共查询到20条相似文献,搜索用时 15 毫秒
1.
Akt activation is required at a late stage of insulin-induced GLUT4 translocation to the plasma membrane 总被引:5,自引:0,他引:5
Insulin stimulates the translocation of glucose transporter GLUT4 from intracellular vesicles to the plasma membrane (PM). This involves multiple steps as well as multiple intracellular compartments. The Ser/Thr kinase Akt has been implicated in this process, but its precise role is ill defined. To begin to dissect the role of Akt in these different steps, we employed a low-temperature block. Upon incubation of 3T3-L1 adipocytes at 19 C, GLUT4 accumulated in small peripheral vesicles with a slight increase in PM labeling concomitant with reduced trans-Golgi network labeling. Although insulin-dependent translocation of GLUT4 to the PM was impaired at 19 C, we still observed movement of vesicles toward the surface. Strikingly, insulin-stimulated Akt activity, but not phosphatidylinositol 3 kinase activity, was blocked at 19 C. Consistent with a multistep process in GLUT4 trafficking, insulin-stimulated GLUT4 translocation could be primed by treating cells with insulin at 19 C, whereas this was not the case for Akt activation. These data implicate two insulin-regulated steps in GLUT4 translocation: 1) redistribution of GLUT4 vesicles toward the cell cortex-this process is Akt-independent and is not blocked at 19 C; and 2) docking and/or fusion of GLUT4 vesicles with the PM-this process may be the major Akt-dependent step in the insulin regulation of glucose transport. 相似文献
2.
Alpha-actinin-4 is required for normal podocyte adhesion 总被引:5,自引:0,他引:5
Dandapani SV Sugimoto H Matthews BD Kolb RJ Sinha S Gerszten RE Zhou J Ingber DE Kalluri R Pollak MR 《The Journal of biological chemistry》2007,282(1):467-477
Mutations in the alpha-actinin-4 gene ACTN4 cause an autosomal dominant human kidney disease. Mice deficient in alpha-actinin-4 develop a recessive phenotype characterized by kidney failure, proteinuria, glomerulosclerosis, and retraction of glomerular podocyte foot processes. However, the mechanism by which alpha-actinin-4 deficiency leads to glomerular disease has not been defined. Here, we examined the effect of alpha-actinin-4 deficiency on the adhesive properties of podocytes in vivo and in a cell culture system. In alpha-actinin-4-deficient mice, we observed a decrease in the number of podocytes per glomerulus compared with wild-type mice as well as the presence of podocyte markers in the urine. Podocyte cell lines generated from alpha-actinin-4-deficient mice were less adherent than wild-type cells to glomerular basement membrane (GBM) components collagen IV and laminin 10 and 11. We also observed markedly reduced adhesion of alpha-actinin-4-deficient podocytes under increasing shear stresses. This adhesion deficit was restored by transfecting cells with alpha-actinin-4-GFP. We tested the strength of the integrin receptor-mediated linkages to the cytoskeleton by applying force to microbeads bound to integrin using magnetic pulling cytometry. Beads bound to alpha-actinin-4-deficient podocytes showed greater displacement in response to an applied force than those bound to wild-type cells. Consistent with integrin-dependent alpha-actinin-4-mediated adhesion, phosphorylation of beta1-integrins on alpha-actinin-4-deficient podocytes is reduced. We rescued the phosphorylation deficit by transfecting alpha-actinin-4 into alpha-actinin-4-deficient podocytes. These results suggest that alpha-actinin-4 interacts with integrins and strengthens the podocyte-GBM interaction thereby stabilizing glomerular architecture and preventing disease. 相似文献
3.
