首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An A to G transition mutation at nucleotide pair 8344 in human mitochondrial DNA (mtDNA) has been identified as the cause of MERRF. The mutation alters the T psi C loop of the tRNA(Lys) gene and creates a CviJI restriction site, providing a simple molecular diagnostic test for the disease. This mutation was present in three independent MERRF pedigrees and absent in 75 controls, altered a conserved nucleotide, and was heteroplasmic. All MERRF patients and their less-affected maternal relatives had between 2% and 27% wild-type mtDNAs and showed an age-related association between genotype and phenotype. This suggests that a small percentage of normal mtDNAs has a large protective effect on phenotype. This mutation provides molecular confirmation that some forms of epilepsy are the result of deficiencies in mitochondrial energy production.  相似文献   

2.
We devised a rapid PCR-based method to screen for an A----G transition at nucleotide 8344 of the human mitochondrial tRNA(Lys) gene, which was recently reported, by Shoffner and co-workers, to be associated with myoclonus epilepsy and ragged-red fibers (MERRF), a maternally transmitted mitochondrial encephalomyopathy (Shoffner et al. 1990). We confirmed this association in five of seven Italian MERRF pedigrees. The mutation was specific for the MERRF trait, because it was never found in mtDNA of non-MERRF individuals, including 14 normal and 110 diseased controls. Our study corroborates the idea that the A----G(8344) mutation is the most frequent and widespread genetic cause of MERRF.  相似文献   

3.
Skeletal muscle mtDNA of three patients with mitochondrial encephalomyopathy, characterized clinically by myoclonic epilepsy and ragged-red fiber (MERRF) syndrome, has been sequenced to determine the underlying molecular defect(s). An A-to-G substitution of nt 8344 in the tRNA(Lys) gene, a substitution suggested to be associated with MERRF encephalomyopathy, was detected in these patients. Abnormal patterns of mitochondrial translation products were observed in the skeletal muscle of patients, consistent with the expected consequential defect in protein synthesis. The genealogical studies of the three patients, as well as mtDNA from one published MERRF patient and from nine other normal and disease controls, revealed that the tRNA(Lys) mutations in the MERRF patients have arisen independently. These observations provided evidence that the base substitution is a causal mutation for MERRF.  相似文献   

4.
We have studied the segregation and manifestations of the tRNA(Lys) A-->G(8344) mutation of mtDNA. Three unrelated patients with myoclonus epilepsy and ragged-red fibers (MERRF) syndrome were investigated, along with 30 of their maternal relatives. Mutated mtDNA was not always found in the offspring of women carrying the tRNA(Lys) mutation. Four women had 10%-33% of mutated mtDNA in lymphocytes, and no mutated mtDNA was found in 7 of their 14 investigated children. The presence of mutated mtDNA was excluded at a level of 3:1,000. Five women had a proportion of 43%-73% mutated mtDNA in lymphocytes, and mutated mtDNA was found in all their 12 investigated children. This suggests that the risk for transmission of mutated mtDNA to the offspring increases if high levels are present in the mother and that, above a threshold level of 35%-40%, it is very likely that transmission will occur to all children. The three patients with MERRF syndrome had, in muscle, both 94%-96% mutated mtDNA and biochemical and histochemical evidence of a respiratory-chain dysfunction. Four relatives had a proportion of 61%-92% mutated mtDNA in muscle, and biochemical measurements showed a normal respiratory-chain function in muscle in all cases. These findings suggest that > 92% of mtDNA with the tRNA(Lys) mutation in muscle is required to cause a respiratory-chain dysfunction that can be detected by biochemical methods. There was a positive correlation between the levels of mtDNA with the tRNA(Lys) mutation in lymphocytes and the levels in muscle, in all nine investigated cases. The levels of mutated mtDNA were higher in muscle than in lymphocytes in all cases. In two of the patients with MERRF syndrome, muscle specimens were obtained at different times. In both cases, biochemical measurements revealed a deteriorating respiratory-chain function, and in one case a progressive increase in the amount of cytochrome c oxidase-deficient muscle fibers was found.  相似文献   

5.
Nucleotide sequence analyses of muscle mitochondrial DNA (mtDNA) from a patient with myoclonus epilepsy associated with ragged-red fibers (MERRF) revealed 33 single base substitutions, including 23 in coding regions for mitochondrial polypeptides and 10 in non-coding regions, as compared with the normal human mtDNA sequence. Three substitutions, in COI, ND4, and Cytb, would result in amino acid substitutions, which are conserved among species. Of three patients with MERRF, all had an identical A to G base substitution only at nucleotide position 8344 in the t-RNA(Lys) region. The substitution was not found in 15 controls. Various degrees of the combined enzymic defects in the oxidative phosphorylation system of mitochondria were found in the MERRF patients. The defects could be explained by altered function or processing of the mutant t-RNA(Lys). This mutation in the t-RNA(Lys) is the most probable cause of MERRF.  相似文献   

