首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various portions of the splanchnopleural mesoderm lateral to the somites of 1.5-day chick embryos were marked in ovo by local injection of Dil, and the distribution of the labelled cells in the digestive-tract mesoderm formed after 3 days' reincubation was analysed. The presumptive area of the digestive organs was confined to bands of splanchnic mesoderm lying lateral to the somites, on both sides, with a width two or three times that between the midline of the embryo and the lateral edge of the somite. Each band generally contributed cells to its own side of the digestive-tract mesoderm, except for the region around the bile duct. The anterior and posterior portion of the pre-gut area contributed cells to the anterior and posterior region of the digestive tract, respectively, but label originating from the portion furthest from the somite took the more ventral and posterior position. Thus, the presumptive areas of the respective digestive organs were located anteroposteriorly in the same order as in the digestive tract with their boundaries lying oblique to the embryonic axis.  相似文献   

2.
Mesodermal metamerism in the teleost, Oryzias latipes (the medaka)   总被引:1,自引:0,他引:1  
Previous studies of the metameric pattern in mesodermal tissues of chick, mouse, turtle, and amphibian embryos have indicated that segmental characteristics exist along the entire length of the embryo. This paper describes this phenomenon in a fish embryo, for some differences in the cranial segmental plan exist between the anamniote and the amniote embryos hitherto studied. Embryos of the cyprinodont, Oryzias latipes, were fixed at various times, the examined by means of stereo scanning electron microscopy. As in other vertebrate embryos, the first indication of mesodermal metamerism in this fish embryo is the occurrence of somitomeres, which are orderly, tandemly arranged units of uncondensed mesenchymal cells in the paraxial mesoderm. As many as ten somitomeres can be observed caudal to the last formed somite to the elongating tail region. In addition, 7 somitomeres are present rostral to the first definitive somite, which is segment number eight. As in other vertebrate embryos examined, somitomeres in Oryzias embryos are circular, bilaminar arrays of paraxial mesoderm that form before any indications of segmentation can be seen with the light microscope. In the trunk region these mesodermal units condense to give rise to definitive somites, but in the head they eventually disperse. Despite a fundamentally different mode of gastrulation and a relatively small number of cells in the newly formed somitomeres, cranial segmentation in Oryzias embryos was found to be more similar in number to the metameric pattern of the embryos of the bird, reptile, and mammal than to the situation found in the two amphibians studied thus far.  相似文献   

3.
4.
In vertebrates, paraxial mesoderm is partitioned into repeating units called somites. It is thought that the mechanical forces arising from compaction of the presumptive internal cells of prospective somites cause them to detach from the unsegmented presomitic mesoderm [1-3]. To determine how prospective somites physically segregate from each other, we used time-lapse microscopy to analyze the mechanics underlying early somitogenesis in wild-type zebrafish and in the mutants trilobite(m209) (tri), knypek(m119) (kny), and kny;tri, which are defective in convergent extension during gastrulation. Formation of somite boundaries in all of these embryos involved segregation, local alignment, and cell-shape changes of presumptive epitheloid border cells along nascent intersomitic boundaries. Although kny;tri somites formed without convergence of the presomitic mesoderm and were composed of only two cells in their anteroposterior (AP) dimension, they still exhibited AP intrasegmental polarity. Furthermore, morphogenesis of somite boundaries in these embryos proceeded in a manner similar to that in wild-type embryos. Thus, intersomitic boundary formation in zebrafish involves short-range movements of presumptive border cells that do not require mechanical forces generated by internal cells or compaction of the presomitic mesoderm.  相似文献   

