首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A significant fraction of the Tetrahymena clones isolated from natural habitats self (mating occurs within a clone). Early attempts to study such clones failed because stable subclones were rarely, if ever, observed, and isolated pairs all died. Isozyme analysis revealed that these wild selfers were a diverse group; some were very similar to T. australis, a species with synclonal mating type determination and to T. elliotti, shown recently to have a karyonidal mating type system. One originally stable clone of T. australis included some selfing clones after a few years in our laboratory. Other clones manifested unique zymograms. Subclones isolated from 18 selfer strains were heterogeneous. All subclones of several selfers mated massively at each transfer through 100 fissions. Selfing among subclones of other selfers was highly variable or not observed. Although 77% of the pairs isolated died, and 9% of the pair cultures selfed, 15 selfers yielded some viable nonselfing "immature" progeny. Additional immature progeny were obtained by isolating pairs from macronuclear retention synclones. Although some "immature" progeny eventually selfed, most remained stable. Giemsa staining revealed macronuclear anlagen in nearly all mating pairs and some anomalies. Crosses among the F1 progeny clones of the T. elliotti selfers yield viability data comparable to those from crosses among normal strains. Perhaps perpetual selfing is a mechanism of getting rid of deleterious combinations of genes and uncovering better combinations in homozygous state by playing genetic roulette.  相似文献   

2.
During vegetative, asexual reproduction in heterozygous Tetrahymena thermophila, the macronucleus divides amitotically to produce clonal lineages that express either one or the other allele but not both. Because such phenotypic assortment has been described for every locus studied, its mechanism has important implications concerning the development and structure of the macronucleus. The primary tools to study assortment are Rf, the rate at which subclones come to express a single allele stably, and the output ratio, the ratio of assortee classes. Because Rf is related to the number of assorting units, a constant Rf for all loci suggests that all genes are maintained at the same copy number. Output ratios reflect the input ratio of assorting units, with a 1:1 output ratio implying equal numbers of alleles at the end of macronuclear development. Because different outcomes would suggest a different macronuclear structure, it is crucial that these parameters be accurately measured. Although published Rf values are similar for all loci measured, there has been no commonly accepted form of presentation and analysis. Here we examine the experimental determination of Rf. First, we use computer simulation to describe how the variability inherent in the assortment process affects experimental determination of Rf. Second, we describe a simple method of plotting assortment data that permits the uniform calculation of Rf, and we describe how to measure Rf accurately in instances when it is possible to score only the recessive allele. Using this method to produce truly comparable Rfs for all published data, we find that most, if not all, loci assort at Rfs consistent with approximately 45 assorting units, as has been asserted.  相似文献   

3.
E. V. Merriam  P. J. Bruns 《Genetics》1988,120(2):389-395
Phenotypic assortment in Tetrahymena thermophila results from random distribution of alleles during amitotic division of the macronucleus. The rate of assortment is dependent on input ratio and the number of assorting units. The assortment of the antibiotic resistance markers Chx, Mpr and gal was determined and is consistent for each with the model of 45 assorting chromosomes. The gene tsA (previously ts-1) shows normal assortment, in contrast to previous reports. A mutation in the highly amplified ribosomal locus (rdnA2) assorts as if present at only 45 copies. Death of clones occurred at a rate consistent with assortment for a single gene.  相似文献   

4.
Synopsis.
A satisfactory model of the Tetrahymena thermophila macronucleus must explain its genetic behavior in terms of its constituent molecules. Particular genetic phenomena requiring explanation are (a) phenotypic assortment , here interpreted as resulting from allelic disjunction rather than from differential gene expression; (b) unequal allelic input for some loci , interpreted as a consequence of unequal and selective replication of some alleles during early macronuclear development; (c) delayed assortment at some loci , interpreted as an effect of inequality of allelic input combined with a generalized elevation of DNA content during early clonal history; (d) linkage disruption , probably reflecting continuous somatic recombination rather than dissolution of chromosomes into small repliconic units; (e) assortment depression , brought about by the occasional association of homologous replicons (chromosomes) or else by a differential increase in some classes of replicons; (f) ploidy-related developmental differences in macronuclear primordia are interpreted on the basis of quantitative differences in DNA rather than in terms of an early perception of genic imbalance, (g) Ploidy independent macronuclear DNA content is consistent with several models of size regulation.  相似文献   