SKIP negatively regulates insulin-induced GLUT4 translocation and membrane ruffle formation 总被引:5,自引:0,他引:5
下载免费PDF全文

Skeletal muscle and kidney enriched inositol phosphatase (SKIP) is an inositol polyphosphate 5-phosphatase that hydrolyzes phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] to downregulate intracellular levels. In this study, we show that SKIP inhibits phosphoinositide 3-kinase signaling in insulin-stimulated CHO cells. Ectopic expression of SKIP did not inhibit insulin-induced PI(3,4,5)P3 generation but did rapidly decrease insulin-induced intracellular PI(3,4,5)P3 levels compared with those in control cells. Further, insulin-induced phosphorylation of some downstream targets such as Akt and p70 S6 kinase was markedly inhibited by the ectopic expression of SKIP, whereas phosphorylation of mitogen-activated protein kinase was not. In contrast, downregulation of intracellular SKIP levels by antisense oligonucleotides dramatically enhanced Akt (protein kinase B) phosphorylation in response to insulin, suggesting that endogenous SKIP downregulates insulin signaling. SKIP also markedly inhibited GLUT4 translocation and membrane ruffle formation. We conclude that SKIP preferentially regulates glucose transport and actin cytoskeletal rearrangement among a variety of PI(3,4,5)P3 downstream events. 相似文献
4.
Lipid raft microdomain compartmentalization of TC10 is required for insulin signaling and GLUT4 translocation
下载免费PDF全文

Watson RT Shigematsu S Chiang SH Mora S Kanzaki M Macara IG Saltiel AR Pessin JE 《The Journal of cell biology》2001,154(4):829-840
Recent studies indicate that insulin stimulation of glucose transporter (GLUT)4 translocation requires at least two distinct insulin receptor-mediated signals: one leading to the activation of phosphatidylinositol 3 (PI-3) kinase and the other to the activation of the small GTP binding protein TC10. We now demonstrate that TC10 is processed through the secretory membrane trafficking system and localizes to caveolin-enriched lipid raft microdomains. Although insulin activated the wild-type TC10 protein and a TC10/H-Ras chimera that were targeted to lipid raft microdomains, it was unable to activate a TC10/K-Ras chimera that was directed to the nonlipid raft domains. Similarly, only the lipid raft-localized TC10/ H-Ras chimera inhibited GLUT4 translocation, whereas the TC10/K-Ras chimera showed no significant inhibitory activity. Furthermore, disruption of lipid raft microdomains by expression of a dominant-interfering caveolin 3 mutant (Cav3/DGV) inhibited the insulin stimulation of GLUT4 translocation and TC10 lipid raft localization and activation without affecting PI-3 kinase signaling. These data demonstrate that the insulin stimulation of GLUT4 translocation in adipocytes requires the spatial separation and distinct compartmentalization of the PI-3 kinase and TC10 signaling pathways. 相似文献
5.
Thamotharan M McKnight RA Thamotharan S Kao DJ Devaskar SU 《American journal of physiology. Endocrinology and metabolism》2003,284(5):E901-E914
We examined the long-term effect of in utero exposure to streptozotocin-induced maternal diabetes on the progeny that postnatally received either ad libitum access to milk by being fed by control mothers (CM/DP) or were subjected to relative nutrient restriction by being fed by diabetic mothers (DM/DP) compared with the control progeny fed by control mothers (CM/CP). There was increased food intake, glucose intolerance, and obesity in the CM/DP group and diminished food intake, glucose tolerance, and postnatal growth restriction in the DM/DP group, persisting in the adult. These changes were associated with aberrations in hormonal and metabolic profiles and alterations in hypothalamic neuropeptide Y concentrations. By use of subfractionation and Western blot analysis techniques, the CM/DP group demonstrated a higher skeletal muscle sarcolemma-associated (days 1 and 60) and white adipose tissue plasma membrane-associated (day 60) GLUT4 in the basal state with a lack of insulin-induced translocation. The DM/DP group demonstrated a partial amelioration of this change observed in the CM/DP group. We conclude that the offspring of a diabetic mother with ad libitum postnatal nutrition demonstrates increased food intake and resistance to insulin-induced translocation of GLUT4 in skeletal muscle and white adipose tissue. This in turn leads to glucose intolerance and obesity at a later stage (day 180). Postnatal nutrient restriction results in reversal of this adult phenotype, thereby explaining the phenotypic heterogeneity that exists in this population. 相似文献
6.
