首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOTIVATION: Signaling events that direct mouse embryonic stem (ES) cell self-renewal and differentiation are complex and accordingly difficult to understand in an integrated manner. We address this problem by adapting a Bayesian network learning algorithm to model proteomic signaling data for ES cell fate responses to external cues. Using this model we were able to characterize the signaling pathway influences as quantitative, logic-circuit type interactions. Our experimental dataset includes measurements for 28 signaling protein phosphorylation states across 16 different factorial combinations of cytokine and matrix stimuli as reported previously. RESULTS: The Bayesian network modeling approach allows us to uncover previously reported signaling activities related to mouse ES cell self-renewal, such as the roles of LIF and STAT3 in maintaining undifferentiated ES cell populations. Furthermore, the network predicts novel influences such as between ERK phosphorylation and differentiation, or RAF phosphorylation and differentiated cell proliferation. Visualization of the influences detected by the Bayesian network provides intuition about the underlying physiology of the signaling pathways. We demonstrate that the Bayesian networks can capture the linear, nonlinear and multistate logic interactions that connect extracellular cues, intracellular signals and consequent cell functional responses.  相似文献   

2.
Cell protrusions contribute to cell motility and migration by mediating the outward extension and initial adhesion of cell edges. In many cells, these extensions are supported by actin bundles assembled by the actin cross-linking protein, fascin. Multiple extracellular cues regulate fascin and here we focus on the mechanism by which the transmembrane proteoglycan, syndecan-1, specifically activates lamellipodial cell spreading and fascin-and-actin bundling when clustered either by thrombospondin-1, laminin, or antibody to the syndecan-1 extracellular domain. There is almost no knowledge of the signaling mechanisms of syndecan-1 cytoplasmic domain and we have tested the hypothesis that the unique V region of syndecan-1 cytoplasmic domain has a crucial role in these processes. By four criteria--the activities of N-cadherin/V region chimeras, syndecan-1 deletion mutants, or syndecan-1 point mutants, and specific inhibition by a membrane-permeable TAT-V peptide--we demonstrate that the V region is necessary and sufficient for these cell behaviors and map the molecular basis for its activity to multiple residues located across the V region. These activities correlate with a V-region-dependent incorporation of cell-surface syndecan-1 into a detergent-insoluble form. We also demonstrate functional roles of syndecan-1 V region in laminin-dependent C2C12 cell adhesion and three-dimensional cell migration. These data identify for the first time specific cell behaviors that depend on signaling through the V region of syndecan-1.  相似文献   

3.
Cellular and molecular mechanisms of cerebellar granule cell migration   总被引:9,自引:0,他引:9  
The real-time observation of cell movement in brain slice preparations reveals that in the developing brain, postmitotic neurons alter their shape concomitantly with changes in the mode, direction, tempo, and rate of migration as they traverse different cortical layers. Although it has been hypothesized that orchestrated activities of multiple external cues and cell-cell contact are essential for controlling the cortical-layer-specific changes in cell migration, signaling mechanisms and external guidance cues related to the alteration of neuronal cell migration remain to be determined. In this article, we will first review recent studies on position-specific changes in granule cell behavior through different migratory terrains of the developing cerebellar cortex. We will then present possible roles for the coordinated activity of Ca2+ channels, NMDA type of glutamate receptors, and intracellular Ca2+ fluctuations in controlling cerebellar granule cell movement. Furthermore, we will discuss the crucial roles of brain-derived neurotrophic factor (BDNF), neuregulin (NRG), stromal cell-derived factor 1alpha (SDF-1alpha), ephrin-B2, and EphB2 receptor in providing directional cues promoting granule cell migration from the external granular layer (EGL) to the internal granular layer (IGL). Finally, we will demonstrate that endogenous somatostatin controls the migration of granule cells in a cortical layer-specific manner: Endogenous somatostatin accelerates granule cell movement near the birthplace within the EGL, but significantly slows down the movement near their final destination within the IGL.  相似文献   