5.
We have previously argued from phylogenetic sequence data that the group I intron in the rRNA genes of Tetrahymena was acquired by different Tetrahymena species at different times during evolution. We have now approached the question of intron mobility experimentally by crossing intron+ and intron- strains looking for a strong polarity in the inheritance of the intron (intron homing). Based on the genetic analysis we find that the intron in T. pigmentosa is inherited as a neutral character and that intron+ and intron- alleles segregate in a Mendelian fashion with no sign of intron homing. In an analysis of vegetatively growing cells containing intron+ and intron- rDNA, initially in the same macronucleus, we similarly find no evidence of intron homing. During the course of this work, we observed to our surprise that progeny clones from some crosses contained three types of rDNA. One possible explanation is that T. pigmentosa has two rdn loci in contrast to the single locus found in T. thermophila. Some of the progeny clones from the genetic analysis were expanded for several hundred generations, and allelic assortment of the rDNA was demonstrated by subcloning analysis.  相似文献   

6.
A significant fraction of the Tetrahymena clones isolated from natural habitats self (mating occurs within a clone). Early attempts to study such clones failed because stable subclones were rarely, if ever, observed, and isolated pairs all died. Isozyme analysis revealed that these wild selfers were a diverse group; some were very similar to T. australis, a species with synclonal mating type determination and to T. elliotti, shown recently to have a karyonidal mating type system. One originally stable clone of T. australis included some selfing clones after a few years in our laboratory. Other clones manifested unique zymograms. Subclones isolated from 18 selfer strains were heterogeneous. All subclones of several selfers mated massively at each transfer through 100 fissions. Selfing among subclones of other selfers was highly variable or not observed. Although 77% of the pairs isolated died, and 9% of the pair cultures selfed, 15 selfers yielded some viable nonselfing “immature” progeny. Additional immature progeny were obtained by isolating pairs from macronuclear retention synclones. Although some “immature” progeny eventually selfed, most remained stable. Giemsa staining revealed macronuclear anlagen in nearly all mating pairs and some anomalies. Crosses among the F1 progeny clones of the T. elliotti selfers yield viability data comparable to those from crosses among normal strains. Perhaps perpetual selfing is a mechanism of getting rid of deleterious combinations of genes and uncovering better combinations in homozygous state by playing genetic roulette. © 1992 Wiley-Liss, Inc.  相似文献   

7.
A Temperature-Sensitive Mutant in TETRAHYMENA PYRIFORMIS, Syngen 1   总被引:5,自引:5,他引:0       下载免费PDF全文
McCoy JW 《Genetics》1973,74(1):107-114
After treatment with nitrosoguanidine a mutation to temperature sensitivity was obtained in Tetrahymena pyriformis, syngen 1. The trait is controlled by a recessive allele, ts, at a locus linked to serotype locus T. ts is completely recessive, unlike any other allele studied in this organism, and the heterozygotes do not show vegetative assortment. The cross which revealed the linkage of ts and T failed to show evidence of the linkage of mt (mating type) and E-1 (esterase-1) which has been demonstrated in other crosses (Allen 1964; Doerder 1972), but revealed a third case of linkage, involving mt and TO (tetrazolium oxidase). Taken together, these results are presumptive evidence for large interstrain differences in recombination properties within syngen 1.  相似文献   

8.
High levels of synonymous substitutions among alleles of the surface antigen SerH led to the hypothesis that Tetrahymena thermophila has a tremendously large effective population size, one that is greater than estimated for many prokaryotes (Lynch, M., and J. S. Conery. 2003. Science 302:1401-1404.). Here we show that SerH is unusual as there are substantially lower levels of synonymous variation at five additional loci (four nuclear and one mitochondrial) characterized from T. thermophila populations. Hence, the effective population size of T. thermophila, a model single-celled eukaryote, is lower and more consistent with estimates from other microbial eukaryotes. Moreover, reanalysis of SerH polymorphism data indicates that this protein evolves through a combination of vertical transmission of alleles and concerted evolution of repeat units within alleles. SerH may be under balancing selection due to a mechanism analogous to the maintenance of antigenic variation in vertebrate immune systems. Finally, the dual nature of ciliate genomes and particularly the amitotic divisions of processed macronuclear genomes may make it difficult to estimate accurately effective population size from synonymous polymorphisms. This is because selection and drift operate on processed chromosomes in macronuclei, where assortment of alleles, disruption of linkage groups, and recombination can alter the genetic landscape relative to more canonical eukaryotic genomes.  相似文献   

