of ascitic hepatoma cells by gamma-rays and N-methyl-N-nitrosourea (MNU), resp., may be effectively repaired. Double-strand breaks of DNA from MNU-treated hepatoma cells are also effectively repairable in vivo. Only a small part of double-strand breaks induced by gamma-rays in DNA of these cells is repaired in the postradiation period. The combined action of gamma-rays and MNU on the hepatoma cells causes a complete inhibition of repair of DNA and its further degradation. Under these conditions, inhibition of the repair of DNA synthesis and repression of DNA polymerase I activity is observed. 相似文献
18.
J Lafuma D Chmelevsky J Chameaud M Morin R Masse A M Kellerer 《Radiation research》1989,118(2):230-245
The effectiveness of radon-daughter inhalation and irradiation with fission neutrons and gamma rays in the induction of lung carcinomas in Sprague-Dawley rats at low doses is compared. Earlier reports which compared radon-daughter inhalations and neutron irradiations over a wider range of doses were based on dosimetry for the radon-daughter inhalations which has recently been found to be faulty. In the present analysis, low-dose experiments were designed to derive revised equivalence ratios between radon-daughter exposures, and fission neutron or gamma irradiations. The equivalence is approximately 15 working level months (WLM) of radon daughters to 10 mGy of neutrons (the earlier value was 30 WLM to 10 mGy). The relative biological effectiveness (RBE) of neutrons is 50 or more at a gamma-ray dose of 1 Gy. In these experiments with low doses and exposures, the lifetime incidences can be estimated from the raw incidences, while the derivation of the time dependence of the prevalence is essential for the estimation of RBE values and equivalence ratios. 相似文献
19.
V S Gallicchio G P Casale P M Bartholomew T D Watts 《International journal of cell cloning》1987,5(3):231-241
This paper describes a study of hematopoiesis in parathion-treated mice. Adult mice (48 C57B1/6) were given a daily dose of parathion (4 mg/kg p.o.) or corn oil vehicle (5 ml/kg p.o.) for 14 days. During the pesticide and the examination period, treated animals showed no signs of poisoning and had normal body weights. On days 2, 5, 7, 9, 12 and 14 following parathion or corn oil, femoral marrow cells were assayed in vitro for granulocyte/monocyte (CFU-gm), erythroid (CFU-e and BFU-e), megakaryocyte (CFU-meg), stromal (CFU-str) and multipotential (CFU-mix) hematopoietic stem cells. Leukocyte counts were elevated on days 2 and 5, while platelet counts were not increased until day 12. No change was observed in either hematocrits or numbers of marrow cells. BFU-e were reduced (23% of control) by day 7, then increased to 137% of control by day 14. CFU-e were reduced (41% of control) on day 9, then increased to 71% of control by day 14. CFU-mix were 130% of control (day 2), then declined to control values by day 5. On days 12 and 14, CFU-mix colonies decreased to 40% of control. CFU-str were reduced at all time points examined. CFU-gm were 123%, 136% and 130% of control on days 7, 12 and 14, respectively, while CFU-meg were increased (145% of control) on day 7. The data suggest that parathion alters the cloning potential of bone marrow precursor stem cells. 相似文献
20.
Tanaka S Tanaka IB Sasagawa S Ichinohe K Takabatake T Matsushita S Matsumoto T Otsu H Sato F 《Radiation research》2003,160(3):376-379
Late effects of continuous exposure to ionizing radiation are potential hazards to workers in radiation facilities as well as to the general public. Recently, low-dose-rate and low-dose effects have become a serious concern. Using a total of 4000 mice, we studied the late biological effects of chronic exposure to low-dose-rate radiation as assayed by life span. Two thousand male and 2000 female 8-week-old specific-pathogen-free (SPF) B6C3F1 mice were randomly divided into four groups (one nonirradiated control and three irradiated). Irradiation was carried out for approximately 400 days using (137)Cs gamma rays at dose rates of 21 mGy day(-1), 1.1 mGy day(-1) and 0.05 mGy day(-1) with total doses equivalent to 8000 mGy, 400 mGy and 20 mGy, respectively. All mice were kept under SPF conditions until they died spontaneously. Statistical analyses showed that the life spans of mice of both sexes irradiated with 21 mGy day(-1) (P < 0.0001) and of females irradiated with 1.1 mGy day(-1) (P < 0.05) were significantly shorter than those of the control group. Our results show no evidence of lengthened life span in mice continuously exposed to very low dose rates of gamma rays. 相似文献