首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cyclic peptide AF17121 is a library-derived antagonist for human interleukin-5 (IL5) receptor alpha (IL5Ralpha) and inhibits IL5 activity. Our previous results have demonstrated that the sixth arginine residue of the peptide is crucial for the inhibitory effect and that several acidic residues in the N- and C-terminal regions also make a contribution, although to a lesser extent (Ruchala, P., Varadi, G., Ishino, T., Scibek, J., Bhattacharya, M., Urbina, C., Van Ryk, D., Uings, I., and Chaiken, I. (2004) Biopolymers 73, 556-568). However, the recognition mechanism of the receptor has remained unresolved. In this study, AF17121 was fused to thioredoxin by recombinant DNA techniques and examined for IL5Ralpha interaction using a surface plasmon resonance biosensor method. Kinetic analysis revealed that the dissociation rate of the peptide.receptor complex is comparable with that of the cytokine.receptor complex. The fusion peptide competed with IL5 for both biological function and interaction with IL5Ralpha, indicating that the binding sites on the receptor are shared by AF17121 and IL5. To define the epitope residues for AF17121, we defined its binding footprint on IL5Ralpha by alanine substitution of Asp(55), Asp(56), Glu(58), Lys(186), Arg(188), and Arg(297) of the receptor. Marked effects on the interaction were observed in all three fibronectin type III domains of IL5Ralpha, in particular Asp(55), Arg(188), and Arg(297) in the D1, D2, and D3 domains, respectively. This footprint represents a significant subset of that for IL5 binding. The fact that AF17121 mimics the receptor binding capability of IL5 but antagonizes biological function evokes several models for how IL5 induces activation of the multisubunit receptor system.  相似文献   

2.
Interleukin-5 receptor alpha is a therapeutic target for hypereosinophilic diseases including allergic inflammations and asthma. The cyclic peptide AF17121 (Ac-VDE[CWRIIASHTWFC]AEE-CONH(2)) has been identified as a submicromolar inhibitor of interleukin 5 (IL5)-interleukin 5 receptor alpha (IL5Ralpha) interaction from a random peptide screen. However, this inhibitor has limitations as a drug lead because of its relatively large size. We used chemical synthesis of peptides with natural and non-natural amino acids along with kinetic binding and cell proliferation competition assays to expand definition of structural elements in the peptide that are important for receptor antagonism and to elucidate the underlying pharmacophore. We found that the specific steric array of hydrogen bonding groups in the Arg 6 guanido side chain is critical for receptor inhibition. We also investigated noncharged structural elements in AF17121. Screening a set of five hydrophobic residues showed that peptide function is strongly sensitive to variations in several of these residues, most prominently Ile 7 and Trp 13. We postulate that presentation of charged, hydrogen bonding and hydrophobic structural elements within the disulfide-constrained peptide drives IL5Ralpha recruitment by AF17121. We hypothesize from these results and previous receptor mutagenesis studies that Arg 6 recruitment of IL5Ralpha occurs through hydrogen bonding as well as charge-charge interactions with Asp 55 in site one of domain 1 of IL5Ralpha, and that this interaction is complemented by additional charged and hydrophobic interactions around the Asp 55 locus. Scaffolding a limited set of structural elements in the inhibitor pharmacophore may be useful for small molecule antagonist design inspired by the peptide.  相似文献   