9.
Wong L  Klionsky L  Wickert S  Merriam V  Orias E  Hamilton EP 《Genetics》2000,155(3):1119-1125
The macronucleus of the ciliate Tetrahymena thermophila contains a fragmented somatic genome consisting of several hundred identifiable chromosome pieces. These pieces are generated by site-specific fragmentation of the germline chromosomes and most of them are represented at an average of 45 copies per macronucleus. In the course of successive divisions of an initially heterozygous macronucleus, the random distribution of alleles of loci carried on these copies eventually generates macronuclei that are pure for one allele or the other. This phenomenon is called phenotypic assortment. We have previously reported the existence of loci that assort together (coassort) and hypothesized that these loci reside on the same macronuclear piece. The work reported here provides new, rigorous genetic support for the hypothesis that macronuclear autonomously replicating chromosome pieces are the physical basis of coassortment groups. Thus, coassortment allows the mapping of the somatic genome by purely genetic means. The data also strongly suggest that the random distribution of alleles in the Tetrahymena macronucleus is due to the random distribution of the MAC chromosome pieces that carry them.  相似文献   

10.
Allelic assortment of Tetrahymena pyriformis makes possible the isolation of cells which contain both a heterozygous germ line nucleus and a somatic nucleus which expresses phenotypes of only one member of allelic pairs. Cycloheximide-sensitive segregants have been isolated from the vegetative progeny of cells heterozygous for a dominant mutation conferring resistance to cycloheximide; such segregants are called functional heterokaryons. Since progeny from crosses of these cells are cycloheximide-resistant, addition of the drug provides positive selection for successful exconjugants. The timing for expression of the new phenotype during conjugation is presented and used to identify what appear to be immature progeny of round one mating in genomic exclusion. Usefulness of functional heterokaryons in a number of genetic and developmental studies is discussed.  相似文献   

11.
During vegetative, asexual reproduction in heterozygous Tetrahymena thermophila, the macronucleus divides amitotically to produce clonal lineages that express either one or the other allele but not both. Because such phenotypic assortment has been described for every locus studied, its mechanism has important implications concerning the development and structure of the macronucleus. The primary tools to study assortment are Rf/ the rate at which subclones come to express a single allele stably, and the output ratio, the ratio of assortee classes. Because Rf is related to the number of assorting units, a constant Rf for all loci suggests that all genes are maintained at the same copy number. Output ratios reflect the input ratio of assorting units, with a 1:1 output ratio implying equal numbers of alleles at the end of macronuclear development. Because different outcomes would suggest a different macronuclear structure, it is crucial that these parameters be accurately measured. Although published Rf values are similar for all loci measured, there has been no commonly accepted form of presentation and analysis. Here we examine the experimental determination of Rf. First, we use computer simulation to describe how the variability inherent in the assortment process affects experimental determination of Rf. Second, we describe a simple method of plotting assortment data that permits the uniform calculation of Rf, and we describe how to measure Rf accurately in instances when it is possible to score only the recessive allele. Using this method to produce truly comparable Rfs for all published data, we find that most, if not all, loci assort at Rfs consistent with ~45 assorting units, as has been asserted. © 1992 Wiley-Liss, Inc.  相似文献   

