首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Four series of borosilicate glasses modified by alkali oxides and doped with Tb3+ and Sm3+ ions were prepared using the conventional melt quenching technique, with the chemical composition 74.5B2O3 + 10SiO2 + 5MgO + R + 0.5(Tb2O3/Sm2O3) [where R = 10(Li2O /Na2O/K2O) for series A and C, and R = 5(Li2O + Na2O/Li2O + K2O/K2O + Na2O) for series B and D]. The X‐ray diffraction (XRD) patterns of all the prepared glasses indicate their amorphous nature. The spectroscopic properties of the prepared glasses were studied by optical absorption analysis, photoluminescence excitation (PLE) and photoluminescence (PL) analysis. A green emission corresponding to the 5D47F5 (543 nm) transition of the Tb3+ ions was registered under excitation at 379 nm for series A and B glasses. The emission spectra of the Sm3+ ions with the series C and D glasses showed strong reddish‐orange emission at 600 nm (4G5/26H7/2) with an excitation wavelength λexci = 404 nm (6H5/24F7/2). Furthermore, the change in the luminescence intensity with the addition of an alkali oxide and combinations of these alkali oxides to borosilicate glasses doped with Tb3+ and Sm3+ ions was studied to optimize the potential alkali‐oxide‐modified borosilicate glass.  相似文献   

2.
In several experimental techniques D2O rather then H2O is often used as a solvent for proteins. Concerning the influence of the solvent on the stability of the proteins, contradicting results have been reported in literature. In this paper the influence of H2O-D2O solvent substitution on the stability of globular protein structure is determined in a systematic way. The differential scanning calorimetry technique is applied to allow for a thermodynamic analysis of two types of globular proteins: hen's egg lysozyme (LSZ) with relatively strong internal cohesion ("hard" globular protein) and bovine serum albumin (BSA), which is known for its conformational adaptability ("soft" globular protein). Both proteins tend to be more stable in D2O compared to H2O. We explain the increase of protein stability in D2O by the observation that D2O is a poorer solvent for nonpolar amino acids than H2O, implying that the hydrophobic effect is larger in D2O. In case of BSA the transitions between different isomeric forms, at low pH values the Nm and F forms, and at higher pH values Nm and B, were observed by the presence of a supplementary peak in the DSC thermogram. It appears that the pH-range for which the Nm form is the preferred one is wider in D2O than in H2O.  相似文献   

3.
4.

Despite its ecological importance, essential aspects of microbial N2O reduction—such as the effect of O2 availability on the N2O sink capacity of a community—remain unclear. We studied N2O vs. aerobic respiration in a chemostat culture to explore (i) the extent to which simultaneous respiration of N2O and O2 can occur, (ii) the mechanism governing the competition for N2O and O2, and (iii) how the N2O-reducing capacity of a community is affected by dynamic oxic/anoxic shifts such as those that may occur during nitrogen removal in wastewater treatment systems. Despite its prolonged growth and enrichment with N2O as the sole electron acceptor, the culture readily switched to aerobic respiration upon exposure to O2. When supplied simultaneously, N2O reduction to N2 was only detected when the O2 concentration was limiting the respiration rate. The biomass yields per electron accepted during growth on N2O are in agreement with our current knowledge of electron transport chain biochemistry in model denitrifiers like Paracoccus denitrificans. The culture’s affinity constant (KS) for O2 was found to be two orders of magnitude lower than the value for N2O, explaining the preferential use of O2 over N2O under most environmentally relevant conditions.

  相似文献   

5.
Hemopure (Biopure; Cambridge, MA) and PolyHeme (Northfield Laboratories; Evanston, IL) are two acellular hemoglobin-based O2 carriers (HBOCs) currently in phase III clinical trials for use as red blood cell substitutes. The most common adverse side effect that these HBOCs exhibit is increased vasoconstriction. Autoregulatory theory has been presented as a possible explanation for this physiological effect, where it is hypothesized that low-affinity HBOCs over-deliver O2 to tissues surrounding arterioles, thereby eliciting vasoconstriction. In this paper, we wanted to investigate HBOC oxygenation of tissue surrounding a capillary, which is the smallest element of the circulatory system. An a priori model has been developed in which the performance of mixtures of acellular HBOCs (synthesized by our group and others) and human red blood cells (hRBCs) has been simulated using a Krogh tissue cylinder model (KTCM) comprising a capillary surrounded by a capillary membrane and skeletal muscle tissue in cylindrical coordinates with specified tissue O2 consumption rates and Michaelis-Menten kinetics. In this study, the total hemoglobin (hRBCs and HBOCs) concentration was kept constant. The HBOCs studied possessed O2 affinities that were higher and lower compared to hRBCs (P50's spanned 5-55 mmHg), and the equilibrium binding/release of oxygen to/from the HBOCs was modeled using the Adair equation. At normoxic inlet pO2's, there was no correlation between O2 flux out of the capillary and the O2 affinity of the HBOC. However, a correlation was found between the average pO2 tension in the capillary and the O2 affinity of the HBOC. Additionally, we studied the change in the O2 equilibrium curve of HBOCs with different O2 affinities over a wide range of inlet pO2's and found that changing the inlet pO2 greatly affected which HBOC, having a unique O2 affinity, best delivered O2 to the surrounding tissue. The analysis of oxygen transport presented could lead to a better prediction of which acellular HBOC is best suited for a specific transfusion application that many times depends on the capillary inlet pO2 tension.  相似文献   