5.
6.
The paraxial mesoderm of the neck and trunk of mouse embryos undergoes extensive morphogenesis in forming somites. Paraxial mesoderm is divided into segments, it elongates along its anterior posterior axis, and its cells organize into epithelia. Experiments were performed to determine if these processes are autonomous to the mesoderm that gives rise to the somites. Presomitic mesoderm at the tailbud stage was cultured in the presence and absence of its adjacent tissues. Somite segmentation occurred in the absence of neural tube, notochord, gut and surface ectoderm, and occurred in posterior fragments in the absence of anterior presomitic mesoderm. Mesodermal expression of Dll1 and Notch1, genes with roles in segmentation, was largely independent of other tissues, consistent with autonomous segmentation. However, surface ectoderm was found to be necessary for elongation of the mesoderm along the anterior-posterior axis and for somite epithelialization. To determine if there is specificity in the interaction between ectoderm and mesoderm, ectoderm from different sources was recombined with presomitic mesoderm. Surface ectoderm from only certain parts of the embryo supported somite epithelialization and elongation. Somite epithelialization induced by ectoderm was correlated with expression of the basic-helix-loop-helix gene Paraxis in the mesoderm. This is consistent with the genetically defined requirement for Paraxis in somite epithelialization. However, trunk ectoderm was able to induce somite epithelialization in the absence of strong Paraxis expression. We conclude that somitogenesis consists of autonomous segmentation patterned by Notch signaling and nonautonomous induction of elongation and epithelialization by surface ectoderm.  相似文献   

7.
The segmental plate mesoderm of chicken and Japanese quail embryos HH stages 9 to 16 was studied with scanning electron microscopy (SEM) imaging. The segmental plates were found to exhibit a metameric pattern consisting of tandemly stacked somitomeres. It was found that the numbers of somitomeres in segmental plates removed from the same embryo were nearly identical. Furthermore, the number of somitomeres in a segmental plate was found to be quite consistent (10.0 ± 1.5) and independent of the length of the segmental plate. These results are very similar to those obtained in previous experimental studies in which “prospective somites” were detected in avian segmental plates. Further experiments showed that for each somite that is formed by a cultured segmental plate-containing explant, the somitomere complement of the segmental plate is reduced by one. It was concluded that the segmental plate mesoderm is already organized into a metameric pattern consisting of somitomeres and that the somitomeres undergo further morphogenesis to become somites. The specification of the somite pattern in birds may occur at the level of Hensen's node and the cephalic primitive streak.  相似文献   

8.
Establishing the anterior/posterior (A/P) boundary of individual somites is important for setting up the segmental body plan of all vertebrates. Resegmentation of adjacent sclerotomes to form the vertebrae and selective migration of neural crest cells during the formation of the dorsal root ganglia and peripheral nerves occur in response to differential expression of genes in the anterior and posterior halves of the somite. Recent evidence indicates that the A/P axis is established at the anterior end of the presomitic mesoderm prior to overt somitogenesis in response to both Mesp2 and Notch signaling. Here, we report that mice deficient for paraxis, a gene required for somite epithelialization, also display defects in the axial skeleton and peripheral nerves that are consistent with a failure in A/P patterning. Expression of Mesp2 and genes in the Notch pathway were not altered in the presomitic mesoderm of paraxis(-/-) embryos. Furthermore, downstream targets of Notch activation in the presomitic mesoderm, including EphA4, were transcribed normally, indicating that paraxis was not required for Notch signaling. However, genes that were normally restricted to the posterior half of somites were present in a diffuse pattern in the paraxis(-/-) embryos, suggesting a loss of A/P polarity. Collectively, these data indicate a role for paraxis in maintaining somite polarity that is independent of Notch signaling.  相似文献   

9.
10.
11.
12.
BACKGROUND: The process of somitogenesis can be divided into three major events: the prepatterning of the mesoderm; the formation of boundaries between the prospective somites; and the cellular differentiation of the somites. Expression and functional studies have demonstrated the involvement of the murine Notch pathway in somitogenesis, although its precise role in this process is not yet well understood. We examined the effect of mutations in the Notch pathway elements Delta like 1 (Dll1), Notch1 and RBPJkappa on genes expressed in the presomitic mesoderm (PSM) and have defined the spatial relationships of Notch pathway gene expression in this region. RESULTS: We have shown that expression of Notch pathway genes in the PSM overlaps in the region where the boundary between the posterior and anterior halves of two consecutive somites will form. The Dll1, Notch1 and RBPJkappa mutations disrupt the expression of Lunatic fringe (L-fng), Jagged1, Mesp1, Mesp2 and Hes5 in the PSM. Furthermore, expression of EphA4, mCer 1 and uncx4.1, markers for the anterior-posterior subdivisions of the somites, is down-regulated to different extents in Notch pathway mutants, indicating a global alteration of pattern in the PSM. CONCLUSIONS: We propose a model for the mechanism of somite border formation in which the activity of Notch in the PSM is restricted by L-fng to a boundary-forming territory in the posterior half of the prospective somite. In this region, Notch function activates a set of genes that are involved in boundary formation and anterior-posterior somite identity.  相似文献   