4.
Cell polarity is an essential process shared by almost all animal tissues. Moreover, cell polarity enables cells to sense and respond to the cues provided by the neighboring cells and the surrounding microenvironment. These responses play a critical role in regulating key physiological processes, including cell migration, proliferation, differentiation, vesicle trafficking and immune responses. The polarity protein complexes regulating these interactions are highly evolutionarily conserved between vertebrates and invertebrates. Interestingly, these polarity complexes interact with each other and key signaling pathways in a cell-polarity context-dependent manner. However, the exact mechanisms by which these interactions take place are poorly understood. In this review, we will focus on the roles of the key polarity complexes SCRIB, PAR and Crumbs in regulating different forms of cell polarity, including epithelial cell polarity, cell migration, asymmetric cell division and the T-cell immunological synapse assembly and signaling.  相似文献   

5.
Notch signaling: a rheostat regulating oligodendrocyte differentiation?   总被引:2,自引:0,他引:2  
Recent studies suggest that Notch signaling provides both instructive and inhibitory cues for oligodendroglial differentiation, depending on the developmental stage and the stimulatory ligand. In the October 17 issue of Cell, Hu et al. present the axonal cell adhesion molecule contactin as a functional Notch ligand, and suggest interesting potential roles for axoglial interactions in regulating oligodendroglial maturation.  相似文献   

6.
The real-time observation of cell movement in brain slice preparations reveals that in the developing brain, postmitotic neurons alter their shape concomitantly with changes in the mode, direction, tempo, and rate of migration as they traverse different cortical layers. Although it has been hypothesized that orchestrated activities of multiple external cues and cell-cell contact are essential for controlling the cortical-layer-specific changes in cell migration, signaling mechanisms and external guidance cues related to the alteration of neuronal cell migration remain to be determined. In this article, we will first review recent studies on position-specific changes in granule cell behavior through different migratory terrains of the developing cerebellar cortex. We will then present possible roles for the coordinated activity of Ca2+ channels, NMDA type of glutamate receptors, and intracellular Ca2+ fluctuations in controlling cerebellar granule cell movement. Furthermore, we will discuss the crucial roles of brain-derived neurotrophic factor (BDNF), neuregulin (NRG), stromal cell-derived factor 1α (SDF-1α), ephrin-B2, and EphB2 receptor in providing directional cues promoting granule cell migration from the external granular layer (EGL) to the internal granular layer (IGL). Finally, we will demonstrate that endogenous somatostatin controls the migration of granule cells in a cortical layer-specific manner: Endogenous somatostatin accelerates granule cell movement near the birthplace within the EGL, but significantly slows down the movement near their final destination within the IGL.  相似文献   

7.
8.
Cells sense gradients of extracellular cues and generate polarized responses such as cell migration and neurite initiation. There is static information on the intracellular signaling molecules involved in these responses, but how they dynamically orchestrate polarized cell behaviors is not well understood. A limitation has been the lack of methods to exert spatial and temporal control over specific signaling molecules inside a living cell. Here we introduce optogenetic tools that act downstream of native G protein–coupled receptor (GPCRs) and provide direct control over the activity of endogenous heterotrimeric G protein subunits. Light-triggered recruitment of a truncated regulator of G protein signaling (RGS) protein or a Gβγ-sequestering domain to a selected region on the plasma membrane results in localized inhibition of G protein signaling. In immune cells exposed to spatially uniform chemoattractants, these optogenetic tools allow us to create reversible gradients of signaling activity. Migratory responses generated by this approach show that a gradient of active G protein αi and βγ subunits is sufficient to generate directed cell migration. They also provide the most direct evidence so for a global inhibition pathway triggered by Gi signaling in directional sensing and adaptation. These optogenetic tools can be applied to interrogate the mechanistic basis of other GPCR-modulated cellular functions.  相似文献   