6.
An overview of structurally characterized alpha-hydroxycarboxylatodioxo- and alpha-hydroxycarboxylatooxoperoxovanadates(V) is presented and the geometric parameters of the V2O2 bridging core are discussed. The first case of a stereospecific formation of oxoperoxovanadates(V) is reported: The crystal structures of the isomeric compounds (NBu4)2[V2O2(O2)2(L-lact)2] x 2H2O and (NBu4)2[V2O2(O2)2(D-lact)(L-lact)] x 2H2O (lact = C3H4O3(2-), the anion of the lactic acid) differ mainly in the arrangement of the V2O2 core and in mutual orientation of the V=O bonds. The complexes with achiral ligands adopt the same structural type as the complexes formed from a racemic mixture of a chiral ligand, while the structure obtained using an enantiopure L,L-hydroxycarboxylate is different.  相似文献   

7.
Hydrogen peroxide inhibits photosynthetic O2 evolution. It has been shown that H2O2 destroys the function of the oxygen-evolving complex (OEC) in some chloroplast and Photosystem (PS) II preparations causing release of manganese from the OEC. In other preparations, H2O2 did not cause or caused only insignificant release of manganese. In this work, we tested the effect of H2O2 on the photosynthetic electron transfer and the state of OEC manganese in a native system (intact cells of the cyanobacterium Anabaena variabilis). According to EPR spectroscopy data, H2O2 caused an increase in the level of photooxidation of P700, the reaction centers of PS I, and decreased the rate of their subsequent reduction in the dark by a factor larger than four. Combined effect of H2O2, CN-, and EDTA caused more than eight- to ninefold suppression of the dark reduction of P700+. EPR spectroscopy revealed that the content of free (or loosely bound) Mn2+ in washed cyanobacterial cells was ~20% of the total manganese pool. This content remained unchanged upon the addition of CN- and increased to 25-30% after addition of H2O2. The content of the total manganese decreased to 35% after the treatment of the cells with EDTA. The level of the H2O2-induced release of manganese increased after the treatment of the cells with EDTA. Incubation of cells with H2O2 for 2 h had no effect on the absorption spectra of the photosynthetic pigments. More prolonged incubation with H2O2 (20 h) brought about degradation of phycobilins and chlorophyll a and lysis of cells. Thus, H2O2 causes extraction of manganese from cyanobacterial cells, inhibits the OEC activity and photosynthetic electron transfer, and leads to the destruction of the photosynthetic apparatus. H2O2 is unable to serve as a physiological electron donor in photosynthesis.  相似文献   

8.
We have examined the relative deficits in tension development and O2 uptake in contracting skeletal muscle during severe hypoxic hypoxia. Anesthetized mongrel dogs were ventilated to maintain an end-tidal PCO2 between 35 and 40 Torr. Venous outflow from the gastrocnemius muscle was measured using an electromagnetic flow probe. The tendon was cut and attached to a strain gauge. The muscle was stimulated to contract isometrically at 2 or 4 Hz for 20 min. Hypoxia (9% O2 in N2) was then imposed for 30 min, followed by 30 min of normoxia. Blood flow first increased in proportion to the contraction frequency and then increased further a similar amount in both groups during hypoxia. O2 extraction and blood flow reached maximal levels during hypoxia in the 2-Hz group. The further O2 deficit that was accumulated during 4 Hz and hypoxia was, therefore, a result of the greater discrepancy between O2 supply and demand. O2 uptake decreased more in hypoxia than did developed tension. These results are best explained by ATP supplementation from nonaerobic energy sources that was promoted by the free-flow condition of hypoxic hypoxia.  相似文献   