6.
Myoclonic epilepsy with ragged red fibers (MERRF) is a mitochondrial disease that is characterized by myoclonic epilepsy with ragged red fibers (RRF) in muscle biopsies. The aim of this study was to analyze Brazilian patients with MERRF. Six patients with MERRF were studied and correlations between clinical findings, laboratory data, electrophysiology, histology and molecular features were examined. We found that blood lactate was increased in four patients. Electroencephalogram studies revealed generalized epileptiform discharges in five patients and generalized photoparoxysmal responses during intermittent photic stimulation in two patients. Muscle biopsies showed RRF in all patients using modified Gomori-trichrome and succinate dehydrogenase stains. Cytochrome c oxidase (COX) stain analysis indicated deficient activity in five patients and subsarcolemmal accumulation in one patient. Molecular analysis of the tRNA(Lys) gene with PCR/RFLP and direct sequencing showed the A8344G mutation of mtDNA in five patients. The presence of RRFs and COX deficiencies in muscle biopsies often confirmed the MERRF diagnosis. We conclude that molecular analysis of the tRNA(Lys) gene is an important criterion to help confirm the MERRF diagnosis. Furthermore, based on the findings of this study, we suggest a revision of the main characteristics of this disease.  相似文献   

7.
We report a patient with myoclonic epilepsy who underwent muscle biopsy for suspected mitochondrial disease (myoclonic epilepsy with ragged-red fibers, MERRF). In spite of normal histochemical studies and of the absence of a severe COX deficiency, the molecular analysis showed the common MERRF mutation (A8344G) in the tRNA(Lys) gene on mitochondrial DNA. The case serves to illustrate the importance of pursuing the proposed mitochondrial genetic abnormality, even in patients with normal biopsy findings.  相似文献   

8.
9.
Myoclonic epilepsy and ragged-red fibers (MERRF) syndrome is a rare disorder characterized by myoclonus, muscle weakness, cerebellar ataxia, heart conduction block, and dementia. It has been documented that 80–90% of the patients with MERRF syndrome are caused by the A8344G mutation in the tRNALys gene of mitochondrial DNA (mtDNA). We and other investigators have reported that the mtDNA mutation results in not only inefficient generation of adenosine triphosphate but also increased production of reactive oxygen species (ROS) in cultured cells harboring A8344G mutation of mtDNA. In addition, we found an imbalance in the gene expression of antioxidant enzymes in the skin fibroblasts of MERRF patients. The mRNA, protein, and enzyme activity levels of manganese-superoxide dismutase were increased, but those of Cu,Zn-SOD, catalase, and glutathione peroxidase did not show significant changes. Recently, we showed that the excess ROS could damage voltage-dependent anion channel, prohibitin, Lon protease, and aconitase in the MERRF cells. Moreover, there was a dramatic increase in the gene expression and activity of matrix metalloproteinase 1, which may contribute to the cytoskeleton remodeling involved in the weakness and atrophy of muscle commonly seen in MERRF patients. Taken together, we suggest that mtDNA mutation-elicited oxidative stress, oxidative damage, and altered gene expression are involved in the pathogenesis and progression of MERRF syndrome.  相似文献   

10.
We investigated the distribution and expression of mutant mtDNAs carrying the A-to-G mutation at position 8344 in the tRNA(Lys) gene in the skeletal muscle of four patients with myoclonus epilepsy and ragged-red fibers (MERRF). The proportion of mutant genomes was greater than 80% of total mtDNAs in muscle samples of all patients and was associated with a decrease in the activity of cytochrome c oxidase (COX). The vast majority of myoblasts, cloned from the satellite-cell population in the same muscles, were homoplasmic for the mutation. The overall proportion of mutant mtDNAs in this population was similar to that in differentiated muscle, suggesting that the ratio of mutant to wild-type mtDNAs in skeletal muscle is determined either in the ovum or during early development and changes little with age. Translation of all mtDNA-encoded genes was severely depressed in homoplasmic mutant myoblast clones but not in heteroplasmic or wild-type clones. The threshold for biochemical expression of the mutation was determined in heteroplasmic myotubes formed by fusion of different proportions of mutant and wild-type myoblasts. The magnitude of the decrease in translation in myotubes containing mutant mtDNAs was protein specific. Complex I and IV subunits were more affected than complex V subunits, and there was a rough correlation with both protein size and number of lysine residues. Approximately 15% wild-type mtDNAs restored translation and COX activity to near normal levels. These results show that the A-to-G substitution in tRNA(Lys) is a functionally recessive mutation that can be rescued by intraorganellar complementation with a small proportion of wild-type mtDNAs and explain the steep threshold for expression of the MERRF clinical phenotype.  相似文献   