3.
The cyclic peptide AF17121 (Ac-VDECWRIIASHTWFCAEE) that inhibits interleukin 5 (IL-5) function and IL-5 receptor alpha-chain (IL-5Ralpha) binding has been derived from recombinant random peptide library screening and follow-up synthetic variation. To better understand the structural basis of its antagonist activity, AF17121 and a series of analogs of the parent peptide were prepared by solid phase peptide synthesis. Sequence variation was focused on the charged residues Asp(2), Glu(3), Arg(6), Glu(17), and Glu(18). Two of those residues, Glu(3) and Arg(6), form an EXXR motif that was found to be common among library-derived IL-5 antagonists. The E and R in the EXXR motif have a proximity similar to charged residues in a previously identified receptor alpha binding region, the beta-strand between the C- and D-helices of human IL-5. Optical biosensor interaction kinetics and cell proliferation assays were used to evaluate the antagonist activities of the purified synthetic peptides, by measuring competition with the highly active single chain IL-5. Analogs in which acidic residues (Asp(2), Glu(3), Glu(17), and Glu(18)) were replaced individually by Ala retained substantial competition activity, with multiple replacements in these residues leading to fractional loss of potency at most. In contrast, R6A analogs had strongly reduced competition activity. The results reveal that the arginine residue is crucial for the IL-5Ralpha binding of AF17121, while the acidic residues are not essential though likely complex-stabilizing particularly in the Asp(2)-Glu(3) region. By CD, AF17121 exhibited mostly disordered structure with evidence for a small beta-sheet content, and replacement of the arginine had no influence on the observed secondary structure of the peptides. The dominance of Arg(6) in AF17121 activity corresponds to previous findings of dominance of the positive charge balance in the antiparallel beta-sheet of IL-5 composed of (88)EERRR(92) in one strand of the CD turn region of IL-5 and with Arg(32) in the neighboring beta-strand. These results argue that AF17121 and related library-derived peptides function by mimicking the CD turn receptor alpha recognition epitope in IL-5 and open the way to small molecule antagonist design.  相似文献   

4.
Human interleukin 5 receptor alpha (IL5Ralpha) comprises three fibronectin type III domains (D1, D2, and D3) in the extracellular region. Previous results have indicated that residues in the D1D2 domains are crucial for high affinity interaction with human interleukin 5 (IL5). Yet, it is the D2D3 domains that have sequence homology with the classic cytokine recognition motif that is generally assumed to be the minimum cytokine-recognizing unit. In the present study, we used kinetic interaction analysis of alanine-scanning mutational variants of IL5Ralpha to define the residues involved in IL5 recognition. Soluble forms of IL5Ralpha variants were expressed in S2 cells, selectively captured via their C-terminal V5 tag by anti-V5 tag antibody immobilized onto the sensor chip and examined for IL5 interaction by using a sandwich surface plasmon resonance biosensor method. Marked effects on the interaction kinetics were observed not only in D1 (Asp(55), Asp(56), and Glu(58)) and D2 (Lys(186) and Arg(188)) domains, but also in the D3 (Arg(297)) domain. Modeling of the tertiary structure of IL5Ralpha indicated that these binding residues fell into two clusters. The first cluster consists of D1 domain residues that form a negatively charged patch, whereas the second cluster consists of residues that form a positively charged patch at the interface of D2 and D3 domains. These results suggest that the IL5 x IL5Ralpha system adopts a unique binding topology, in which the cytokine is recognized by a D2D3 tandem domain combined with a D1 domain, to form an extended cytokine recognition interface.  相似文献   

5.
Phage display was used to identify sequences that mimic structural determinants in interleukin5 (IL5) for IL5 receptor recognition. A coiled coil stem loop (CCSL) miniprotein scaffold library was constructed with its turn region randomized and panned for binding variants against human IL5 receptor alpha chain (IL5Ralpha). Competition enzyme-linked immunosorbent assays identified CCSL-phage selectants for which binding to IL5Ralpha was competed by IL5. The most frequently selected and IL5-competed CCSL-phage contain charged residues Arg and Glu in their turn sequences, in this regard resembling a beta strand sequence in the 'CD turn' region, of IL5, that has been proposed to present a key determinant for IL5 receptor alpha chain recognition. The most dominant CCSL-phage selectant sequence, PVEGRV, contains a negative/positive charge pattern similar to that seen in the original CD turn. To test the relatedness of CCSL-phage selectant sequences to the IL5 receptor recognition epitope, PVEGRV was grafted into the sequence 87--92 of a monomeric IL5. The resulting IL5 variant, [(87)PVEGRV(92)]GM1, was able to bind to IL5Ralpha in biosensor assays, to elicit TF-1 cell proliferation and to induce STAT5 phosphorylation in TF-1 cells. The results help discern sequence patterns in the IL5 CD turn region which are key in driving receptor recognition and demonstrate the utility of CCSL miniprotein scaffold phage display to identify local IL5 mimetic sequence arrangements that may ultimately lead to IL5 antagonists.  相似文献   