13.
In the vertebrate embryo, segmentation is built on repetitive structures, named somites, which are formed progressively from the most rostral part of presomitic mesoderm, every 90 minutes in the avian embryo. The discovery of the cyclic expression of several genes, occurring every 90 minutes in each presomitic cell, has shown that there is a molecular clock linked to somitogenesis. We demonstrate that a dynamic expression pattern of the cycling genes is already evident at the level of the prospective presomitic territory. The analysis of this expression pattern, correlated with a quail/chick fate-map, identifies a 'wave' of expression travelling along the future medial/lateral presomitic axis. Further analysis also reveals the existence of a medial/lateral asynchrony of expression at the level of presomitic mesoderm. This work suggests that the molecular clock is providing cellular positional information not only along the anterior/posterior but also along the medial/lateral presomitic axis. Finally, by using an in vitro culture system, we show that the information for morphological somite formation and molecular segmentation is segregated within the medial/lateral presomitic axis. Medial presomitic cells are able to form somites and express segmentation markers in the absence of lateral presomitic cells. By contrast, and surprisingly, lateral presomitic cells that are deprived of their medial counterparts are not able to organise themselves into somites and lose the expression of genes known to be important for vertebrate segmentation, such as Delta-1, Notch-1, paraxis, hairy1, hairy2 and lunatic fringe.  相似文献   

14.
Segmentation consists on the progressive formation of repetitive embryonic structures, named somites, which are formed from the most rostral part of the presomitic mesoderm. Somites are subdivided into anterior and posterior compartments and several genes are differentially expressed in either compartment. This has provided evidence for the importance of establishing the anterior-posterior polarity within each somite, which is critical for the correct segmented pattern of the adult vertebrate body. Although all somites appear morphologically similar, fate map studies have shown that the first 4 somites do not give rise to segmented structures, in contrast to more posterior ones. Moreover, in several somitogenesis-related mutants the anterior somites are not affected while posterior somites present clear defects or do not form at all. Altogether these data suggest relevant differences between rostral and caudal somites. In order to check for molecular differences between anterior and posterior somites, we have performed a detailed expression pattern analysis of several Notch signalling related genes. For the first time, we show that the somitic expression pattern profile is not the same along the anterior-posterior axis and that the differences are not observed always at the same somite level.  相似文献   

15.

Background  

Expression of the mouse Delta-like 1 (Dll1) gene in the presomitic mesoderm and in the caudal halves of somites of the developing embryo is required for the formation of epithelial somites and for the maintenance of caudal somite identity, respectively. The rostro-caudal polarity of somites is initiated early on within the presomitic mesoderm in nascent somites. Here we have investigated the requirement of restricted Dll1 expression in caudal somite compartments for the maintenance of rostro-caudal somite polarity and the morphogenesis of the axial skeleton. We did this by overexpressing a functional copy of the Dll1 gene throughout the paraxial mesoderm, in particular in anterior somite compartments, during somitogenesis in transgenic mice.  相似文献   

16.
Pax3 functions in cell survival and in pax7 regulation   总被引:11,自引:0,他引:11  
In developing vertebrate embryos, Pax3 is expressed in the neural tube and in the paraxial mesoderm that gives rise to skeletal muscles. Pax3 mutants develop muscular and neural tube defects; furthermore, Pax3 is essential for the proper activation of the myogenic determination factor gene, MyoD, during early muscle development and PAX3 chromosomal translocations result in muscle tumors, providing evidence that Pax3 has diverse functions in myogenesis. To investigate the specific functions of Pax3 in development, we have examined cell survival and gene expression in presomitic mesoderm, somites and neural tube of developing wild-type and Pax3 mutant (Splotch) mouse embryos. Disruption of Pax3 expression by antisense oligonucleotides significantly impairs MyoD activation by signals from neural tube/notochord and surface ectoderm in cultured presomitic mesoderm (PSM), and is accompanied by a marked increase in programmed cell death. In Pax3 mutant (Splotch) embryos, MyoD is activated normally in the hypaxial somite, but MyoD-expressing cells are disorganized and apoptosis is prevalent in newly formed somites, but not in the neural tube or mature somites. In neural tube and somite regions where cell survival is maintained, the closely related Pax7 gene is upregulated, and its expression becomes expanded into the dorsal neural tube and somites, where Pax3 would normally be expressed. These results establish that Pax3 has complementary functions in MyoD activation and inhibition of apoptosis in the somitic mesoderm and in repression of Pax7 during neural tube and somite development.  相似文献   