Hui-Ling Guo Cixiong Zhang Qi Liu Qinxi Li Guili Lian Di Wu Xuebin Li Wei Zhang Yuemao Shen Zhiyun Ye Shu-Yong Lin Sheng-Cai Lin 《Cell research》2012,22(8):1246-1257
Insulin-stimulated glucose uptake by the glucose transporter GLUT4 plays a central role in whole-body glucose homeostasis, dysregulation of which leads to type 2 diabetes. However, the molecular components and mechanisms regulating insulin-stimulated glucose uptake remain largely unclear. Here, we demonstrate that Axin interacts with the ADP-ribosylase tankyrase 2 (TNKS2) and the kinesin motor protein KIF3A, forming a ternary complex crucial for GLUT4 translocation in response to insulin. Specific knockdown of the individual components of the complex attenuated insulin-stimulated GLUT4 translocation to the plasma membrane. Importantly, TNKS2−/− mice exhibit reduced insulin sensitivity and higher blood glucose levels when re-fed after fasting. Mechanistically, we demonstrate that in the absence of insulin, Axin, TNKS and KIF3A are co-localized with GLUT4 on the trans-Golgi network. Insulin treatment suppresses the ADP-ribosylase activity of TNKS, leading to a reduction in ADP ribosylation and ubiquitination of both Axin and TNKS, and a concurrent stabilization of the complex. Inhibition of Akt, the major effector kinase of insulin signaling, abrogates the insulin-mediated complex stabilization. We have thus elucidated a new protein complex that is directly associated with the motor protein kinesin in insulin-stimulated GLUT4 translocation. 相似文献
7.
The GLUT4 facilitative glucose transporter is recruited to the plasma membrane by insulin. This process depends primarily on the exocytosis of a specialized pool of vesicles containing GLUT4 in their membranes. The mechanism of GLUT4 vesicle exocytosis in response to insulin is not understood. To determine whether GLUT4 exocytosis is dependent on intact microtubule network, we measured insulin-mediated GLUT4 exocytosis in 3T3-L1 adipocytes in which the microtubule network was depolymerized by pretreatment with nocodazole. Insulin-mediated GLUT4 translocation was inhibited by more than 80% in nocodazole-treated cells. Phosphorylation of insulin receptor substrate 1 (IRS-1), activation of IRS-1 associated phosphatidylinositide 3-kinase, and phosphorylation of protein kinase B/Akt-1 were not inhibited by nocodazole treatment indicating that the microtubule network was not required for proximal insulin signaling. An intact microtubule network is specifically required for insulin-mediated GLUT4 translocation since nocodazole treatment did not affect insulin-mediated GLUT1 translocation or adipsin secretion. By using in vitro microtubule binding, we demonstrated that both GLUT4 vesicles and IRS-1 bind specifically to microtubules, implicating microtubules in both insulin signaling and GLUT4 translocation. Vesicle binding to microtubules was not mediated through direct binding of GLUT4 or insulin-responsive aminopeptidase to microtubules. A model microtubule-dependent translocation of GLUT4 is proposed. 相似文献
8.