9.
10.
We perfused an isolated rabbit hindlimb preparation with suspensions of human erythrocytes (RBC) having different O2 affinities. Our objective was to compare the effect of changes in P50, the PO2 at which hemoglobin is 50% saturated, on tissue O2 consumption during severe hypoxemia. A high-affinity (HA) group (n = 9) was perfused with RBC incubated in NaCNO (P50 = 21.4 +/- 1.9 Torr). This was compared with a low-affinity (LA) group (n = 9) perfused with rejuvenated RBC (P50 = 31.1 +/- 1.8 Torr). The arterial PO2 of the perfusate was decreased to approximately 24 Torr in both preparations. Perfusion flow and hemoglobin concentration were maintained constant. During hypoxemia arterial O2 saturation and total O2 transport (TO2) were greater in the HA than the LA group (P less than 0.05). O2 consumption and effluent venous PO2 decreased with hypoxemia in both groups to similar levels. Consequently, the LA group showed a greater O2 extraction ratio than the HA group (P less than 0.05). The ratio of phosphocreatine to inorganic phosphate, measured with 31P magnetic resonance spectroscopy, decreased at a comparable rate in both groups. As shown by a mathematical model of peripheral O2 transport, these experimental results can be explained on the basis of peripheral limitation to O2 diffusion. We conclude that increased hemoglobin affinity does not appreciably improve tissue oxygenation in hypoxemia, since the increase in TO2 is offset by diffusion limitation at the tissues.  相似文献   

11.
12.
13.
14.
A 160-liter stainless steel algal growth tank has been constructed and has been used essentially continuously for over three years. Filamentous and unicellular blue-green algae as well as a photosynthetic bacterium have been cultured using both ordinary and heavy water (99.8 atom % 2H). By using a recycling technique, yields as high as 25 g/liter of 2H2O have been obtained.  相似文献   

15.
16.
The effect of prior exercise on pulmonary O(2) uptake (Vo(2)(p)), leg blood flow (LBF), and muscle deoxygenation at the onset of heavy-intensity alternate-leg knee-extension (KE) exercise was examined. Seven subjects [27 (5) yr; mean (SD)] performed step transitions (n = 3; 8 min) from passive KE following no warm-up (HVY 1) and heavy-intensity (Delta50%, 8 min; HVY 2) KE exercise. Vo(2)(p) was measured breath-by-breath; LBF was measured by Doppler ultrasound at the femoral artery; and oxy (O(2)Hb)-, deoxy (HHb)-, and total (Hb(tot)) hemoglobin/myoglobin of the vastus lateralis muscle were measured continuously by near-infrared spectroscopy (NIRS; Hamamatsu NIRO-300). Phase 2 Vo(2)(p), LBF, and HHb data were fit with a monoexponential model. The time delay (TD) from exercise onset to an increase in HHb was also determined and an HHb effective time constant (HHb - MRT = TD + tau) was calculated. Prior heavy-intensity exercise resulted in a speeding (P < 0.05) of phase 2 Vo(2)(p) kinetics [HVY 1: 42 s (6); HVY 2: 37 s (8)], with no change in the phase 2 amplitude [HVY 1: 1.43 l/min (0.21); HVY 2: 1.48 l/min (0.21)] or amplitude of the Vo(2)(p) slow component [HVY 1: 0.18 l/min (0.08); HVY 2: 0.18 l/min (0.09)]. O(2)Hb and Hb(tot) were elevated throughout the on-transient following prior heavy-intensity exercise. The tauLBF [HVY 1: 39 s (7); HVY 2: 47 s (21); P = 0.48] and HHb-MRT [HVY 1: 23 s (4); HVY 2: 21 s (7); P = 0.63] were unaffected by prior exercise. However, the increase in HHb [HVY 1: 21 microM (10); HVY 2: 25 microM (10); P < 0.001] and the HHb-to-Vo(2)(p) ratio [(HHb/Vo(2)(p)) HVY 1: 14 microM x l(-1) x min(-1) (6); HVY 2: 17 microM x l(-1) x min(-1) (5); P < 0.05] were greater following prior heavy-intensity exercise. These results suggest that the speeding of phase 2 tauVo(2)(p) was the result of both elevated local O(2) availability and greater O(2) extraction evidenced by the greater HHb amplitude and HHb/Vo(2)(p) ratio following prior heavy-intensity exercise.  相似文献   

17.
The article describes the observation of novel catalytic activities in the alphabeta-hydrolase superfamily apparently unrelated to ester hydrolysis and unexpected biochemical observations relating to the structure and function of the serine catalytic triad in these enzymes. One common feature of these novel activities is the activation of a small diatomic molecule, but via diverse chemistry. Possible mechanisms of catalysis are discussed.  相似文献   

18.
19.
The relationship between O3 tolerance and the chloroplast H2O2scavenging system (PS I  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号