9.
To systematically understand the molecular events that underlie biological phenomena, we must develop methods to integrate an enormous amount of genomic and proteomic data. The integration of molecular data should go beyond the construction of biochemical cascades among molecules to include tying the biochemical phenomena to physical events. For the behavior and guidance of growth cones, it remains largely unclear how biochemical events in the cytoplasm are linked to the morphological changes of the growth cone. We take a computational approach to simulate the biochemical signaling cascade involving members of the Rho family of GTPases and examine their potential roles in growth-cone motility and axon guidance. Based on the interactions between Cdc42, Rac, and RhoA, we show that the activation of a Cdc42-specific GEF resulted in switching responses between oscillatory and convergent activities for all three GTPases. We propose that the switching responses of these GTPases are the molecular basis for the decision mechanism that determines the direction of the growth-cone expansion, providing a spatiotemporal integration mechanism that allows the growth cone to detect small gradients of external guidance cues. These results suggest a potential role for the cross talk between Rho GTPases in governing growth-cone movement and axon guidance and underscore the link between chemodynamic reactions and cellular behaviors.  相似文献   

10.
In the female reproductive tract, mammalian sperm undergo a regulated sequence of prefusion changes that "prime" sperm for fertilization. Among the least understood of these complex processes are the molecular mechanisms that underlie sperm guidance by environmental chemical cues. A "hard-wired" Ca(2+) signaling strategy that orchestrates specific motility patterns according to given functional requirements is an emerging concept for regulation of sperm swimming behavior. The molecular players involved, the spatiotemporal characteristics of such motility-associated Ca(2+) dynamics, and the relation between a distinct Ca(2+) signaling pattern and a behavioral sperm phenotype, however, remain largely unclear. Here, we report the functional characterization of two human sperm chemoreceptors. Using complementary molecular, physiological, and behavioral approaches, we comparatively describe sperm Ca(2+) responses to specific agonists of these novel receptors and bourgeonal, a known sperm chemoattractant. We further show that individual receptor activation induces specific Ca(2+) signaling patterns with unique spatiotemporal dynamics. These distinct Ca(2+) dynamics are correlated to a set of stimulus-specific stereotyped behavioral responses that could play vital roles during various stages of prefusion sperm-egg chemical communication.  相似文献   

11.
Fibroblast growth factors (FGFs) frequently fulfill prominent roles in the regulation of cell migration in various contexts. In Drosophila, the FGF8-like ligands Pyramus (Pyr) and Thisbe (Ths), which signal through their receptor Heartless (Htl), are known to regulate early mesodermal cell migration after gastrulation as well as glial cell migration during eye development. Herein, we show that Pyr and Ths also exert key roles during the long-distance migration of a specific sub-population of mesodermal cells that migrate from the caudal visceral mesoderm within stereotypic bilateral paths along the trunk visceral mesoderm toward the anterior. These cells constitute the founder myoblasts of the longitudinal midgut muscles. In a forward genetic screen for regulators of this morphogenetic process we identified loss of function alleles for pyr. We show that pyr and ths are expressed along the paths of migration in the trunk visceral mesoderm and endoderm and act largely redundantly to help guide the founder myoblasts reliably onto and along their substrate of migration. Ectopically-provided Pyr and Ths signals can efficiently re-rout the migrating cells, both in the presence and absence of endogenous signals. Our data indicate that the guidance functions of these FGFs must act in concert with other important attractive or adhesive activities of the trunk visceral mesoderm. Apart from their guidance functions, the Pyr and Ths signals play an obligatory role for the survival of the migrating cells. Without these signals, essentially all of these cells enter cell death and detach from the migration substrate during early migration. We present experiments that allowed us to dissect the roles of these FGFs as guidance cues versus trophic activities during the migration of the longitudinal visceral muscle founders.  相似文献   