Signals that regulate GLUT4 translocation 总被引:7,自引:0,他引:7
Elmendorf JS 《The Journal of membrane biology》2002,187(3):167-174
We have shown that there is a maturational increase in osmotic water permeability (Pf) of rabbit renal brush border membrane vesicles (BBMV). The purpose of the present study was to further investigate the changes in proximal tubule water transport that occur during postnatal development. Diffusional water permeability (PDW) has not been measured directly in adult or neonatal BBMV. We validated the method described by Ye and Verkman (Simultaneous optical measurement of osmotic and diffusional water permeability in cells and liposomes. Biochemistry 28:824-829, 1989) to measure PDW in red cell ghosts and liposomes, to examine the maturational changes in PDW in BBMV. This method utilizes the sensitivity of 8-aminonaphtalene-1,3,6-trisulfonic acid (ANTS) fluorescence to the D2O-H2O content of the solvent. ANTS-loaded neonatal (11 days old) and adult BBMV were rapidly mixed with two volumes of isoosmotic D2O solution using a stopped-flow apparatus at 5 degrees -37 degrees C. PDW was lower in neonatal than adult BBMV at 5 degrees (3.77 +/- 0.34 vs. 5.35 +/- 0.43 mm/sec, respectively, p<0.05) and 20 degrees C (7.03 +/- 0.40 vs. 9.04 +/- 0.25 mm/sec, respectively, p<0.001), but was not different at 30 degrees and 37 degrees C. The activation energy (Ea) was higher in neonatal than in adult BBMV (9.29 +/- 0.56 kcal/mol vs. 6.46 +/- 0.56 kcal/mol, p<0.001). In adult BBMV, PDW was inhibited by 0.5 mM HgCl2 by 46.6 +/- 3.6%, while it was not affected in neonatal BBMV (p<0.001). The results indicate that PDW can be measured in rabbit renal BBMV. There are significant changes in water transport across the apical membrane during postnatal development, consistent with a maturational increase in channel-mediated water transport. 相似文献
9.
Insulin-stimulated GLUT4 translocation in adipocytes is dependent upon cortical actin remodeling 总被引:16,自引:0,他引:16
Rhodamine-labeled phalloidin staining of morphologically differentiated 3T3L1 adipocytes demonstrated that F-actin predominantly exists juxtaposed to and lining the inner face of the plasma membrane (cortical actin) with a smaller amount of stress fiber and/or ruffling actin confined to the cell bottom in contact with the substratum. The extent of cortical actin disruption with various doses of either latrunculin B or Clostridium difficile toxin B (a Rho family small GTP-binding protein toxin) directly correlated with the inhibition of insulin-stimulated glucose uptake and GLUT4 translocation. The dissolution of the cortical actin network had no significant effect on proximal insulin receptor signaling events including insulin receptor autophosphorylation, tyrosine phosphorylation of insulin receptor substrate and Cbl, or serine/threonine phosphorylation of Akt. Surprisingly, however, stabilization of F-actin with jasplakinolide also resulted in a dose-dependent inhibition of insulin-stimulated glucose uptake and GLUT4 translocation. In vivo time-lapse confocal fluorescent microscopy of actin-yellow fluorescent protein demonstrated that insulin stimulation initially results in cortical actin remodeling followed by an increase in polymerized actin in the peri-nuclear region. Importantly, the insulin stimulation of cortical actin rearrangements was completely blocked by treatment of the cells with latrunculin B, C. difficile toxin B, and jasplakinolide. Furthermore, expression of the dominant-interfering TC10/T31N mutant completely disrupted cortical actin and prevents any insulin-stimulated actin remodeling. Together, these data demonstrate that cortical actin, but not stress fibers, lamellipodia, or filopodia, plays an important regulatory role in insulin-stimulated GLUT4 translocation. In addition, cortical F-actin does not function in a static manner (e.g. barrier or scaffold), but insulin-stimulated dynamic cortical actin remodeling is necessary for the GLUT4 translocation process. 相似文献
10.
