首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alterations in glycosylation of plasma membrane proteins during myogenesis   总被引:1,自引:0,他引:1  
Highly purified plasma membranes were obtained from cells of the L6 line at three characteristic stages of myogenesis: Actively proliferating cells; post-mitotic, confluent myoblasts which have already aligned; and fused myotubes. Differential glycosylation of the plasma membrane proteins of these cells was detected by staining polyacrylamide gels of the separated components with three lectins of different specificity: Concanavalin A (conA), wheat germ agglutinin (WGA) and phytohemagglutinin (PHA) Els. Four kinds of developmentally regulated changes could be identified. 1. Those which took place only at confluency (160, 150, 90, 85, 60, 43 and 40 kD for conA binding, 190 kD for WGA binding, 190 and 110 kD for PHA Els binding. 2. Those which took place only at fusion (135, 51.5 and 38 kD for conA, 160 and 150 kD for WGA and 150 kD for PHA Els binding). 3. Those where the phenomena initiated at confluency continue during fusion (66.5 and 32 kD for conA and 120 kD for PHA binding). 4. Those where opposite changes take place at confluency and at fusion (48 kD for conA, 180, 98 and 85 kD for PHA binding). These results suggest that most developmentally regulated changes in glycosylation take place during the first cell-cell contact step of myogenesis. Metabolic labelling experiments showed that, on the contrary, only few alterations in the accumulation of plasma membrane proteins take place prior to the main burst of fusion.  相似文献   

2.
Multinucleated myotubes are formed by fusion of mononucleated myogenic progenitor cells (myoblasts) during terminal skeletal muscle differentiation. In addition, myoblasts fuse with myotubes, but terminally differentiated myotubes have not been shown to fuse with each other. We show here that an adenylate cyclase activator, forskolin, and other reagents that elevate intracellular cyclic AMP (cAMP) levels induced cell fusion between small bipolar myotubes in vitro. Then an extra-large myotube, designated a "myosheet," was produced by both primary and established mouse myogenic cells. Myotube-to-myotube fusion always occurred between the leading edge of lamellipodia at the polar end of one myotube and the lateral plasma membrane of the other. Forskolin enhanced the formation of lamellipodia where cAMP-dependent protein kinase (PKA) was accumulated. Blocking enzymatic activity or anchoring of PKA suppressed forskolin-enhanced lamellipodium formation and prevented fusion of multinucleated myotubes. Localized PKA activity was also required for fusion of mononucleated myoblasts. The present results suggest that localized PKA plays a pivotal role in the early steps of myogenic cell fusion, such as cell-to-cell contact/recognition through lamellipodium formation. Furthermore, the localized cAMP-PKA pathway might be involved in the specification of the fusion-competent areas of the plasma membrane in lamellipodia of myogenic cells.  相似文献   