12.
In Tetrahymena thermophila mating type alleles specify temperature sensitive frequency distributions of multiple mating types. A-like alleles specify mating types I, II, III, V and VI, whereas B-like alleles specify mating types II through VII. We have characterized the mating type distributions specified by several A- and B-like genotypes segregated by genomic exclusion from cells isolated from a pond in northwestern Pennsylvania. The B-like genotypes are alike in specifying very low frequencies of mating type III, but differ with respect to the frequencies of other mating types, particularly II and VII. An A-like genotype specifies a high frequency of mating type III and is unstable in successive generations for the expression of mating type II, suggesting a possible modifier. Inter se crosses performed at 18 degrees C, 28 degrees C and 34 degrees C showed that each genotype specifies a frequency distribution that is uniquely affected by temperature. No mating type was affected the same way by temperature in all genotypes. In A/B heterozygotes, the B-like genotype exhibited partial dominance. The genotypes described here differ significantly from previously described genotypes from the same pond, indicating that there are numerous mating type alleles. For frequency-dependent selection to equalize mating type frequencies, it must act not only on complex multiple alleles but also on the response of mating type alleles to temperature.  相似文献   

13.
Resistance to 6-methylpurine and cycloheximide has been induced in both the micronucleate species Tetrahymena thermophila and the amincronucleate species T. pyriformis. Resistance follows only after mutagen treatment and vegetative growth. The frequencies with which resistant variants are induced and the independence of mutagenesis and selection are demonstrated. All evidence is consistent with the hypothesis that macronuclear subunits are assorting in both species during vegetative growth to produce new phenotypes among subclones.  相似文献   

14.
为获得能够用于构建嗜热四膜虫蛋白定位的载体,该研究将GFP基因与镉(Cd2+)诱导的四膜虫金属硫蛋白基因(MTTl)启动子序列和终止子序列融合,获得表达载体pXS75-GFP。通过同源重组和抗性筛选,pXS75-GFP载体携带的目的基因整合入四膜虫MTTl位点,在cd2+诱导下实现GFP融合蛋白的可控表达。将α-tubulin基因ATUl克隆JN-pXS75-GFP中,重组质粒pXS75-GFP-ATUl通过基因枪转化入四膜虫细胞,在巴龙霉素筛选下获得稳定的α-tubulin-GFP过表达细胞株。激光共聚焦显微镜观察α-tubulin.GFP的定位,结果显示,α-tubulin—GFP融合蛋白在四膜虫细胞中表达并分布于皮层上,表明pXS75.GFP载体可用于嗜热四膜虫功能蛋白的定位分析。  相似文献   

15.
Sex allocation theory has been remarkably successful at explaining the prevalence of even sex ratios in natural populations and at identifying specific conditions that can result in biased sex ratios. Much of this theory focuses on parental sex determination (SD) strategies. Here, we consider instead the evolutionary causes and consequences of mixed offspring SD strategies, in which the genotype of an individual determines not its sex, but the probability of developing one of multiple sexes. We find that alleles specifying mixed offspring SD strategies can generally outcompete alleles that specify pure strategies, but generate constraints that may prevent a population from reaching an even sex ratio. We use our model to analyze sex ratios in natural populations of Tetrahymena thermophila, a ciliate with seven sexes determined by mixed SD alleles. We show that probabilistic SD is sufficient to account for the occurrence of skewed sex ratios in natural populations of T. thermophila, provided that their effective population sizes are small. Our results highlight the importance of genetic drift in sex ratio evolution and suggest that mixed offspring SD strategies should be more common than currently thought.  相似文献   

16.
Wickert S  Nangle L  Shevel S  Orias E 《Genetics》2000,154(3):1155-1167
The genetics of the ciliate Tetrahymena thermophila are richer than for most other eukaryotic cells, because Tetrahymena possesses two genomes: a germline (micronuclear) genome that follows a Mendelian model of genetic transmission and a somatic (macronuclear) genome, derived from the micronuclear genome by fragmentation, which follows a different genetic transmission model called phenotypic assortment. While genetic markers in the micronucleus fall into classical linkage groups under meiotic recombination and segregation, the same markers in the macronucleus fall into coassortment groups (CAGs) under phenotypic assortment by the random distribution of MAC chromosome pieces. We set out to determine whether genomic mapping in the macronucleus by genetic means is feasible. To investigate the relationship between the micronuclear map and coassortment groups, we systematically placed into CAGs all of the markers lying on chromosome 1L that are also found in the macronucleus. Sixteen CAGs were identified, 7 of which contain at least two loci. We have concluded that CAGs represent a fundamental genetic feature of the MAC. The MIC and MAC maps on 1L are colinear; that is, CAGs consist exclusively of markers that map to a continuous segment in a given region of the micronuclear map, with no intervening markers from other CAGs. These findings provide a solid foundation for exploiting the MAC chromosome pieces to build a physical map of the Tetrahymena genome.  相似文献   