12.
Originally identified as axon guidance molecules, semaphorins are now known to be widely expressed mediators that play significant roles in immune responses and organ morphogenesis. However, not much is known about the signaling pathways via which they exert their organ-specific effects. Here we demonstrate that Sema4A, previously identified as an activator of T-cell-mediated immunity, is expressed in endothelial cells, where it suppresses vascular endothelial growth factor (VEGF)-mediated endothelial cell migration and proliferation in vitro and angiogenesis in vivo. Mice lacking Sema4A exhibit enhanced angiogenesis in response to VEGF or inflammatory stimuli. In addition, binding and functional experiments revealed Plexin-D1 to be a receptor for Sema4A on endothelial cells, indicating that Sema4A exerts organ-specific activities via different receptor-mediated signaling pathways: via Plexin-D1 in the endothelial cells and via T-cell immunoglobulin and mucin domain-2 in T cells. The effects of Sema4A on endothelial cells are dependent on its ability to suppress VEGF-mediated Rac activation and integrin-dependent cell adhesion. It thus appears that Sema4A-Plexin-D1 signaling negatively regulates angiogenesis.  相似文献   

13.
Cellular behavior in response to stimulatory cues is governed by information encoded within a complex intracellular signaling network. An understanding of how phenotype is determined requires the distributed characterization of signaling processes (e.g., phosphorylation states and kinase activities) in parallel with measures of resulting cell function. We previously applied quantitative mass spectrometry methods to characterize the dynamics of tyrosine phosphorylation in human mammary epithelial cells with varying human epidermal growth factor receptor 2 (HER2) expression levels after treatment with epidermal growth factor (EGF) or heregulin (HRG). We sought to identify potential mechanisms by which changes in tyrosine phosphorylation govern changes in cell migration or proliferation, two behaviors that we measured in the same cell system. Here, we describe the use of a computational linear mapping technique, partial least squares regression (PLSR), to detail and characterize signaling mechanisms responsible for HER2-mediated effects on migration and proliferation. PLSR model analysis via principal component inner products identified phosphotyrosine signals most strongly associated with control of migration and proliferation, as HER2 expression or ligand treatment were individually varied. Inspection of these signals revealed both previously identified and novel pathways that correlate with cell behavior. Furthermore, we isolated elements of the signaling network that differentially give rise to migration and proliferation. Finally, model analysis identified nine especially informative phosphorylation sites on six proteins that recapitulated the predictive capability of the full model. A model based on these nine sites and trained solely on data from a low HER2-expressing cell line a priori predicted migration and proliferation in a HER2-overexpressing cell line. We identify the nine signals as a “network gauge,” meaning that when interrogated together and integrated according to the quantitative rules of the model, these signals capture information content in the network sufficiently to predict cell migration and proliferation under diverse ligand treatments and receptor expression levels. Examination of the network gauge in the context of previous literature indicates that endocytosis and activation of phosphoinositide 3-kinase (PI3K)-mediated pathways together represent particularly strong loci for the integration of the multiple pathways mediating HER2′s control of mammary epithelial cell proliferation and migration. Thus, a PLSR modeling approach reveals critical signaling processes regulating HER2-mediated cell behavior.  相似文献   

14.
During developmental angiogenesis, endothelial cells respond to shear stress by migrating and remodelling the initially hyperbranched plexus, removing certain vessels whilst maintaining others. In this study, we argue that the key regulator of vessel preservation is cell decision behaviour at bifurcations. At flow-convergent bifurcations where migration paths diverge, cells must finely tune migration along both possible paths if the bifurcation is to persist. Experiments have demonstrated that disrupting the cells’ ability to sense shear or the junction forces transmitted between cells impacts the preservation of bifurcations during the remodelling process. However, how these migratory cues integrate during cell decision making remains poorly understood. Therefore, we present the first agent-based model of endothelial cell flow-mediated migration suitable for interrogating the mechanisms behind bifurcation stability. The model simulates flow in a bifurcated vessel network composed of agents representing endothelial cells arranged into a lumen which migrate against flow. Upon approaching a bifurcation where more than one migration path exists, agents refer to a stochastic bifurcation rule which models the decision cells make as a combination of flow-based and collective-based migratory cues. With this rule, cells favour branches with relatively larger shear stress or cell number. We found that cells must integrate both cues nearly equally to maximise bifurcation stability. In simulations with stable bifurcations, we found competitive oscillations between flow and collective cues, and simulations that lost the bifurcation were unable to maintain these oscillations. The competition between these two cues is haemodynamic in origin, and demonstrates that a natural defence against bifurcation loss during remodelling exists: as vessel lumens narrow due to cell efflux, resistance to flow and shear stress increases, attracting new cells to enter and rescue the vessel from regression. Our work provides theoretical insight into the role of junction force transmission has in stabilising vasculature during remodelling and as an emergent mechanism to avoid functional shunting.  相似文献   