3.
L6 myoblasts spontaneously undergo differentiation and cell fusion into myotubes. These cells express both GLUT1 and GLUT4 glucose transporters, but their expression varies during myogenesis. We now report that the subcellular distribution and the protein processing by glycosylation of both glucose transporter isoforms also change during myogenesis. Crude plasma membrane and light microsome fractions were isolated from either myoblasts or myotubes and characterized by the presence of two functional proteins, the Na+/K(+)-ATPase and the dihydropyridine receptor (DHPR). Immunoreactive alpha 1 subunit of the Na+/K(+)-ATPase was faint in the crude plasma membrane fraction from myoblasts, but abundant in both membrane fractions from myotubes. In contrast, the alpha 1 subunit of the DHPR, which is expressed only in differentiated muscle, was detected in crude plasma membrane from myotubes but not from myoblasts. Therefore, crude plasma membrane fractions from myoblasts and myotubes contain cell surface markers, and the composition of these membranes appears to be developmentally regulated during myogenesis. GLUT1 protein was more abundant in the crude plasma membrane relative to the light microsome fraction prepared from either myoblasts or myotubes. The molecular size in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the GLUT1 transporters in myotubes was smaller than that in myoblasts (Mr 47,000 and 53,000, respectively). GLUT4 protein (Mr 48,000) was barely detectable in the crude plasma membrane fraction and was almost absent in the light microsome fraction prepared from myoblasts. However, GLUT4 protein was abundant in myotubes and was predominantly located in the light microsome fraction. Treatment with endoglycosidase F reduced the molecular size of the transporters in all fractions to Mr 46,000 for GLUT1 and Mr 47,000 for GLUT4 proteins. In myotubes, acute insulin treatment increased the crude plasma membrane content of GLUT1 marginally and of GLUT4 markedly, with a concomitant decrease in the light microsomal fraction. These results indicate that: (a) the subcellular distribution of glucose transporters is regulated during myogenesis, GLUT4 being preferentially sorted to intracellular membranes; (b) both GLUT1 and GLUT4 transporters are processed by N-linked glycosylation to form the mature transporters in the course of myogenesis; and (c) insulin causes modest recruitment of GLUT1 transporters and marked recruitment of GLUT4 transporters, from light microsomes to plasma membranes in L6 myotubes.  相似文献   

4.
Four independent rat L6 myoblast cell lines have been selected in a single step for resistance to the cytotoxic effects of the lectin concanavalin A (conA). In contrast to parental wild-type myoblast lines, all of the variant clones are unable to undergo normal cellular differentiation to form multinucleated myotubes or biochemical differentiation to produce an increase in the specific activity of the muscle-specific enzyme, creatine phosphokinase (CPK). The correlation between lectin resistance and loss of fusion potential is very tight; clonal variation studies show that there is less than a 2.8×10?8 chance that the two are not directly related. Membrane preparations from the conA-resistant myoblast lines incorporate significantly less GDP-[14C]mannose into the lipid intermediates of protein glycosylation than preparations from parental wild-type cells. Also, conversion of mannose label to fucose occurs in myoblasts and this pathway is more active in conA-resistant cells than wild-type cells. Reduced binding of labelled conA to the cell surfaces of variant myoblasts was observed which may result from alterations to membrane glycoprotein receptors. These studies suggest that mannosylated glycoproteins of the cell surface play a role in the development of the myotubes from myoblasts. Lectin-resistant myoblasts should be useful model systems for investigating what appears to be a pleiotropic mutation affecting the myogenesis process through membrane modifications.  相似文献   

5.
《The Journal of cell biology》1987,105(6):2589-2601
The plasma membrane and disk membranes of bovine retinal rod outer segments (ROS) have been purified by a novel density-gradient perturbation method for analysis of their protein compositions. Purified ROS were treated with neuraminidase to expose galactose residues on plasma membrane-specific glycoproteins and labeled with ricin-gold-dextran particles. After the ROS were lysed in hypotonic buffer, the plasma membrane was dissociated from the disks by either mild trypsin digestion or prolonged exposure to low ionic strength buffer. The dense ricin-gold-dextran-labeled plasma membrane was separated from disks by sucrose gradient centrifugation. Electron microscopy was used to follow this fractionation procedure. The dense red pellet primarily consisted of inverted plasma membrane vesicles containing gold particles; the membrane fraction of density 1.13 g/cc consisted of unlabeled intact disks and vesicles. Ricin-binding studies indicated that the plasma membrane from trypsin-treated ROS was purified between 10-15-fold. The protein composition of plasma membranes and disks was significantly different as analyzed by SDS gels and Western blots labeled with lectins and monoclonal antibodies. ROS plasma membrane exhibited three major proteins of 36 (rhodopsin), 38, and 52 kD, three ricin-binding glycoproteins of 230, 160, and 110 kD, and numerous minor proteins in the range of 14-270 kD. In disk membranes rhodopsin appeared as the only major protein. A 220-kD concanavalin A-binding glycoprotein and peripherin, a rim-specific protein, were also present along with minor proteins of 43 and 57-63 kD. Radioimmune assays indicated that the ROS plasma membrane contained about half as much rhodopsin as disk membranes.  相似文献   