6.
Relaxin-3 is a newly identified insulin/relaxin superfamily peptide that plays a putative role in the regulation of food intake and stress response by activating its cognate G-protein-coupled receptor RXFP3. Relaxin-3 has three highly conserved arginine residues, B12Arg, B16Arg and B26Arg. We speculated that these positively charged arginines may interact with certain negatively charged residues of RXFP3. To test this hypothesis, we first replaced the negatively charged residues in the extracellular domain of RXFP3 with arginine, respectively. Receptor activation assays showed that arginine replacement of Glu141 or Asp145, especially Glu141, significantly decreased the sensitivity of RXFP3 to wild-type relaxin-3. In contrast, arginine replacement of other negatively charged extracellular residues had little effect. Thus, we deduced that Glu141 and Asp145, locating at the extracellular end of the second transmembrane domain, played a critical role in the interaction of RXFP3 with relaxin-3. To identify the ligand residues interacting with the negatively charged EXXXD motif of RXFP3, we replaced the three conserved arginines of relaxin-3 with negatively charged glutamate or aspartate, respectively. The mutant relaxin-3s retained the native structure, but their binding and activation potencies towards wild-type RXFP3 were decreased significantly. The compensatory effects of the mutant relaxin-3s towards mutant RXFP3s suggested two probable interaction pairs during ligand–receptor interaction: Glu141 of RXFP3 interacted with B26Arg of relaxin-3, meanwhile Asp145 of RXFP3 interacted with both B12Arg and B16Arg of relaxin-3. Based on these results, we proposed a relaxin-3/RXFP3 interaction model that shed new light on the interaction mechanism of the relaxin family peptides with their receptors.  相似文献   

7.
Interleukin (IL)-5 exerts hematopoietic functions through binding to the IL-5 receptor subunits, alpha and betac. Specific assembly steps of full-length subunits as they occur in cell membranes, ultimately leading to receptor activation, are not well understood. We tracked the oligomerization of IL-5 receptor subunits using fluorescence resonance energy transfer (FRET) imaging. Full-length IL-5Ralpha and betac were expressed in Phoenix cells as chimeric proteins fused to enhanced cyan or yellow fluorescent protein (CFP or YFP, respectively). A time- and dose-dependent increase in FRET signal between IL-5Ralpha-CFP and betac-YFP was observed in response to IL-5, indicative of heteromeric receptor alpha-betac subunit interaction. This response was inhibited by AF17121, a peptide antagonist of IL-5Ralpha. Substantial FRET signals with betac-CFP and betac-YFP co-expressed in the absence of IL-5Ralpha demonstrated that betac subunits exist as preformed homo-oligomers. IL-5 had no effect on this betac-alone FRET signal. Interestingly, the addition of IL-5 to cells co-expressing betac-CFP, betac-YFP, and nontagged IL-5Ralpha led to further increase in FRET efficiency. Observation of preformed betac oligomers fits with the view that this form can lead to rapid cellular responses upon IL-5 stimulation. The IL-5-induced effects on betac assembly in the presence of nontagged IL-5Ralpha provide direct evidence that IL-5 can cause higher order rearrangements of betac homo-oligomers. These results suggest that IL-5 and perhaps other betac cytokines (IL-3 and granulocyte/macrophage colony-stimulating factor) trigger cellular responses by the sequential binding of cytokine ligand to the specificity receptor (subunit alpha), followed by binding of the ligand-subunit alpha complex to, and consequent rearrangement of, a ground state form of betac oligomers.  相似文献   