17.
R. S. Coyne  M. C. Yao 《Genetics》1996,144(4):1479-1487
Extensive, programmed chromosome breakage occurs during formation of the somatic macronucleus of ciliated protozoa. The cis-acting signal directing breakage has been most rigorously defined in Tetrahymena thermophila, where it consists of a 15-bp DNA sequence known as Cbs, for chromosome breakage sequence. We have identified sequences identical or nearly identical to the T. thermophila Cbs at sites of breakage flanking the germline micronuclear rDNA locus of six additional species of Tetrahymena as well as members of two related genera. Other general features of the breakage site are also conserved, but surprisingly, the orientation and number of copies of Cbs are not always conserved, suggesting the occurrence of germline rearrangement events over evolutionary time. At one end of the T. thermophila micronuclear rDNA locus, a pair of short inverted repeats adjacent to Cbs directs the formation of a giant palindromic molecule. We have examined the corresponding sequences from two other Tetrahymena species. We find the sequence to be partially conserved, as previously implied from analysis of macronuclear rDNA, but of variable length and organization.  相似文献   

18.
Mochizuki K 《Gene》2008,425(1-2):79-83
Tetrahymena thermophila is a useful model for the study of eukaryotic biology. A neomycin resistance gene (neo) has been developed that was optimized for the codon usage of T. thermophila. Using this codon-optimized neo gene (neoTet), a new drug resistance marker cassette, neo4, has been constructed. The neo4 cassette resulted in about ten times more drug resistant transformants than a cassette containing the non-codon-optimized original neo gene. The new cassette enables transgenic Tetrahymena strains to be created with high efficiency. This study also emphasizes the importance of codon optimization in transgene expression in Tetrahymena.  相似文献   

19.
The rDNA minichromosomes of Tetrahymena thermophila and Tetrahymena pyriformis share a high degree of sequence similarity and structural organization. The T.thermophila 5' non-transcribed spacer (5' NTS) is sufficient for replication and contains three repeated sequence elements that are conserved in T.pyriformis , including type I elements, the only known determinant for replication control. To assess the role of conserved sequences in replication control, structural and functional studies were performed on T.pyriformis rDNA. Similar to T.thermophila , replication initiates exclusively in the 5' NTS, localizing to a 900 bp segment. Elongating replication forks arrest transiently at one site which bears strong similarity to a tripartite sequence element present at fork arrest sites in T.thermophila rDNA. An in vitro type I element binding activity indistinguishable from the T.thermophila protein, ssA-TIBF, was detected in T.pyriformis extracts. The respective TIBF proteins bind with comparable affinity to type I elements from both species, suggesting that in vivo recognition could cross species boundaries. Despite these similarities, the T.pyriformis 5' NTS failed to support replication in transformed T.thermophila cells, suggesting a more complex genetic organization than previously realized.  相似文献   

20.
DNA is eliminated during development of the somatic MACronucleus from the germinal MICronucleus in the ciliated protozoan, Tetrahymena thermophila. Facultatively persistent sequences are a class of sequences that persist in the MAC DNA of some cell lines but are eliminated from the MAC DNA of other cell lines. One cloned MAC fragment contains a persistent sequence as well as sequences normally retained in the MAC. When this cloned fragment was used to construct MAC restriction maps of this region in cell lines whose MAC DNAs do, or do not, contain the persistent sequence, extensive variation in the map flanking this region was observed. The different DNA rearrangements of this MIC segment are epigenetically determined during or soon after MAC development. Moreover, different rearrangements may occur among the 45 copies of this MIC segment as a MAC is formed, resulting in polymorphisms that are later resolved by phenotypic assortment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号