6.
Summary Cytoskeletal organization and its association with plasma membranes in embryonic chick skeletal muscle cells in vitro was studied by the freeze-drying and rotary-shadowing method of physically ruptured cells. The cytoskeletal filaments underlying the plasma membranes were sparse in myogenic cells at the stage when cells exhibited great lipid fluidity in plasma membranes (fusion competent mononucleated myoblasts and recently fused young myotubes). Myotubes at more advanced stages of development possessed a highly interconnected dense filamentous network just underneath the cell membrane. This subsarcolemmal network was composed predominantly of 8–10 nm filaments; they were identified as actin filaments because of their decoration with myosin subfragment-1. Fine fibrils having a diameter of 3–5 nm were found on the protoplasmic surface of the plasmalemma at both the early and advanced stages of development. They were associated with the subsarcolemmal cytoskeletal filaments. Short 2–5 nm cross-linking filaments were occasionally seen between filaments in the subsarcolemmal network. We conclude that, although the subsarcolemmal cytoskeletal network contains many actin filaments, this domain appears to play some role in preserving the cell shape in the form of the membrane skeleton rather than membrane mobility.  相似文献   

7.
Cell surface changes during muscle differentiation in vitro, were investigated using the non permeant probe 2,4,6-trinitrobenzene sulphonate (TNBS) in order to label the aminogroups of proteins exposed on the outer surface of the plasma membrane. Surface proteins of chick myotubes and 'mature' unfused myoblasts (myoblasts grown for 7 days in a calcium-depleted medium) were found to bind an equal amount of probe, which is twice the amount bound by surface proteins in 'immature' myoblasts (1--2 days of culture) and fibroblasts. This indicates that a 'remodelling' of the plasma membrane outer surface takes place in the course of muscle cell differentiation even in the absence of cell fusion. Moreover, the total amount of TNBS bound to the surface was 4--5 times greater in myotubes than in unfused myoblasts. This appears to result from the surface expansion which occurs in myotubes during the development of the T tubule system.  相似文献   

8.
Mononucleated myoblasts divide in vitro until they attain confluency and fuse, forming multinucleated myotubes. Fusion is an extracellular Ca2+-dependent process. We used for our studies an established line of skeletal myoblasts (L6) as well as a non-fusing Myo- alpha-amanitin-resistant mutant of this line (Ama102). Our results show that extracellular calcium at concentrations which elicit myoblast fusion activates the phosphorylation of a protein species of 48 kD, present at the surface of mononucleated myoblasts of the fusing wild type (L6). At fusion, as the cells become independent of the extracellular calcium concentration for their further differentiation, this activation can no longer be observed. In fusion inhibition experiments, where we used lowered calcium levels, the phosphorylation of the 48 kD protein band is clearly decreased. When the myoblasts are fed with standard medium, they fuse rapidly and the phosphorylation of the 48 kD species is markedly increased. The above-described phenomenon takes place at the cell surface and is completed in a short time. The use of Myo- mutant showed that it is developmentally regulated. In view of our results, it is reasonable to postulate that Ca2+-activated phosphorylation of the cell surface could be on the basis of spontaneous myoblast fusion.  相似文献   