15.
Integrins are essential adhesion receptors found on the surfaces of all metazoan cells. As regulators of cell migration and extracellular matrix assembly, these membrane-spanning heterodimers are critical for embryonic development, tissue repair and immune responses. Signals transmitted by integrins from outside to inside the cell promote cell survival and proliferation, but integrin affinity for extracellular ligands can also be controlled by intracellular cues. This bidirectional signaling is mediated by the short cytoplasmic tails of the two integrin subunits. Recent structural and functional studies of various integrin fragments and complexes between the cytoplasmic tails and intracellular proteins, such as talin, have provided new insight into the signaling processes centered around the tails, particularly inside-out integrin activation.  相似文献   

16.
The supramolecular architecture of the extracellular matrix and the disposition of its specific accessory molecules give rise to variable heterotopic signaling cues for single cells. Here we have described the successful occlusion of human fibroblast growth factor-2 (FGF-2) into the cubic inclusion bodies (FGF-2 polyhedra) of the Bombyx mori cytoplasmic polyhedrosis virus (BmCPV). The polyhedra are proteinous cubic crystals of several microns in size that are insoluble in the extracellular milieu. Purified FGF-2 polyhedra were found to stimulate proliferation and phosphorylation of p44/p42 mitogen-activated protein kinase in cultured fibroblasts. Moreover, cellular responses were blocked by a synthetic inhibitor of the FGF signaling pathway, SU5402, suggesting that FGF-2 polyhedra indeed act through FGF receptors. Furthermore, FGF-2 polyhedra retained potent growth stimulatory properties even after desiccation. We have demonstrated that BmCPV polyhedra microcrystals that occlude extracellular signaling proteins are a novel and versatile tool that can be employed to analyze cellular behavior at the single cell level.  相似文献   

17.
Developing neurons use a combination of guidance cues to assemble a functional neural network. A variety of proteins immobilized within the extracellular matrix (ECM) provide specific binding sites for integrin receptors on neurons. Integrin receptors on growth cones associate with a number of cytosolic adaptor and signaling proteins that regulate cytoskeletal dynamics and cell adhesion. Recent evidence suggests that soluble growth factors and classic axon guidance cues may direct axon pathfinding by controlling integrin-based adhesion. Moreover, because classic axon guidance cues themselves are immobilized within the ECM and integrins modulate cellular responses to many axon guidance cues, interactions between activated receptors modulate cell signals and adhesion. Ultimately, growth cones control axon outgrowth and pathfinding behaviors by integrating distinct biochemical signals to promote the proper assembly of the nervous system. In this review, we discuss our current understanding how ECM proteins and their associated integrin receptors control neural network formation.  相似文献   

18.
19.
Turning it up a Notch: cross-talk between TGF beta and Notch signaling   总被引:7,自引:0,他引:7  
Signaling through both the transforming growth factor beta (TGF beta) superfamily of growth factors and Notch play crucial roles during embryonic pattern formation and cell fate determination. Although both pathways are able to exert similar biological responses in certain cell types, a functional interaction between these two signaling pathways has not been described. Now, three papers provide evidence of both synergy and antagonism between TGF beta and Notch signaling. These reports describe a requirement for Notch signal transducers in TGF beta- and BMP-induced expression of Notch target genes, as well as in BMP-controlled cell differentiation and migration. These papers uncover a direct link between the Notch and TGF beta pathways and suggest a critical role for Notch in some of the biological responses to TGF beta family signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号