11.
We previously showed that in mitochondrial tRNA(Lys) with an A8344G mutation responsible for myoclonus epilepsy associated with ragged-red fibers (MERRF), a subgroup of mitochondrial encephalomyopathic diseases, the normally modified wobble base (a 2-thiouridine derivative) remains unmodified. Since wobble base modifications are essential for translational efficiency and accuracy, we used mitochondrial components to estimate the translational activity in vitro of purified tRNA(Lys) carrying the mutation and found no mistranslation of non-cognate codons by the mutant tRNA, but almost complete loss of translational activity for cognate codons. This defective translation was not explained by a decline in aminoacylation or lowered affinity toward elongation factor Tu. However, when direct interaction of the codon with the mutant tRNA(Lys) defective anticodon was examined by ribosomal binding analysis, the wild-type but not the mutant tRNA(Lys) bound to an mRNA- ribosome complex. We therefore concluded that the anticodon base modification defect, which is forced by the pathogenic point mutation, disturbs codon- anticodon pairing in the mutant tRNA(Lys), leading to a severe reduction in mitochondrial translation that eventually could result in the onset of MERRF.  相似文献   

12.
We have investigated the morphology, cytogenetics, and the fraction of mtDNA with the tRNA(Lys) A-->G(8344) mutation in three lipomas in a carrier of this mutation. The son of the patient had myoclonus epilepsy and ragged-red fibers syndrome. The fraction of mtDNA with the tRNA(Lys) mutation varied between 62% and 80% in cultured skin fibroblasts, lymphocytes, normal adipose tissue, and muscle. In the three lipomas the mean fraction of mutated mtDNA was 90%, 94%, and 94%. Ultrastructural examination of the lipomas revealed numerous mitochondria with changes such as electron-dense inclusions in some adipocytes. When considered cytogenetically, the lipomas were characterized by a mixture of karyotypically abnormal and normal cells. An identical del(6)(q24) was found in two tumors. The fraction of mutated mtDNA in cultured lipoma cells was the same as in the lipoma in situ, indicating that the cultured cells were representative of the primary tumor. These findings indicate that the lipomas have originated with a grossly normal stem line and subsequently have developed the 6q deletion. We conclude that the lipomas represent clonal growth of adipocytes with a high content of mtDNA with the tRNA(Lys) mutation. The tRNA(Lys) mutation may be either the direct or the indirect cause of pertubation of the maturation process of the adipocytes, leading to an increased risk of lipoma formation.  相似文献   

13.
Point mutations in mitochondrial (mt) tRNA genes are associated with a variety of human mitochondrial diseases. We have shown previously that mt tRNA(Leu(UUR)) with a MELAS A3243G mutation and mt tRNA(Lys) with a MERRF A8344G mutation derived from HeLa background cybrid cells are deficient in normal taurine-containing modifications [taum(5)(s(2))U; 5-taurinomethyl-(2-thio)uridine] at the anticodon wobble position in both cases. The wobble modification deficiency results in defective translation. We report here wobble modification deficiencies of mutant mt tRNAs from cybrid cells with different nuclear backgrounds, as well as from patient tissues. These findings demonstrate the generality of the wobble modification deficiency in mutant tRNAs in MELAS and MERRF.  相似文献   

14.
Human mitochondrial (mt) tRNA(Lys) has a taurine-containing modified uridine, 5-taurinomethyl-2-thiouridine (taum5s2U), at its anticodon wobble position. We previously found that the mt tRNA(Lys), carrying the A8344G mutation from cells of patients with myoclonus epilepsy associated with ragged-red fibers (MERRF), lacks the taum5s2U modification. Here we describe the identification and characterization of a tRNA-modifying enzyme MTU1 (mitochondrial tRNA-specific 2-thiouridylase 1) that is responsible for the 2-thiolation of the wobble position in human and yeast mt tRNAs. Disruption of the yeast MTU1 gene eliminated the 2-thio modification of mt tRNAs and impaired mitochondrial protein synthesis, which led to reduced respiratory activity. Furthermore, when MTO1 or MSS1, which are responsible for the C5 substituent of the modified uridine, was disrupted along with MTU1, a much more severe reduction in mitochondrial activity was observed. Thus, the C5 and 2-thio modifications act synergistically in promoting efficient cognate codon decoding. Partial inactivation of MTU1 in HeLa cells by small interference RNA also reduced their oxygen consumption and resulted in mitochondria with defective membrane potentials, which are similar phenotypic features observed in MERRF.  相似文献   