9.
Summary Membranes and membrane proteins from undifferentiated cells and torpedo-stage embryos were compared. A comparison of marker enzyme profiles on linear sucrose gradients showed that the membrane vesicles obtained from 14-day-old embryos were consistently less dense than those obtained from undifferentiated carrot cells. The density of the endoplasmic reticulum, for instance, was 1.10g/cm3 in embryos and 1.12g/cm2 in undifferentiated cells. Proteins and glycoproteins from endoplasmic reticulum-, Golgi apparatus-, and plasma membrane-enriched fractions were compared from undifferentiated carrot cells with 14-day-old embryos by 2D SDS-PAGE. When these two tissues were compared, extensive qualitative and quantitative changes in the steady-state endomembrane and plasma membrane proteins were observed. The plasma membrane was examined further by labeling the plasma membrane proteins with sulfosuccinimidylbiotin. Using this specific label, plasma membrane proteins of 54 kD, 41 kD, 16 kD, and 15 kD were found to be uniquely associated with the embryonic state. Conversely, a 70 kD protein and a 45 kD glycoprotein were found to be associated with only undifferentiated cells. These results demonstrate that proteins of the plasma membrane exhibit distinct changes as a result of somatic embryogenesis in carrot.Abbreviations conA concanavilin A - 2,4-D 2,4-dichlorophenoxyacetic acid - p protein - gp glycoprotein - kD kilodalton - SDS-PAGE sodium dodecylsulfate-polyacrylamide gel electrophoresis  相似文献   

10.
Intact monolayers of L6 myoblasts were treated with neuraminidase, with the aim of selectively removing sialic acid residues of cell-surface glycoproteins. Neuraminidase treatment unmasked binding sites for Ricinus communis agglutinin I and peanut agglutinin, thus allowing the identification of the major binding proteins for these lectins. For Ricinus communis agglutinin I these neuraminidase-sensitive glycoproteins had apparent Mr values of 136000, 115000, 87000, 83000 and 49000. For peanut agglutinin the major neuraminidase-sensitive glycoproteins had apparent Mr values of 200000, 136000, 87000 and 83000. We found highly reproducible, developmentally regulated, changes in the lectin-binding capacity of certain of these glycoproteins as L6 myoblasts differentiated into myotubes. Coincident with myoblast fusion there was a co-ordinate decrease in Ricinus communis agglutinin I binding by glycoproteins of apparent Mr of 136000 and 49000. There was also a co-ordinate shift in mobility of the broad band of glycoprotein, centred at an apparent Mr of 115000 in myoblasts, to a new average apparent Mr of 107000 in mid-fusion cultures and myotube cultures. Peanut agglutinin binding by the major protein of apparent Mr 136000 also decreased at the mid-fusion stage of myogenesis, and was barely detectable in 7-day-old fused cultures. These developmentally regulated changes in neuraminidase-sensitive glycoproteins were all inhibited by growth of myoblasts in 6.4 microM-5-bromo-2'-deoxyuridine, indicating that they are associated with myoblast differentiation. In contrast, an increase in fibronectin was seen in mid-fusion cultures, which was not inhibited by growth of myoblasts in 5-bromo-2'-deoxyuridine. This initial increase in fibronectin is, therefore, unlikely to be directly related to myoblast fusion or differentiation.  相似文献   

11.
Skeletal muscle is a multinucleated syncytium that develops and is maintained by the fusion of myoblasts to the syncytium. Myoblast fusion involves the regulated coalescence of two apposed membranes. Myoferlin is a membrane-anchored, multiple C2 domain-containing protein that is highly expressed in fusing myoblasts and required for efficient myoblast fusion to myotubes. We found that myoferlin binds directly to the eps15 homology domain protein, EHD2. Members of the EHD family have been previously implicated in endocytosis as well as endocytic recycling, a process where membrane proteins internalized by endocytosis are returned to the plasma membrane. EHD2 binds directly to the second C2 domain of myoferlin, and EHD2 is reduced in myoferlin null myoblasts. In contrast to normal myoblasts, myoferlin null myoblasts accumulate labeled transferrin and have delayed recycling. Introduction of dominant negative EHD2 into myoblasts leads to the sequestration of myoferlin and inhibition of myoblast fusion. The interaction of myoferlin with EHD2 identifies molecular overlap between the endocytic recycling pathway and the machinery that regulates myoblast membrane fusion.  相似文献   