8.
Current evidence supports a binding model in which the insulin molecule contains two binding surfaces, site 1 and site 2, which contact the two halves of the insulin receptor. The interaction of these two surfaces with the insulin receptor results in a high affinity cross-linking of the two receptor alpha subunits and leads to receptor activation. Evidence suggests that insulin-like growth factor-I (IGF-I) may activate the IGF-I receptor in a similar mode. So far IGF-I residues structurally corresponding to the residues of the insulin site 1 together with residues in the C-domain of IGF-I have been found to be important for binding of IGF-I to the IGF-I receptor (e.g. Phe(23), Tyr(24), Tyr(31), Arg(36), Arg(37), Val(44), Tyr(60), and Ala(62)). However, an IGF-I second binding surface similar to site 2 of insulin has not been identified yet. In this study, we have analyzed whether IGF-I residues corresponding to the six residues of the insulin site 2 have a role in high affinity binding of IGF-I to the IGF-I receptor. Six single-substituted IGF-I analogues were produced, each containing an alanine substitution in one of the following positions (corresponding insulin residues in parentheses): Glu(9) (His(B10)), Asp(12) (Glu(B13)), Phe(16) (Leu(B17)), Asp(53) (Ser(A12)), Leu(54) (Leu(A13)), and Glu(58) (Glu(A17)). In addition, two analogues with 2 and 3 combined alanine substitutions were also produced (E9A,D12A IGF-I and E9A,D12A,E58A IGF-I). The results show that introducing alanine in positions Glu(9), Asp(12), Phe(16), Leu(54), and Glu(58) results in a significant reduction in IGF-I receptor binding affinity, whereas alanine substitution at position 53 had no effect on IGF-I receptor binding. The multiple substitutions resulted in a 33-100-fold reduction in IGF-I receptor binding affinity. These data suggest that IGF-I, in addition to the C-domain, uses surfaces similar to those of insulin in contacting its cognate receptor, although the relative contribution of the side chains of homologous residues varies.  相似文献   

9.
The minimal region required for actin binding in the smallest of the three domains of gelsolin (termed Segment 1 or S1) was previously defined by deletion mutagenesis as residues 37-126. Further analysis of NH2-terminal deletions here redefines the minimal functional core as residues 41-126. Amino acid substitutions within this core further elucidate the nature of the interaction of segment 1 with actin. Of 26 point mutants analyzed, 14 reduced the affinity for actin. The charged residues His 119, Arg 120, Glu 121, and Gln 123 appear to be involved in direct interaction with actin. Substitutions of Leu 108, Leu 112, and Val 117 by polar groups all affect the structural stability of segment 1 and thereby reduce binding affinity. In addition replacement of Glu 126 by aspartic acid modifies the physical properties of segment 1 and weakens binding. We have further shown that changing charged residues within the highly conserved pentapeptide sequence LDDYL (residues 108-112) has no effect on actin binding. This sequence, found in a number of different actin binding proteins, does not therefore constitute part of the interaction site. Similarly, substitution of the two acidic residues by basic ones within the DESG motif of segment 1 (residues 96-99, but also found near the COOH terminus of actin) does not impair binding. These results show the dangers of predicting functional sites on the basis of conserved sequences.  相似文献   

10.
Coactivator recruitment by activation function 2 (AF2) in the steroid receptor ligand binding domain takes place through binding of an LXXLL amphipathic alpha-helical motif at the AF2 hydrophobic surface. The androgen receptor (AR) and certain AR coregulators are distinguished by an FXXLF motif that interacts selectively with the AR AF2 site. Here we show that LXXLL and FXXLF motif interactions with steroid receptors are modulated by oppositely charged residues flanking the motifs and charge clusters bordering AF2 in the ligand binding domain. An increased number of charged residues flanking AF2 in the ligand binding domain complement the two previously characterized charge clamp residues in coactivator recruitment. The data suggest a model whereby coactivator recruitment to the receptor AF2 surface is initiated by complementary charge interactions that reflect a reversal of the acidic activation domain-coactivator interaction model.  相似文献   

11.
We documented that alpha-helices A, C, and D in human interleukin-13 (IL13) participate in interaction with its respective receptors. We hypothesized that alpha-helix D is the site II of the cytokine that binds IL13Ralpha1, a component of the normal tissue heterodimeric signaling IL13/4 receptor (IL13/4R), and that alpha-helix D independently binds a monomeric IL13Ralpha2 receptor, which is a non-signaling glioma-restricted receptor for IL13. Therefore, we alanine-scanned mutagenized helix D of IL13 to identify the residues involved in the respective receptors interaction. Recombinant muteins of IL13 were produced in Escherichia coli, and their structural integrity and identity were verified. The alanine mutants were tested in functional cellular assays, in which IL13 interaction with IL13Ralpha2 (glioma cells) or an ability to functionally stimulate IL13/4R (TF-1 cells) were examined, and also in binding assays. We found that residues 105, 106, and 109 of the d-helix of IL13 are responsible for interacting with the glioma-associated receptor. Moreover, glutamic acids at positions 92 and 110, and leucine at position 104 was found to be important for IL13/4R stimulation. Thus, alpha-helix D of IL13 is the primary site responsible for interaction with the IL13 binding proteins. We propose a model that illustrates the binding mode of IL13 with cancer-related IL13Ralpha2 and physiological IL13/4R.  相似文献   