In fat and muscle cells, insulin stimulates the movement to and fusion of intracellular vesicles containing GLUT4 with the plasma membrane, a process referred to as GLUT4 translocation. Previous studies have indicated that Akt [also known as PKB (protein kinase B)] phosphorylation of AS160, a GAP (GTPase-activating protein) for Rabs, is required for GLUT4 translocation. The results suggest that this phosphorylation suppresses the GAP activity and leads to the elevation of the GTP form of one or more Rabs required for GLUT4 translocation. Based on their presence in GLUT4 vesicles and activity as AS160 GAP substrates, Rabs 8A, 8B, 10 and 14 are candidate Rabs. Here, we provide further evidence that Rab10 participates in GLUT4 translocation in 3T3-L1 adipocytes. Among Rabs 8A, 8B, 10 and 14, only the knockdown of Rab10 inhibited GLUT4 translocation. In addition, we describe the subcellular distribution of Rab10 and estimate the fraction of Rab10 in the active GTP form in vivo. Approx. 5% of the total Rab10 was present in GLUT4 vesicles isolated from the low-density microsomes. In both the basal and the insulin state, 90% of the total Rab10 was in the inactive GDP state. Thus, if insulin increases the GTP form of Rab10, the increase is limited to a small portion of the total Rab10. Finally, we report that the Rab10 mutant considered to be constitutively active (Rab10 Q68L) is a substrate for the AS160 GAP domain and, hence, cannot be used to deduce rigorously the function of Rab10 in its GTP form. 相似文献
11.
GLUT4 translocation: the last 200 nanometers 总被引:2,自引:0,他引:2
Insulin regulates circulating glucose levels by suppressing hepatic glucose production and increasing glucose transport into muscle and adipose tissues. Defects in these processes are associated with elevated vascular glucose levels and can lead to increased risk for the development of Type 2 diabetes mellitus and its associated disease complications. At the cellular level, insulin stimulates glucose uptake by inducing the translocation of the glucose transporter 4 (GLUT4) from intracellular storage sites to the plasma membrane, where the transporter facilitates the diffusion of glucose into striated muscle and adipocytes. Although the immediate downstream molecules that function proximal to the activated insulin receptor have been relatively well-characterized, it remains unknown how the distal insulin-signaling cascade interfaces with and recruits GLUT4 to the cell surface. New biochemical assays and imaging techniques, however, have focused attention on the plasma membrane as a potential target of insulin action leading to GLUT4 translocation. Indeed, it now appears that insulin specifically regulates the docking and/or fusion of GLUT4-vesicles with the plasma membrane. Future work will focus on identifying the key insulin targets that regulate the GLUT4 docking/fusion processes. 相似文献
12.
Emoto M Klarlund JK Waters SB Hu V Buxton JM Chawla A Czech MP 《The Journal of biological chemistry》2000,275(10):7144-7151
Based on recent studies showing that phospholipase D (PLD)1 is associated with intracellular membranes and promotes membrane budding from the trans-Golgi, we tested its possible role in the membrane trafficking of GLUT4 glucose transporters. Using immunofluorescence confocal microscopy, expressed Myc epitope-tagged PLD1 was found to associate with intracellular vesicular structures by a mechanism that requires its N-terminal pleckstrin homology domain. Partial co-localization with expressed GLUT4 fused to green fluorescent protein in both 3T3-L1 adipocytes and Chinese hamster ovary cells was evident. Furthermore, microinjection of purified PLD into cultured adipocytes markedly potentiated the effect of a submaximal concentration of insulin to stimulate GLUT4 translocation to cell surface membranes. Insulin stimulated PLD activity in cells expressing high levels of insulin receptors but no such insulin effect was detected in 3T3-L1 adipocytes. Taken together, these results are consistent with the hypothesis that PLD1 associated with GLUT4-containing membranes acts in a constitutive manner to promote the mechanism of GLUT4 translocation by insulin. 相似文献
13.