12.
Centrioles are lost as embryonic myoblasts fuse into myotubes in vitro   总被引:1,自引:0,他引:1  
Embryonic chick myoblasts possess an extensive network of cytoplasmic microtubules which emanate from a single, perinuclear centrosome containing a microtubule-organizing center (MTOC) and the centrioles. However, after myoblasts fuse into myotubes the centrosome is no longer apparent, and instead long parallel arrays of microtubules are seen. From ultrastructural studies on developing muscle tissue, it has been proposed that centrioles are present in myoblasts but are absent from fused muscle fibers. We have examined this hypothesis in vitro in cultures of chick embryonic muscle cells using sera which specifically label centrioles. Almost all (90-97%) mononucleated cells in these cultures, including myoblasts aligned just prior to fusion, contain a pair of centrioles in close proximity to the nucleus. However, in newly fused multinucleated myotubes as well as in older myotubes that had developed myofibrils, centrioles were rarely found (1-10% positive cells). This study thus provides direct evidence for a loss of centrioles from muscle cells soon after they fuse to form myotubes.  相似文献   

13.
Cell membrane consists of various lipids such as phosphatidylserine (PS), phosphatidylcholine (PC), and phosphatidylethanolamine (PE). Among them, PS is a molecular marker of apoptosis, because it is located to the inner leaflet of plasma membrane generally but it is moved to the outer leaflet during programmed cell death. The process of apoptosis has been implicated in the fusion of muscle progenitor cells, myoblasts, into myotubes. However, it remained unclear whether PS regulates muscle cell differentiation directly. In this paper, localization of PS to the outer leaflet of plasma membrane in proliferating primary myoblasts and during fusion of these myoblasts into myotubes is validated using Annexin V. Moreover, we show the presence of PS clusters at the cell–cell contact points, suggesting the importance of membrane ruffling and PS exposure for the myogenic cell fusion. Confirming this conclusion, experimentally constructed PS, but not PC liposomes dramatically enhance the formation of myotubes from myoblasts, thus demonstrating a direct positive effect of PS on the muscle cell fusion. In contrast, myoblasts exposed to PC liposomes produce long myotubes with low numbers of myonuclei. Moreover, pharmacological masking of PS on the myoblast surface inhibits fusion of these cells into myotubes in a dose-dependent manner.  相似文献   

14.
Multinucleated myotubes develop by the sequential fusion of individual myoblasts. Using a convergence of genomic and classical genetic approaches, we have discovered a novel gene, singles bar (sing), that is essential for myoblast fusion. sing encodes a small multipass transmembrane protein containing a MARVEL domain, which is found in vertebrate proteins involved in processes such as tight junction formation and vesicle trafficking where--as in myoblast fusion--membrane apposition occurs. sing is expressed in both founder cells and fusion competent myoblasts preceding and during myoblast fusion. Examination of embryos injected with double-stranded sing RNA or embryos homozygous for ethane methyl sulfonate-induced sing alleles revealed an identical phenotype: replacement of multinucleated myofibers by groups of single, myosin-expressing myoblasts at a stage when formation of the mature muscle pattern is complete in wild-type embryos. Unfused sing mutant myoblasts form clusters, suggesting that early recognition and adhesion of these cells are unimpaired. To further investigate this phenotype, we undertook electron microscopic ultrastructural studies of fusing myoblasts in both sing and wild-type embryos. These experiments revealed that more sing mutant myoblasts than wild-type contain pre-fusion complexes, which are characterized by electron-dense vesicles paired on either side of the fusing plasma membranes. In contrast, embryos mutant for another muscle fusion gene, blown fuse (blow), have a normal number of such complexes. Together, these results lead to the hypothesis that sing acts at a step distinct from that of blow, and that sing is required on both founder cell and fusion-competent myoblast membranes to allow progression past the pre-fusion complex stage of myoblast fusion, possibly by mediating fusion of the electron-dense vesicles to the plasma membrane.  相似文献   