12.
Relaxin family peptides perform a variety of biological functions by activating four G protein-coupled receptors, namely relaxin family peptide receptor 1-4 (RXFP1-4). We recently disclosed electrostatic interactions of the homologous RXFP3 and RXFP4 with some agonists based on activation complementation. However, this activation assay-based approach cannot be applied to antagonists that do not activate receptors. Herein, we propose a general approach suitable for both agonists and antagonists based on our newly-developed NanoBiT-based binding assay. We first validated the binding assay-based approach using the agonist relaxin-3, then applied it to the chimeric antagonist R3(ΔB23-27)R/I5. Three positively charged B-chain Arg residues of the agonist and antagonist were respectively replaced by a negatively charged Glu residue; meanwhile, the negatively charged Glu and Asp residue in the essential WxxExxxD motif of both receptors were respectively replaced by a positively charged Arg residue. Based on binding complementation of mutant ligands towards mutant receptors, we deduced possible electrostatic interactions of the agonist and antagonist with both RXFP3 and RXFP4: their B-chain C-terminal Arg residue interacts with the deeply buried Glu residue in the WxxExxxD motif of both receptors, and one or two of their B-chain central Arg residues interact with the shallowly buried Asp residue in the WxxExxxD motif of both receptors. Our present work shed new light on the interaction mechanism of RXFP3 and RXFP4 with agonists and antagonists, and also provided a novel approach for interaction studies of some plasma membrane receptors with their ligands.  相似文献   

13.
It is fundamentally important to define how agonist-receptor interaction differs from antagonist-receptor interaction. The V1a vasopressin receptor (V1aR) is a member of the neurohypophysial hormone subfamily of G protein-coupled receptors. Using alanine-scanning mutagenesis of the N-terminal juxtamembrane segment of the V1aR, we now establish that Glu54 (1.35) is critical for arginine vasopressin binding. The mutant [E54A]V1aR exhibited decreased arginine vasopressin affinity (1700-fold) and disrupted signaling, but antagonist binding was unaffected. Mutation of Glu54 had an almost identical pharmacological effect as mutation of Arg46, raising the possibility that agonist binding required a mutual interaction between Glu54 and Arg46. The role of these two charged residues was investigated by 1) substituting Glu54; 2) inserting additional Glu/Arg in transmembrane helix (TM) 1; 3) repositioning the Glu/Arg in TM1; and 4) characterizing the reciprocal mutant [R46E/E54R]V1aR. We conclude that 1) the positive/negative charges need to be precisely positioned in this N terminus/TM1 segment; and 2) Glu54 and Arg46 function independently, providing two discrete epitopes required for high-affinity agonist binding and signaling. This study explains why Glu and Arg, part of an -R(X3)L/V(X3)E(X3)L- motif, are conserved at these loci throughout this G protein-coupled receptor subfamily and provides molecular insight into key differences between agonist and antagonist binding requirements.  相似文献   