Rab10, a target of the AS160 Rab GAP, is required for insulin-stimulated translocation of GLUT4 to the adipocyte plasma membrane 总被引:3,自引:0,他引:3
Sano H Eguez L Teruel MN Fukuda M Chuang TD Chavez JA Lienhard GE McGraw TE 《Cell metabolism》2007,5(4):293-303
GLUT4 trafficking to the plasma membrane of muscle and fat cells is regulated by insulin. An important component of insulin-regulated GLUT4 distribution is the Akt substrate AS160 rab GTPase-activating protein. Here we show that Rab10 functions as a downstream target of AS160 in the insulin-signaling pathway that regulates GLUT4 translocation in adipocytes. Overexpression of a mutant of Rab10 defective for GTP hydrolysis increased GLUT4 on the surface of basal adipocytes. Rab10 knockdown resulted in an attenuation of insulin-induced GLUT4 redistribution to the plasma membrane and a concomitant 2-fold decrease in GLUT4 exocytosis rate. Re-expression of a wild-type Rab10 restored normal GLUT4 translocation. The basal increase in plasma-membrane GLUT4 due to AS160 knockdown was partially blocked by knocking down Rab10 in the same cells, further indicating that Rab10 is a target of AS160 and a positive regulator of GLUT4 trafficking to the cell surface upon insulin stimulation. 相似文献
14.
Sano H Kane S Sano E Lienhard GE 《Biochemical and biophysical research communications》2005,332(3):880-884
Insulin causes the rapid translocation of the glucose transporter GLUT4 from intracellular sites to the plasma membrane in fat and muscle cells. There is considerable evidence that the signaling to this trafficking process is downstream of the insulin-activated protein kinase Akt. One Akt substrate that connects signaling to trafficking is a 160 kDa GTPase activating protein for Rabs. Another potential connecting substrate is the protein Synip, which associates with the SNARE syntaxin4. A recent study presents evidence that Akt phosphorylates Synip on serine 99, at least in vitro, and proposes that this phosphorylation enables GLUT4 translocation by causing the dissociation of Synip from syntaxin4. In the present study we show that marked overexpression of Synip mutant S99A, which lacks this phosphorylation site, has no effect on insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes. This finding is strong evidence that phosphorylation of Synip on serine 99 is not required for GLUT4 translocation. 相似文献
15.
Carvalho E Kotani K Peroni OD Kahn BB 《American journal of physiology. Endocrinology and metabolism》2005,289(4):E551-E561
Adipose tissue plays an important role in glucose homeostasis and affects insulin sensitivity in other tissues. In obesity and type 2 diabetes, glucose transporter 4 (GLUT4) is downregulated in adipose tissue, and glucose transport is also impaired in muscle. To determine whether overexpression of GLUT4 selectively in adipose tissue could prevent insulin resistance when glucose transport is impaired in muscle, we bred muscle GLUT4 knockout (MG4KO) mice to mice overexpressing GLUT4 in adipose tissue (AG4Tg). Overexpression of GLUT4 in fat not only normalized the fasting hyperglycemia and glucose intolerance in MG4KO mice, but it reduced these parameters to below normal levels. Glucose infusion rate during a euglycemic clamp study was reduced 46% in MG4KO compared with controls and was restored to control levels in AG4Tg-MG4KO. Similarly, insulin action to suppress hepatic glucose production was impaired in MG4KO mice and was restored to control levels in AG4Tg-MG4KO. 2-deoxyglucose uptake during the clamp was increased approximately twofold in white adipose tissue but remained reduced in skeletal muscle of AG4Tg-MG4KO mice. AG4Tg and AG4Tg-MG4KO mice have a slight increase in fat mass, a twofold elevation in serum free fatty acids, an approximately 50% increase in serum leptin, and a 50% decrease in serum adiponectin. In MG4KO mice, serum resistin is increased 34% and GLUT4 overexpression in fat reverses this. Overexpression of GLUT4 in fat also reverses the enhanced clearance of an oral lipid load in MG4KO mice. Thus overexpression of GLUT4 in fat reverses whole body insulin resistance in MG4KO mice without restoring glucose transport in muscle. This effect occurs even though AG4Tg-MG4KO mice have increased fat mass and low adiponectin and is associated with normalization of elevated resistin levels. 相似文献
16.