15.
The point mutation in the tRNA(Lys) gene of mitochondrial DNA (mtDNA) from patients with myoclonic epilepsy and ragged red fibers (MERRF) was quantitatively analyzed after digestion with the restriction endonuclease Nae I of the PCR amplified DNA. Since the point mutation is not part of a restriction site for a commonly available restriction endonuclease, the Nae I restriction site was introduced by PCR using a mispairing primer. The percentage of mutated mtDNA was determined in a few hairs of five members of an affected family by counting the radioactivity of the fragments after PCR amplification with labelled dATP.  相似文献   

16.
We analyzed the mitochondrial DNA of blood cells of 5 patients from a Chinese family with myoclonic epilepsy and ragged-red fiber disease. The results showed that in all the affected individuals there was a point mutation from A to G at the 8344th nucleotide pair, which was located in the tRNA(Lys) gene. No such a mutation was found in mtDNA of either unaffected members of that family or other healthy Chinese subjects. These findings are consistent with the recent report of Shoffner et al. (Cell 1990, 61: 931-937), and confirm that the point mutation is indeed the cause of this disease.  相似文献   

17.
We have sequenced all mitochondrial tRNA genes from a patient with chronic progressive external ophthalmoplegia (CPEO) and mitochondrial myopathy, who had no detectable large mtDNA deletions. Direct sequencing failed to detect previously reported mutations and showed a heteroplasmic mutation at nucleotide 12,276 in the tRNA(Leu(CUN)) gene, in the dihydrouridine stem, which is highly conserved through the species during evolution. RFLP analyses confirmed that 18% of muscle mtDNA harbored the mutation, while it was absent from DNA of fibroblasts and lymphocytes of the proband and in 110 patients with other encephalomyopathies. To date, besides large and single nucleotide deletions, several point mutations on mitochondrial tRNA genes have been reported in CPEO patients, but only three were in the gene coding for tRNA(Leu(CUN)).  相似文献   

18.
MERRF (myoclonic epilepsy with ragged-red fibers) is a severe, multisystem disorder characterized by myoclonus, seizures, progressive cerebellar syndrome, muscle weakness, and the presence of ragged-red fibers in the muscle biopsy. MERRF is associated with heteroplasmic point mutations, either A8344G or T8356C, in the gene encoding the mitochondrial tRNALys. The human ro cell system was utilized to examine the phenotypic consequences of these mutations, and to investigate their molecular genetic causes. Wild-type and mutant transmitochondrial cell lines harboring a pathogenic point mutation at either A8344G or T8356C in the human mitochondrial tRNALys gene were isolated and examined. Mitochondrial transformants containing 100% mutated mitochondrial DNAs (mtDNAs) exhibited severe defects in respiratory chain activity, in the rates of protein synthesis, and in the steady-state levels of mitochondrial translation products as compared with mitochondrial transformants containing 100% wild-type mtDNAs. In addition, both mutant cell lines exhibited the presence of aberrant mitochondrial translation products. These results demonstrate that two different mtDNA point mutations in tRNALys result in fundamentally identical defects at the cellular level, and that these specific protein synthesis abnormalities contribute to the pathogenesis of MERRF. (Mol Cell Biochem 174: 215–219, 1997)  相似文献   

19.
摘要: 文中建立了一种新型的寡核苷酸芯片, 用于线粒体脑肌病伴高乳酸血症和卒中样发作(Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes, MELAS)和肌阵挛性癫痫伴发不规整红纤维(Myoclonic epilepsy with ragged red fibers, MERRF)线粒体DNA所有已知突变位点的集成检测。将31对allele位点特异性的寡核苷酸探针包被在醛基修饰的载玻片表面, 以多重不对称PCR方法制备Cy5荧光标记靶基因。利用此芯片对5例MELAS患者、5例MERRF患者及20例健康对照进行筛查, 结果发现, MELAS患者均为MT-T1基因A3243G突变; 在MERRF患者组, MT-TK基因A8344G突变4例, T8356C突变1例; 健康对照组均未发现31种相关mtDNA突变。芯片检测与DNA测序结果完全一致。结果表明, 这种寡核苷酸芯片可以对MELAS和MERRF综合征已知突变位点进行同步快速检测, 具有较高的灵敏度和特异性。这一模式的基因芯片经过适当改装后也可用于其他人类线粒体疾病的基因诊断。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号