15.
The distribution of secondary myotubes and undifferentiated mononucleated cells (presumed to be myoblasts) within foetal IVth lumbrical muscles of the rat was analyzed with serial section electron microscopy. In all myotube clusters for which the innervation zone was located, every secondary myotube overlapped the end-plate region of the primary myotube. No secondary myotubes were ever demonstrated to occur at a distance from the primary myotube innervation zone. This indicates that new secondary myotubes begin to form only in the innervation zone of the muscle. Some young secondary myotubes made direct contact with a nerve terminal, but we cannot say if this is true for all developing secondary myotubes. Myoblasts were not clustered near the innervation zone, but were uniformly distributed throughout the muscle. Myoblasts were frequently interposed between a primary and a secondary myotube, in equally close proximity to both cell membranes. We conclude that specificity in myoblast-myotube fusion does not depend on restrictions in the physical distribution of myoblasts within the muscle, and therefore must reflect more subtle mechanisms for intercellular recognition.  相似文献   

16.
The effect of oligosaccharide processing inhibitors on the fusion of L6 myoblasts was studied. The glucosidase inhibitors, castanospermine, 1-deoxynojirimycin and N-methyl-deoxynojirimycin were potent inhibitors of myoblast fusion, as was the mannosidase II inhibitor, swainsonine. Inhibition of fusion was reversed when inhibitors were removed. However, the mannosidase I inhibitor, 1-deoxymannojirimycin did not inhibit fusion. Changes in cell membrane oligosaccharide structure were followed by monitoring the binding of concanavalin A (conA) and wheat germ agglutinin (WGA) to cell surface membranes in cells treated with processing inhibitors. All the processing inhibitors resulted in increased binding of conA and decreased binding of WGA; this is consistent with the known mechanisms of inhibition of the inhibitors used in the study. Inhibition of fusion by the processing inhibitors also resulted in reduced activities of creatine phosphokinase, an enzyme used as a marker for biochemical differentiation during fusion. Treatment of a non-differentiating conA-resistant cell line with processing inhibitors did not induce fusion, but the cells did show altered lectin-binding properties. The main conclusion drawn from these studies is that cell surface glycoproteins probably containing the mannose (Man)9 structure are important for the fusion reaction.  相似文献   

17.
Mononucleated myoblasts and multinucleated myotubes were obtained by culturing embryonic chicken skeletal muscle cells. Comparison of total polysomes isolated from these mononucleated and multinucleated cell cultures by density gradient centrifugation and electron microscopy revealed that mononucleated myoblasts contain polysomes similar to those contained by multinucleated myotubes and large enough to synthesize the 200,000-dalton subunit of myosin. When placed in an in vitro protein-synthesizing assay containing [3H]leucine, total polysomes from both mononucleated and multinucleated myogenic cultures were active in synthesizing polypeptides indistinguishable from myosin heavy chains as detected by measurement of radioactivity in slices through the myosin band on sodium dodecyl sulfate (SDS)-polyacrylamide gels. Fractionation of total polysomes on sucrose density gradients showed that myosin-synthesizing polysomes from mononucleated myoblasts may be slightly smaller than myosin-synthesizing polysomes from myotubes. Multinucleated myotubes contain approximately two times more myosin-synthesizing polysomes per unit of DNA than mononucleated myoblasts, and the proportion of total polysomes constituted by myosin polysomes is only 1.2 times higher in multinucleated myotubes than it is in mononucleated myoblasts. The results of this study suggest that mononucleated myoblasts contain significant amounts of myosin messenger RNA before the burst of myosin synthesis that accompanies muscle differentiation and that a portion of this messenger RNA is associated with ribosomes to form polysomes that will actively translate myosin heavy chains in an in vitro protein-synthesizing assay.  相似文献   