14.
Subversion of the plasminogen activation system is implicated in the virulence of group A streptococci (GAS). GAS displays receptors for the human zymogen plasminogen on the cell surface, one of which is the plasminogen-binding group A streptococcal M-like protein (PAM). The plasminogen binding domain of PAM is highly variable, and this variation has been linked to host selective immune pressure. Site-directed mutagenesis of full-length PAM protein from an invasive GAS isolate was undertaken to assess the contribution of residues in the a1 and a2 repeat domains to plasminogen binding function. Mutagenesis to alanine of key plasminogen binding lysine residues in the a1 and a2 repeats (Lys98 and Lys111) did not abrogate plasminogen binding by PAM nor did additional mutagenesis of Arg101 and His102 and Glu104, which have previously been implicated in plasminogen binding. Plasminogen binding was only abolished with the additional mutagenesis of Arg114 and His115 to alanine. Furthermore, mutagenesis of both arginine (Arg101 and Arg114) and histidine (His102 and His115) residues abolished interaction with plasminogen despite the presence of Lys98 and Lys111 in the binding repeats. This study shows for the first time that residues Arg101, Arg114, His102, and His115 in both the a1 and a2 repeat domains of PAM can mediate high affinity plasminogen binding. These data suggest that highly conserved arginine and histidine residues may compensate for variation elsewhere in the a1 and a2 plasminogen binding repeats, and may explain the maintenance of high affinity plasminogen binding by naturally occurring variants of PAM.  相似文献   

15.
Specific interactions of human melanocortin-4 receptor (hMC4R) with its nonpeptide and peptide agonists were studied using alanine-scanning mutagenesis. The binding affinities and potencies of two synthetic, small-molecule agonists (THIQ, MB243) were strongly affected by substitutions in transmembrane alpha-helices (TM) 2, 3, 6, and 7 (residues Glu(100), Asp(122), Asp(126), Phe(261), His(264), Leu(265), and Leu(288)). In addition, a I129A mutation primarily affected the binding and potency of THIQ, while F262A, W258A, Y268A mutations impaired interactions with MB243. By contrast, binding affinity and potency of the linear peptide agonist NDP-MSH were substantially reduced only in D126A and H264A mutants. Three-dimensional models of receptor-ligand complexes with their agonists were generated by distance-geometry using the experimental, homology-based, and other structural constraints, including interhelical H-bonds and two disulfide bridges (Cys(40)-Cys(279), Cys(271)-Cys(277)) of hMC4R. In the models, all pharmacophore elements of small-molecule agonists are spatially overlapped with the corresponding key residues (His(6), d-Phe(7), Arg(8), and Trp(9)) of the linear peptide: their charged amine groups interact with acidic residues from TM2 and TM3, similar to His(6) and Arg(6) of NDP-MSH; their substituted piperidines mimic Trp(9) of the peptide and interact with TM5 and TM6, while the d-Phe aromatic rings of all three agonists contact with Leu(133), Trp(258), and Phe(261) residues.  相似文献   

16.
The major amino acids necessary for diphtheria toxin (DT) binding to its receptor have been identified previously. Studies by W. H. Shen et al. (J. Biol. Chem. 269, 29077-29084, 1994) and by J. H. Cha et al. (Mol. Microbiol. 29 (5), 1275-1284, 1998) suggested that the positively charged nature of the single amino acid residue, (516)Lys of DT, is crucial for binding to the DT receptor, whereas the negatively charged (141)Glu of the DT receptor is the most important residue for toxin binding. Here, we hypothesize that key interactions occur between these two oppositely charged amino acid residues. Reciprocal substitution of the residues at these positions between the toxin and the receptor was performed, which resulted in a partial reconstitution of the toxin:receptor interaction. This study provides the first biological data that characterizes the specific interaction of these two key residues with each other and also the additional interactions between other positively charged residues of DT and (141)Glu of the DT receptor.  相似文献   

17.
Granulocyte colony-stimulating factor (G-CSF) forms a tetrameric complex with its receptor, comprising two G-CSF and two receptor molecules. The structure of the complex is unknown, and it is unclear whether there are one or two binding sites on G-CSF and the receptor. The immunoglobulin-like domain and the cytokine receptor homologous module of the receptor are involved in G-CSF binding, and Arg288 in the cytokine receptor homologous module is particularly important. To identify residues in G-CSF that interact with Arg288, selected charged residues in G-CSF were mutated to Ala. To clarify whether there are two binding sites, a chimeric receptor was created in which the Ig domain was replaced with that of the related receptor gp130. This chimera bound G-CSF but could not transduce a signal, consistent with failure of dimerization and loss of one binding site. The G-CSF mutants had reduced mitogenic activity on cells expressing wild-type receptor. When tested with the chimeric receptor, all G-CSF mutants except one (E46A) showed reduced binding, suggesting that Glu46 is important for interaction with the Ig domain. On cells expressing R288A receptor, all the G-CSF mutants except E19A showed reduced mitogenic activity, indicating that Glu19 of G-CSF interacts with Arg288 of the receptor.  相似文献   