17.
18.
The regionalisation of cell fate in the embryonic ectoderm was studied by analyzing the distribution of graft-derived cells in the chimaeric embryo following grafting of wheat germ agglutinin--gold-labelled cells and culturing primitive-streak-stage mouse embryos. Embryonic ectoderm in the anterior region of the egg cylinder contributes to the neuroectoderm of the prosencephalon and mesencephalon. Cells in the distal lateral region give rise to the neuroectoderm of the rhombencephalon and the spinal cord. Embryonic ectoderm at the archenteron and adjacent to the middle region of the primitive streak contributes to the neuroepithelium of the spinal cord. The proximal-lateral ectoderm and the ectodermal cells adjacent to the posterior region of the primitive streak produce the surface ectoderm, the epidermal placodes and the cranial neural crest cells. Some labelled cells grafted to the anterior midline are found in the oral ectodermal lining, whereas cells from the archenteron are found in the notochord. With respect to mesodermal tissues, ectoderm at the archenteron and the distal-lateral region of the egg cylinder gives rise to rhombencephalic somitomeres, and the embryonic ectoderm adjacent to the primitive streak contributes to the somitic mesoderm and the lateral mesoderm. Based upon results of this and other grafting studies, a map of prospective ectodermal tissues in the embryonic ectoderm of the full-streak-stage mouse embryo is constructed.  相似文献   

19.
Can tissue surface tension drive somite formation?   总被引:2,自引:1,他引:1  
The prevailing model of somitogenesis supposes that the presomitic mesoderm is segmented into somites by a clock and wavefront mechanism. During segmentation, mesenchymal cells undergo compaction, followed by a detachment of the presumptive somite from the rest of the presomitic mesoderm and the subsequent morphological changes leading to rounded somites. We investigate the possibility that minimization of tissue surface tension drives the somite sculpting processes. Given the time in which somite formation occurs and the high bulk viscosities of tissues, we find that only small changes in shape and form of tissue typically occur through cell movement driven by tissue surface tension. This is particularly true for somitogenesis in the zebrafish. Hence it is unlikely that such processes are the sole and major driving force behind somite formation. We propose a simple chemotactic mechanism that together with heightened adhesion can account for the morphological changes in the time allotted for somite formation.  相似文献   

20.
Summary This paper suggests that chick somites form because presomitic cells exert tractional forces on one another. These forces derive from the increase in cell adhesion and density that occurs as N-CAM and N-cadherin are laid down by the motile cells of the presomitic mesoderm, well before the somites form. Harris et al. (1984) have shown that adhesive and motile cells in an appropriate environment in vitro can spontaneously form aggregates under the influence of the tractional forces that they exert. Presomitic mesodermal cells may behave similarly: as CAM production increases local adhesivity, the tractional forces between the cells should become sufficiently strong for groups of cells to segment off the mesenchyme as somites. The successive expression of CAMs down the presomitic mesoderm will thus lead to the formation of an anterior-posterior sequence of somites. This mechanism can explain several aspects of somitogenesis that models generating a repetitive pre-pattern through gating cohorts of cells find hard to explain: first, mesodermal segregation occurs among highly adherent cells; second, that multiple rows of somites can form in embryos cultured on highly adherent substrata; third, that stirred mesoderm will still form normal somites; and, fourth, how somite size can be altered in heat-shocked embryos and elsewhere. Suggestions are given as to how the mechanism may be tested and where else in the embryo it could apply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号