18.
Caveolin-3 is the principal structural protein of caveolae membrane domains in striated muscle cells. Caveolin-3 mRNA and protein expression are dramatically induced during the differentiation of C2C12 skeletal myoblasts, coincident with myoblast fusion. In these myotubes, caveolin-3 localizes to the sarcolemma (muscle cell plasma membrane), where it associates with the dystrophin-glycoprotein complex. However, it remains unknown what role caveolin-3 plays in myoblast differentiation and myotube formation. Here, we employ an antisense approach to derive stable C2C12 myoblasts that fail to express the caveolin-3 protein. We show that C2C12 cells harboring caveolin-3 antisense undergo differentiation and express normal amounts of four muscle-specific marker proteins. However, C2C12 cells harboring caveolin-3 antisense fail to undergo myoblast fusion and, therefore, do not form myotubes. Interestingly, treatment with specific p38 mitogen-activated protein kinase inhibitors blocks both myotube formation and caveolin-3 expression, but does not affect the expression of other muscle-specific proteins. In addition, we find that three human rhabdomyosarcoma cell lines do not express caveolin-3 and fail to undergo myoblast fusion. Taken together, these results support the idea that caveolin-3 expression is required for myoblast fusion and myotube formation, and suggest that p38 is an upstream regulator of caveolin-3 expression.  相似文献   

19.
We have determined the asymmetric distribution of two aminophospholipids phosphatidylethanolamine and phosphatidylserine in the plasma membrane of chick embryo fibroblast and myoblasts. Right-side-out membrane preparations were incubated with two different amidating reagents, trinitrobenzenesulfonate and isethionylacetimidate, under nonpenetrating conditions. Inside-out membranes were incubated with trinitrobenzenesulfonate. In fibroblasts, the similar plateau values suggested that 35% of the phosphatidylethanolamine and 20% of the phosphatidylserine is externally disposed. These values agree with previous measurements on fibroblast plasma membranes. In myoblasts, however, labelling plateaux were achieved which suggested that 65% of the phosphatidylethanolamine and 45% of the phosphatidylserine is externally disposed. This represents a 2-3-fold increase in potentially fusogenic lipids on the external leaflet of the plasma membrane. This unique distribution of aminophospholipids in myoblasts extends through the stage of development during which myoblasts become competent to fuse and form myotubes in culture. Two inferences may be drawn from these results. First, the external concentration of aminophospholipids in myoblasts is enriched significantly over that of fibroblasts or erythrocytes. This orientation may contribute to its fusion competence. Second, although large amounts of externally disposed aminophospholipid may be necessary for myoblast fusion, they do not confer fusion competence.  相似文献   

20.
Four independently selected conA-resistant, non-differentiating rat L6 myoblast cell lines and their parental wild-type populations were examined for cell surface alterations. [3H]conA-binding studies indicated that the variant myoblasts bound significantly less lectin than wild-type cells at 4 and at 37 °C. Scatchard analysis revealed two general types of binding sites (high and low affinity sites) on wild-type cells; the variants appeared to be deficient in the high affinity sites. These changes in conA binding probably play an important role in determining the conA-resistant phenotype. Lectin-binding results could be significantly modified by altering the composition of the serum in the growth medium used to culture myoblasts prior to performing binding experiments, suggesting the existence of productive and non-productive lectin-binding sites on the cell surface. SDS slab gel electrophoresis of [3H]mannose-labelled surface membranes prepared from variant and wild-type cells showed that several glycoproteins of the conA-resistant myoblasts were defective in mannosylation. The conA-binding abilities of a pronase digest of one of these altered regions from variant separations, with a molecular weight of 44 500 D, was found to contain glycopeptides with reduced affinity for the lectin, supporting the idea that variant membranes are deficient in a set of high affinity lectin-binding sites. Studies on [GDP-14C]-mannose incorporation into lipid by membranes from variant and wild-type myoblasts indicated that the biosynthetic lesion likely involved a mannosyl transferase enzyme directly, rather than a lack of free dolichol-PO4. These studies link conA resistance, cell surface glycoprotein alterations, and defective mannosyl transferase activity with the inability to carry out normal cellular differentiation to form multinucleated myotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号