Ueda M Nishiumi S Nagayasu H Fukuda I Yoshida K Ashida H 《Biochemical and biophysical research communications》2008,377(1):286-290
In this study, we investigated whether epigallocatechin gallate (EGCg) affects glucose uptake activity and the translocation of insulin-sensitive glucose transporter (GLUT) 4 in skeletal muscle. A single oral administration of EGCg at 75 mg/kg body weight promoted GLUT4 translocation in skeletal muscle of rats. EGCg significantly increased glucose uptake accompanying GLUT4 translocation in L6 myotubes at 1 nM. The translocation of GLUT4 was also observed both in skeletal muscle of mice and rats ex vivo and in insulin-resistant L6 myotubes. Wortmannin, an inhibitor of phosphatidylinositol 3′-kinase, inhibited both EGCg- and insulin-increased glucose uptakes, while genistein, an inhibitor of tyrosine kinase, failed to inhibit the EGCg-increased uptake. Therefore, EGCg may improve hyperglycemia by promoting GLUT4 translocation in skeletal muscle with partially different mechanism from insulin. 相似文献
17.
18.
Holmes BF Lang DB Birnbaum MJ Mu J Dohm GL 《American journal of physiology. Endocrinology and metabolism》2004,287(4):E739-E743
An acute bout of exercise increases muscle GLUT4 mRNA in mice, and denervation decreases GLUT4 mRNA. AMP-activated protein kinase (AMPK) activity in skeletal muscle is also increased by exercise, and GLUT4 mRNA is increased in mouse skeletal muscle after treatment with AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside(AICAR). These findings suggest that AMPK activation might be responsible for the increase in GLUT4 mRNA expression in response to exercise. To investigate the role of AMPK in GLUT4 regulation in response to exercise and denervation, transgenic mice with a mutated AMPK alpha-subunit (dominant negative; AMPK-DN) were studied. GLUT4 did not increase in AMPK-DN mice that were treated with AICAR, demonstrating that muscle AMPK is inactive. Exercise (two 3-h bouts of treadmill running separated by 1 h of rest) increased GLUT4 mRNA in both wild-type and AMPK-DN mice. Likewise, denervation decreased GLUT4 mRNA in both wild-type and AMPK-DN mice. GLUT4 mRNA was also increased by AICAR treatment in both the innervated and denervated muscles. These data demonstrate that AMPK is not required for the response of GLUT4 mRNA to exercise and denervation. 相似文献
19.
20.
Zaha V Nitschke R Göbel H Fischer-Rasokat U Zechner C Doenst T 《Molecular and cellular biochemistry》2005,278(1-2):129-137
Objective: Low-flow ischemia results in glucose transporter translocation and in increased glucose uptake. After total ischemia in
rat heart, we found no increase in glucose uptake. Here we test the hypothesis that total ischemia is associated with decreased
activation of GLUT4 despite translocation. Methods: Isolated working hearts (n=70, Sprague–Dawley rats) were perfused for 70 min at physiological workload with Krebs–Henseleit buffer containing [2-3H]glucose (5 mmol/l, 0.05 μCi/ml) with either oleate (0.4 mmol/l, 1%BSA) or pyruvate (5 mmol/l, 1%BSA). After 20 min, hearts
were subjected to 15 min of total ischemia followed by 35 min of reperfusion. We measured glucose uptake and intracellular
free glucose (IFG) using [2-3H]glucose and [14C]sucrose, and determined the distribution of GLUT4 by colocalization immunofluorescence with Na–K ATP-ase. Results: Cardiac power was 10.1 ± 0.90 mW before ischemia and did not differ between groups. Recovery was the same in both groups
(55.7 ± 24.8$%). Glucose uptake did not differ between groups before ischemia, and did not increase during reperfusion. Despite
evidence of GLUT4 translocation after reperfusion in both groups, IFG did not increase compared with before ischemia. Conclusion: We conclude that there is a discrepancy between glucose transporter availability and glucose uptake after ischemia, which
may be due to inhibition of GLUT4 in the plasma membrane. (Mol Cell Biochem 278: 129–137, 2005) 相似文献