18.
Previous studies have identified Lys 1, Glu 2, and His 12 as the charged residues responsible for the pH-dependent stability of the helix formed by the isolated C-peptide (residues 1-13 of ribonuclease A). Here we examine whether the helix-stabilizing behavior of Glu 2- results from a Glu 2- ... Arg 10+ interaction, which is known to be present in the crystal structure of ribonuclease A. The general approach is to measure the helix content of C-peptide analogs as a function of three variables: pH (titration of ionizing groups), amino acid identity (substitution test), and NaCl concentration (ion screening test). In order to interpret the results of residue replacement, several factors in addition to the putative Glu 2- ... Arg 10+ interaction have been studied: intrinsic helix-forming tendencies of amino acids; interactions of charged residues with the alpha-helix macrodipole; and helix-lengthening effects. The results provide strong evidence that the Glu 2- ... Arg 10+ interaction is linked to helix formation and contributes to the stability of the isolated C-peptide helix. NMR evidence supports these conclusions and suggests that this interaction also acts as the N-terminal helix stop signal. The implications of this work for protein folding and stability are discussed.  相似文献   

19.
Alanine-scanning mutagenesis on human growth hormone (hGH) identified 5 primary determinants (Arg 8, Asn 12, Arg 16, Asp 112, and Asp 116) for binding to a monoclonal antibody (MAb 3) (Jin L, Fendly BM, Wells JA, 1992, J Mol Biol 226:851-865). To further analyze the energetic importance of residues surrounding these five, we mutated all neighboring residues to alanine in groups of 7-16 (a procedure we call alanine shaving). Even the most extremely mutated variant, with 16 alanine substitutions, caused less than a 10-fold reduction in binding affinity to MAb3. By comparison, mutating any 1 of the 5 primary determinants to alanine caused a 6- to > 500-fold reduction in affinity. Replacing any of the 4 charged residues (Arg 8, Arg 16, Asp 112, and Asp 116) with a homologous residue (i.e., Arg to Lys or Asp to Glu) caused nearly as large a reduction in affinity as the corresponding alanine replacement. It was possible to graft the 5 primary binding determinants onto a nonbinding homologue of hGH, human placental lactogen (hPL), which has 86% sequence identity to hGH. The grafted hPL mutant bound 10-fold less tightly than hGH to MAb3 but bound as well as hGH when 2 additional framework mutations were introduced. Attempts to recover binding affinity by grafting the MAb3 epitope onto more distantly related scaffolds having a similar 4-helix bundle motif, such as human prolactin (23% sequence identity) or granulocyte colony-stimulating factor, were unsuccessful.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Interleukin-5 (IL-5) is a T-helper cell of subtype 2 cytokine involved in many aspects of eosinophil life. Eosinophilic granulocytes play a pathogenic role in the progression of atopic diseases, such as allergy, asthma and atopic dermatitis and hypereosinophilic syndromes. Here, eosinophils upon activation degranulate leading to the release of proinflammatory proteins and mediators stored in intracellular vesicles termed granula thereby causing local inflammation, which when persisting leads to tissue damage and organ failure. As a key regulator of eosinophil function, IL-5 therefore presents a major pharmaceutical target and approaches to interfere with IL-5 receptor activation are of great interest. Here we present the structure of the IL-5 inhibiting peptide AF17121 bound to the extracellular domain of the IL-5 receptor IL-5Rα. The small 18mer cyclic peptide snugly fits into the wrench-like cleft of the IL-5 receptor, thereby blocking access of key residues for IL-5 binding. While AF17121 and IL-5 seemingly bind to a similar epitope at IL-5Rα, functional studies show that recognition and binding of both ligands differ. Using the structure data, peptide variants with improved IL-5 inhibition have been generated, which might present valuable starting points for superior peptide-based IL-5 antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号